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This talk is based on a joint paper with Egor Teplyakov submitted

to ”Izvestiya”.

Introduction

The topological phase theory is based on the homotopy approach to

the study of properties of solid states. A key property of such states

used in this theory is the existence of the energy gap stable under

small deformations. It motivates the application of topological

methods to the investigation of topological phases.
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The topological phases are defined in the following way. Denote by

G the symmetry group and consider the set HamG of classes of

homotopy equivalent G-symmetric Hamiltonians satisfying the

energy gap condition. It is possible to introduce on this set a

natural stacking operation such that HamG, provided with this

operation, becomes an Abelian monoid (i.e. an Abelian semigroup

with the neutral element). The group of invertible elements of this

monoid is precisely the topological phase. The initial ideas, lying in

the base of the theory of topological phases, were formulated by

Alexei Kitaev in his talks.
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It turns out that the family (Fd) of d-dimensional topological phases

forms an Ω-spectrum. In other words, it is a collection of

topological spaces Fd having the property that the loop space

ΩFd+1 is homotopy equivalent to the space Fd. This fact opens a

way to wide use of algebraic topology methods for the study of

topological phases. More concretely, one can associate with any

Ω-spectrum the generalized cohomology theory, determined by the

functor hd, which assigns to the topological space X the set [X,Fd]

of classes of homotopy equivalent maps X → Fd.
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Topological phases

We consider the quantum mechanical systems described by the

Hamiltonians H invariant under the action of the symmetry group

G. The Hamiltonians H are given by selfadjoint operators defined

on a Hilbert space H and the group G acts on H by the unitary or

anti-unitary operators. Apart from G-invariance condition we shall

impose on Hamiltonians H some other restrictions, the most

important of them is the gap condition requiring that the point 0

should not belong to the spectrum of H. We shall call the

G-symmetric gapped Hamiltonians admissible. It is useful to

describe the properties of admissible Hamiltonians in terms of their

ground states, i.e. the eigenstates with minimal energy. Such states

will be also called admissible.
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We introduce on the set of admissible ground states the following

stacking operation. Suppose that we are given the two admissible

ground states Φ0 and Φ1 with associate admissible Hamiltonians H0

and H1, acting in Hilbert spaces H0 and H1 respectively. The

stacking of these two states is the ground state of the form

Φ = Φ0 ⊗ Φ1

associated with the Hamiltonian H, acting in the tensor product

H = H0 ⊗H1.

The symmetry group G acts in H as the tensor product of

representations of G in the Hilbert spaces H0 and H1 and the

operator H is given by the equality

H = H0 ⊗ I + I ⊗H1.

The constructed ground state Φ and Hamiltonian H are

G-symmetric and gapped if the initial ground states Φ0,Φ1 and

Hamiltonians H0,H1 were of this type.
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Consider next continuous deformations of admissible Hamiltonians,

i.e. continuous paths of the form Ht, 0 ≤ t ≤ 1, in the class of

admissible Hamiltonians.

Denote by HamG the set of classes of homotopy equivalent

admissible Hamiltonians and the corresponding ground states. The

stacking operation, introduced above, can be pushed down to a

binary operation on HamG. Denote by [Φ] the class in HamG

containing the ground state Φ and by [Φ1] + [Φ2] the stacking of the

ground states [Φ1] and [Φ2]. This operation has the following

properties:
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1 associativity: for any admissible ground states [Φ1], [Φ2], [Φ3]

the following relation holds

([Φ1] + [Φ2]) + [Φ3] = [Φ1] + ([Φ2] + [Φ3]);

2 commutativity: for any admissible ground states [Φ1], [Φ2] the

following equality takes place

[Φ1] + [Φ2] = [Φ2] + [Φ1];

3 existence of the neutral element: there exists a trivial ground

state [0] such that for any admissible ground state [Φ] we have

the equality

[0] + [Φ] = [Φ] + [0] = [Φ].
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Below we shall consider a concrete example of the lattice system

having the formulated properties. Here we point out only the

analogy of the given construction with the definition of the

semigroup Vects(X) of vector bundles over the topological space X

defined up to the stable equivalence. By this analogy the stacking

operation corresponds to the direct sum of bundles while the trivial

state corresponds to the trivial bundle.

We shall call by the SRE(short range entangled)-state the

admissible ground state which is homotopic to the trivial one in the

class of admissible states.
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Taking into account the G-symmetry, we shall call by

SPT(symmetry protected topological)-phase (or G-protected

topological phase) the class in HamG such that any of its

representatives is an SRE-state if we ignore the G-symmetry. In

other words, if any representative of this phase can be connected

with the trivial state if one forgets the G-symmetricity condition.

