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Position and spin in relativistic 

quantum mechanics
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Many scientists are sure that in the Dirac representation 

wave eigenfunctions have the probabilistic interpretation 

(ρD (r)=|ΨD(r)|2) and the Dirac radius vector r corresponds to 

the classical variable, radius vector R. This point of view is 

presented in a lot of publications, while it has been proven 

many years ago (Foldy, Wouthuysen, 1950) that only wave 

eigenfunctions in the FW representation have the 

probabilistic interpretation (ρFW (x)=|ΨFW(x)|2) and the radius 

vector x in this representation corresponds to the classical 

variable R.
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We follow the paper

L. Zou, P. Zhang, A.J. Silenko, Position and spin in relativistic 
quantum mechanics, Phys. Rev. A 101, 032117 (2020).

Contrary opinions!
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Poincaré group and

fundamental quantities in

classical and quantum physics
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There are ten independent fundamental quantities Pμ

=(H,P), J μν (μ,ν =0,1,2,3) describing the momentum and

total angular momentum and characteristic for the

dynamical system. The antisymmetric tensor Jμν is

defined by the two vectors, J and K. As a result, there

are the ten infinitesimal generators of the Poincare

group (inhomogeneous Lorentz group), namely, the

generators of the infinitesimal space translations P =

(Pi), the generator of the infinitesimal time translation H,

the generators of infinitesimal rotations J = (Ji), and the

generators of infinitesimal Lorentz transformations

(boosts) K = (Ki) (i = 1,2,3). These ten generators satisfy

the following Poisson brackets:

Poincaré group and fundamental quantities in 
classical physics
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The only additional equation which should be satisfied 

defines the orbital and spin parts of the total angular 

momentum:

There is some latitude in the definition of the position, 

orbital angular momentum (OAM), and spin.

M. H. L. Pryce, The mass-centre in the restricted theory of 

relativity and its connexion with the quantum theory of 

elementary particles, Proc. R. Soc. London A 195, 62 (1948).

A consideration of the particle position variables Qi

brings the following Poisson brackets:
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It follows from the above equations that

The Poisson brackets for the conventional particle 

position defining the center of charge are equal to zero:

As a result, for a free particle

No spin-orbit interaction for a free particle
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The main variables of a free spinning particle in classical 

mechanics are specified by

L. L. Foldy, Synthesis of Covariant Particle Equations, Phys. 

Rev. 102, 568 (1956).

L. L. Foldy, Relativistic Particle Systems with Interaction, 

Phys. Rev. 122, 275 (1961).
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The operators being counterparts of fundamental 

classical variables should satisfy the relations

key

definitions

Poincaré group and fundamental operators in relativistic 
quantum mechanics

There is a difference for the Dirac and FW representations!
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Let us first consider the set of operators p, HD, j, K, q, 

sD, where sD =(1/2)ħΣ and all these operators are 

defined in the Dirac representation (in particular, the 

position operator is the Dirac radius vector r). 

Evidently, some of the above commutators are not 

satisfied by these operators.

A consideration of the set of operators p, HFW, j, K, q, s

defined in the FW representation leads to an opposite 

conclusion. In this representation, the definition of s is 

the same (s =(1/2)ħΣ) and the position operator q is 

equal to the FW radius vector x. We can check that all 

the commutators are now satisfied.
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The counterparts of the classical Hamiltonian, the 

position vector, the orbital angular momentum (OAM), 

and the spin are the operators HFW, x, (x × p), and s

=(1/2)ħΣ defined in the FW representation. The operators

p and J are not changed by the transformation from the 

Dirac representation to the FW one.

Evidently, the FW Hamiltonian commutes with the OAM 

and spin operators.

In the Dirac representation, the fundamental operators 

are defined by the transformation of the corresponding 

FW operators. This transformation is inverse with 

respect to the FW one and is performed by the operator 

U-1
FW (with ΨFW=UFWΨD).



15

The Dirac operators of the position and the spin are 

equal to

The conventional spin operator corresponding to the 

classical rest-frame spin commutes with the OAM 

operator, the Hamiltonian, and the position and 

momentum operators in any representation.



16

Comparison of classical and 

quantum-mechanical 

descriptions of a Dirac particle 

in external fields
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Equation of spin motion in the classical limit

We obtains the Thomas-Bargmann-Mishel-Telegdi

equation added by terms describing the electric

dipole moment.
In the classical limit, the related equations of spin motion 

for spin-½ and spin-1 particles coincide with the classical 

equation of spin motion for particles with the EDM.
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In the classical limit, one obtains the Thomas-

Bargmann-Mishel-Telegdi equation added by terms

describing the electric dipole moment. The rigorous

derivation of the classical equation is presented in
T. Fukuyama, A.J. Silenko, Derivation of generalized

Thomas–Bargmann–Michel–Telegdi equation for a

particle with electric dipole moment. Int. J. Mod. Phys. A

28, 1350147 (2013);

A.J. Silenko, Spin precession of a particle with an

electric dipole moment: contributions from classical

electrodynamics and from the Thomas effect. Phys. Scr.

90, 065303 (2015).

The perfect agreement with classical equations takes

also place at the quantum-mechanical description of a

Dirac particle in noninertial frames and arbitrary

gravitational fields in the Foldy-Wouthuysen

representation.
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The comparison of classical and quantum-mechanical

descriptions of a Dirac particle in external fields leads to

results fully supporting the conclusions made. An analysis

of spin-0 and spin-1 particles in external fields also presents

arguments in favor of these conclusions. In contrast to the

results for a free particle, the particle spin motion in

electric and magnetic field is sensitive to the Thomas

effect and unambiguously shows that the fundamental

spin operator is defined in the particle rest frame. The

analysis presented excludes the possibility of a

definition of this operator in the instantaneously

accompanying frame.
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Connection between spin and

geometry



The additional equation which should be satisfied 

defines the orbital and spin parts of the total 

angular momentum:
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Since the spatial part of the spin tensor is presented by 

the vector ζ, the definition of this vector is analogous to 

the definition of the total angular momentum j. The 

corresponding operators of the position and OAM should 

be redefined in order to avoid a change of the operator j:

The geometry based on the center-of-mass position 

operator is noncommutative.
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In some papers, the projected spin operator has been

considered. It is possible to project some operators onto

positive- and negative-energy subspaces, eliminating the 

cross terms corresponding to the electron-positron 

transitions. In particular, the projected radius vector 

operator is given by
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The projected operators of the radius vector (position) 

and spin are equal to

The projected OAM operator is given by

The geometry based on the projected operators 

is also noncommutative.
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Discussion
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Summary

 The use of the Poincaré group unambiguously 
shows that quantum-mechanical counterparts of 
fundamental classical variables are the
corresponding operators in the Foldy-
Wouthuysen representation but not in the Dirac one.

 The comparison of classical and quantum-
mechanical descriptions of a Dirac particle in 
external fields confirms this conclusion.

 Only wave functions in the Foldy-Wouthuysen
representation (but not in the Dirac one) have 
the probabilistic interpretation.

 The geometries based on the center-of-mass

position operator and on the projected

operators are noncommutative.
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