Here is another, more formal definition. As it was pointed out

before the space HamG, provided with the stacking operation, is an

Abelian monoid. The group of the invertible elements of the

monoid HamG is called the SPT-phase. It is an Abelian group with

respect to stacking operation.
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To describe the many-particle states we shall need the bosonic Fock

space.

The bosonic Fock space over the Hilbert space H is defined as the

completion

B(H) = S(H) =
⊕
p

Sp(H)

where Sp(H) is the subspace of p-particle states of the form

Sp(H) = span{v1 ⊗ . . . vp, vj ∈ H}.
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The inner product (· , ·) in the space H is extended in a natural way

to the inner product on the Fock space B(H). Namely, it is defined

on monomials of the same degree as

(v1 ⊗ . . . vp, v′1 ⊗ . . . v
′
p) =

∑
σ

(v1, v
′
i1

) · . . . · (vp, v′ip)

where the summation is taken over all permutations

σ = {i1, . . . , ip} of the set {1, . . . , p} (the inner product of

monomials of different degrees is set to zero). The inner product on

monomials is extended by linearity to the whole algebra S(H). The

bosonic Fock space B(H) is the completion of the algebra S(H)

with respect to the introduced norm.

If {wn}, n = 1, . . ., is an orthonormal basis of the space H then we

can take for the orthonormal basis of the Fock space B(H) the

collection of monomials of the form

PK(v) =
1
√
K!

(v, w1)k1 · . . . (v, wn)kn

where v ∈ H, K = (k1, . . . , kn), ki ∈ N, and K! = k1! . . . , kn!.
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Denote by a†i the operator of creation of a particle in the state wi

given by the operator of multiplication by the inner product with

wi. The adjoint operator of annihilation of a particle in the state wi

coincides with the operator −∂wi where ∂wi is the operator of

differentiation in the direction of wi. These operators satisfy the

standard commutation relation

[a†i , aj] = δij

(the commutators of other operators are equal to zero). An

arbitrary linear operator O : H→ H can be extended to a linear

operator Ô : B(H)→ B(H) given on monomials by the formula

Ô(v1 ⊗ . . .⊗ vp) = (Ov1)⊗ . . .⊗ (Ovp)

with subsequent extension by linearity and completion to the whole

space B(H). In terms of creation and annihilation operators this

operator is written in the form

Ô =
∑
i,j

Oija
†
iaj. (1)
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Suppose that we have a lattice L in Rd, i.e. a discrete Abelian

group, isomorphic to Zd, which acts on Rd by translations by

vectors γ ∈ L. Denote by G the symmetry group of the

Hamiltonian. The class of admissible Hamiltonians H consists in

this case of d-dimensional, local, G-symmetric, gapped selfadjoint

operators acting in the Hilbert space H and the Fock space B(H).

The admissible operators are given by the formula (1) in which the

number of terms in the sum does not exceed a common constant k

(locality condition). The Hamiltonian H is called bosonic if there

exists a (finite-dimensional) Hilbert space H = Hγ associated with

every γ ∈ H.
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The trivial state, called also the trivial product, is the state of the

form ⊗
γ∈L

Φγ ∈
⊗
γ∈L
Hγ

without entanglement between the states corresponding to

different γ’s. For any pair of such states there exists a path,

connecting them in the space of trivial states. In this setting the

SRE-state is the ground state of a local gapped Hamiltonian which

can be connected by a path to the trivial state.

In the same terms the d-dimensional G-invariant topological phase

is called by the G-protected topological phase or SPT-phase if any

of its representatives is an SRE-state if we ignore the G-symmetry,

i.e. it can be connected by a path with the trivial state.
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Recall that the symmetry group G acts on the Hilbert space H by

the unitary or anti-unitary transformations. It is convenient to

introduce the homomorphism φ : G→ Z2 = {±1} indicating that

for φ(g) = +1 the element g ∈ G acts on H as a unitary operator

while for φ(g) = −1 it acts as an anti-unitary operator. Apart from

that the group G may contain the symmetry with respect to the

time inversion, given by the homomorphism T : G→ {±1}, and the

symmetry with respect to the charge conjugation, given by the

homomorphism C : G→ {±1}.

The G-protected SPT-phases have the functoriality property which

means that being given a homomorphism ϕ : G′ → G of symmetry

groups the composition of ϕ with a representation of the group G in

the Hilbert space H generates the representation of the group G′ in

the same Hilbert space defining in this way the G′-protected

SPT-phase.
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We generalize now the initial problem by including a (real or

complex) C∗-algebra A into the play. We shall consider the pairs

(G,A) in which the action of G on the algebra A is given by the

homomorphism α : G→ Aut(A) into the group of linear

∗-automorphisms of the algebra A.

A covariant representation of the pair (G,A) is a non-degenerate

∗-representation of the algebra A by bounded linear operators in

the Hilbert space H given by the homomorphism θ.
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Suppose now that the algebra A is graded, i.e. A = A0 ⊕A1 where

A0, A1 are selfadjoint closed subspaces satisfying the relations

AiAj ⊂ A(i+j)(mod 2).

Denote by Aut(A) the group of even ∗-automorphisms of the

algebra A, i.e. ∗-automorphisms of the algebra A preserving the

decomposition A = A0 ⊕A1.

A graded covariant representation of the system (G,A, c), where c

is the homomorphism G→ {±1}, is the graded ∗-representation of

the algebra A in the graded Hilbert space H = H0 ⊕H1 satisfying

the condition that θ(g) is an even operator for c(g) = +1 and an

odd operator for c(g) = −1.
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Up to this moment we were considering only the bosonic

SPT-phases. However the introduced notions are easily extended to

the fermionic case. A fermionic Hamiltonian H is defined in terms

of a finite collection of creation and annihilation operators acting in

the fermionic Fock space F(H).
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Topological phases

By definition the Ω-spectrum is the family of pointed topological

spaces (Tn), n ∈ Z, having the following property: for any n ∈ Z the

pointed topological spaces

Tn ∼ ΩTn+1

are homotopy equivalent where ΩTn+1 is the loop space of the

topological space Tn+1.

With every Ω-spectrum it is associated the generalized cohomology

theory determined by the contravariant functor hn. This functor

assigns to any pair of pointed topological spaces (X,Y ) with Y ⊂ X
the Abelian group

hn(X,Y ) = [(X,Y ), (Tn, ∗)]

where on the right stands the set of homotopy classes of continuous

maps (X,Y )→ (Tn, ∗) sending Y to the marked point ∗.
c. 20



To take into account the action of the symmetry group G suppose

that it acts on the pair (X,Y ) by a continuous homeomorphism ϕ.

In this case we can introduce the G-invariant generalized

cohomology theory given by the functor defined by the equality

hnG(X,Y ) = hn(EG×G X,EG×G Y )

where EG→ BG is the classifying bundle in which EG is the

contractible space, being a principal G-bundle over the classifying

space BG, and EG×G X denotes the quotient (EG×X)/G. In

particular, for X = ∗ we get

hnG(∗) = hn(BG).
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Denote by Fd the space of d-dimensional SRE-states. Then for such

spaces we have the property

Fd ∼ ΩFd+1 for d ≥ 0.

If this property is fulfilled for d ≥ 0 then we can define by

induction the spaces Fd for all d ∈ Z and the family of the spaces

(Fd)d∈Z will form an Ω-spectrum.

Here what is known about the homotopy groups of the spaces Fd.

The group π0(Fd) classifies the d-dimensional SPT-phases without

symmetry. In lower dimensions this group is equal to

π0(F0) = 0, π0(F1) = 0, π0(F2) = Z, π0(F3) = 0

(the group Z in dimension 2 is generated by the so called E8-phase).
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Note that the condition Fd ∼ ΩFd+1 implies that

πk(Fd) ∼= πk+1(Fd+1).

The space F0 is identified with the infinite-dimensional projective

space

F0 = CP∞

and the other spaces Fd of lower dimensions are described in terms

of the Eilenberg–Mac Lane spaces K(Z, n) as

F1 = K(Z, 3), F2 = K(Z, 4)× Z, F3 = K(Z, 5)×U(1).
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If we denote by SPTd(G) the Abelian group of d-dimensional

G-protected SPT-phases and by Hn(G,Z) the n-dimensional

cohomology group of the group G then the lower groups SPTd(G)

will be described as follows:

SPT 0(G) = H2(G,Z), SPT 1(G) = H3(G,Z),

SPT 2(G) = H4(G,Z)⊕H0(G,Z), SPT 3(G) = H5(G,Z)⊕H1(G,Z).
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Consider as an example of application of the introduced notions the

fermionic systems with the so called hourglass symmetries. These

are the symmetry groups including the charge conjugation

symmetry U(1), time reversion symmetry T with T 2 = −1 and glide

symmetry given by the composition of the translation to half-period

with reflection.

As an example of the systems with glide symmetry we can take the

three-dimensional system in which the planes with constant

coordinate x ∈ Z are occupied by the two-dimensional systems

(quantum spin Hall insulators), and the planes with constant

coordinate x ∈ Z + 1/2 are occupied with their mirror reflections.

The obtained system is invariant under the glide given by the map:

(x, y, z) 7→ (x+ 1
2
,−y, z). We call this procedure the alternating

fibers construction.
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The constructed system may be described in terms of the diagram

Z2 −→ Z4 −→ Z2

connecting topological insulators in two and three dimensions. In

dimension 2 the generator of the first group Z2 is the quantum spin

Hall insulator (QSH-phase). We can assign to it the

three-dimensional system, described above, corresponding to the

group Z4 and having the hourglass symmetry. Transition from the

group Z4 to the second group Z2 is done by ”forgetting” the glide

symmetry.
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This construction may be extended to arbitrary symmetry groups

G. Denote as above by SPTd(G) the Abelian group of

d-dimensional G-protected SPT-phases, and by SPTd(Z×G) the

same group with glide symmetry added. Then there is the following

exact sequence of homomorphisms

0 −→ SPTd−1(G)/2SPTd−1(G)
α−→ SPTd(Z×G)

β−→
β−→ {[c] ∈ SPTd(G) : 2[c] = 0} −→ 0. (2)

Here the homomorphism β is generated by the forgetting map, and

homomorphism α is generated by the alternating fibers

construction.
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As one more example of application of topological phases we give a

description of Wigner–Dyson classes (class A). In this case d = 3

and the group G = U(1) corresponds to the charge preservation. In

the two-dimensional case the fermionic phases of this type are

classified by the 1st Chern class of the Bloch bundle over the

Brillouin zone.

The phases with odd Chern classes represent the non-trivial

element in the first term of the exact sequence written above. This

phase may be pulled up with the help of the alternating fibers

construction to the three-dimensional phase including the gliding.

The obtained three-dimensional phases are characterized by a

topological invariant κ ∈ Z2. The phases with non-trivial invariant κ

are called Möbius.
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Using the exact sequence (2), we can obtain the complete

classification of two-dimensional and three-dimensional

U(1)-protected fermionic SPT-phases. Namely:

SPT 2(U(1)) ∼= Z⊕ Z, SPT 3(U(1)) ∼= 0

where the first group Z is generated by the phase with zero Chern

class while the second group Z corresponds to E8-phase, mentioned

above. After adding the gliding we shall obtain the relation

SPT 3(Z×U(1)) ∼= Z2 ⊕ Z2.
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Consider one more Wigner–Dyson class (denoted by AII). Here

again d = 3 and the group G is generated by the U(1)-symmetry

and T -symmetry. In this case the fermionic G-protected phases

admit the following classification

SPT 2(G) ∼= Z2, SPT
3(G) ∼= Z2 ⊕ Z2 ⊕ Z2

where the group Z2 in the two-dimensional case is generated by the

QSH-phase and three groups Z2 in the three-dimensional case

correspond to zonal insulators.

It may be also shown that

SPT 3(Z×G) ∼= Z4 ⊕ Z2 ⊕ Z2.
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Connection with K-theory

Consider the Hamiltonians H acting in the Hilbert space H and

satisfying the gap condition. Denote by Γ the spectral flattening

sgnH of the Hamiltonian H. In other words, Γ is the grading

operator, belonging to the same phase as H, with the spectrum

consisting of two points {+1,−1}. (Continuous deformation of

Hamiltonian H to its spectral flattening Γ = sgnH may be given by

an explicit formula). The space of grading operators Γ, acting in the

Hilbert space H, is denoted by Grad(H).

Two grading operators Γ1,Γ2 are called homotopic if they can be

connected by the continuous path inside Grad(H). The triple

(H,Γ1,Γ2) with Γ1,Γ2 ∈ Grad(H) is called the ordered difference

between the grading operators Γ1,Γ2 or the corresponding

Hamiltonians H1,H2. If in this triple Γ1 is homotopic to Γ2 we call

such triple (H,Γ1,Γ2) trivial.
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We can extend the definition given above by including into

consideration the symmetry group G. Namely, denote by A the

C∗-algebra on which the group G acts by the representation

α : G→ AutA. Let W be a finitely generated A-module and

GradA(W ) denotes the space of A-compatible grading operators

acting in W . The above definitions, related to Grad(H),

immediately extend to the case GradA(W ). The direct sum

operation provides GradA(W ) with the structure of the Abelian

monoid.
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Tiang has proposed the following definition of K-functor. Denote by

K0(A) the quotient of the monoid GradA(W ) with respect to the

equivalence relation determined by trivial triples. In more detail,

the triple (W,Γ1,Γ2) is equivalent to the triple (W ′,Γ′1,Γ
′
2) if there

exist the trivial triples (V,∆1,∆2) (V ′,∆′1,∆
′
2) such that

(W ⊕ V,Γ1 ⊕∆1,Γ2 ⊕∆2) = (W ′ ⊕ V ′,Γ′1 ⊕∆′1,Γ
′
2 ⊕∆′2)

in GradA(W ). The group K0(A) is called the group of differences

of A-compatible gapped Hamiltonians. This group is Abelian and

−[W,Γ1,Γ2] = [W,Γ2,Γ1]. It satisfies also the condition

[W,Γ1,Γ2] + [W,Γ2,Γ3] = [W,Γ1,Γ3]

in K0(A).
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Let G be the symmetry group of the Hamiltonian. We shall provide

it with the following homomorphisms:

1 φ : G→ {±1} is responsible for the unitarity of the action of

the element g ∈ G: this action is unitary if φ(g) = +1, and it is

anti-unitary if φ(g) = −1;

2 c : G→ {±1} is responsible for the charge preservation: the

action of g ∈ G commutes with the Hamiltonian if c(g) = +1,

and it anti-commutes with it if c(g) = −1;

3 τ : G→ {±1} is responsible for the preservation of time

direction: the action of g ∈ G preserves the time direction if

τ (g) = +1, and it inverts it if τ (g) = −1.
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Consider a concrete example of the group G called the CT-group. It

is generated by the unit and three generators T,C, S where

1 φ(T ) = −1, c(T ) = +1;

2 φ(C) = −1, c(C) = −1;

3 φ(S) = +1, c(S) = +1.

The generators T , C and S = CT = TC correspond to the

symmetries of the time inversion, charge conjugation and chiral

symmetry respectively. We are interested in the graded

representations of the CT-group and its subgroups. We shall denote

the operators, corresponding to the generators of the group G, by

T̂ , Ĉ and Ŝ respectively.
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Then we have the following possibilities: T̂ 2 = ±1, Ĉ2 = ±1 and

Ŝ = ĈT̂ = T̂ Ĉ. The family of pairwise anti-commuting odd

operators {Ĉ, iĈ, iĈT̂} generates the graded representation of the

real Clifford algebra Clr,s where r (resp. s) is the number of the

negatively (resp. positively) determined selfadjoint generators so

that the representation of the full CT-group G coincides with the

graded ∗-representation of the Clifford algebra Clr,s.
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In the case of the subgroup A = {1, C} we can take for the odd

generators the representation operators {Ĉ, iĈ} with Ĉ2 = ±1

generating the graded representation of the Clifford algebras Cl0,2

or Cl2,0. In the case of the subgroup A = {1, S} we have necessarily

Ŝ2 = +1 so that the obtained representation coincides with the

graded representation of the complex Clifford algebra Cl1. And in

the case of the subgroup A = {1, T} we have two choices for

T̂ 2 = ±1. The family of operators {i, T̂ , iT̂ Γ̂}, where Γ̂ is the

grading operator, generates the non-graded representation of the

Clifford algebra Cl1,2 for T̂ 2 = +1 and of Cl3,0 for T̂ 2 = −1.
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In the case of zonal insulators the group G has the form G = L o P
where P is a compact point symmetry group. The Pontryagin dual

group L̂ coincides with the Brillouin torus Td, and the K-functor

K0(A) of the algebra A = C oG coincides with the usual K-functor

K0(A). The graded finitely-generated A-module is in this case the

graded C(Td)-module of sections of the Bloch bundle over Td.

We point out the relation of this construction with Clifford algebras.

To see it suppose that G = L oA where A is one of the subgroups

of CT-group so that the algebra A = C oG. Then the group K0(A)

coincides in the case of complex Clifford algebras with K−n(Td), and

in the case of real Clifford algebras Clr,s with KR(r−s)(mod 8)(Td).
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