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Supersymmetric theories at the quantum level

Investigation of quantum corrections in supersymmetric theories is very important
both for theory and for phenomenology. Certainly, for calculating quantum
corrections a theory should be regularized.

Dimensional regularization breaks supersymmetry and is not convenient for
calculations in supersymmetric theories. That is why supersymmetric theories
are mostly regularized by dimensional reduction. However, dimensional reduction
is not self-consistent.

\ W.Siegel, Phys.Lett. B 84 (1979) 193; B 94 (1980) 37. \

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

\ L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272. \

As a consequence, supersymmetry can be broken by quantum corrections in
higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.
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The higher covariant derivative regularization

Here we will discuss the application of the higher covariant derivative method
for the regularization of various supersymmetric theories. We will argue that this
regularization allows to reveal some interesting features of quantum corrections
which cannot be seen in the case of using dimensional reduction.

The higher covariant derivative regularization was proposed by A.A.Slavnov

A.A.Slavnov, Nucl.Phys. B31, (1971), 301;
Theor.Math.Phys. 13 (1972) 1064.

By construction, it includes insertion of the Pauli-Villars determinants for
removing residual one-loop divergencies

‘ A.A.Slavnov, Theor.Math.Phys. 33, (1977), 977.

Unlike dimensional reduction, this regularization is self-consistent. It can be
formulated in a manifestly supersymmetric way in terms of N' = 1 superfields

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B268, (1986), 113.
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The exact NSVZ B-function

Moreover, the exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) $-
function

V.Novikov, M.A.Shifman, A.Vainshtein, V.l.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.l.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

can naturally be obtained in the case of using the higher covariant derivative
regularization. It relates the S-function and the anomalous dimension of the
matter superfields in A" = 1 supersymmetric gauge theories,

o? (302 —T(R) + C(R) (v4);' (e, /\)/7”)
27(1 — Cor/2m)

B(av)‘) =

Here v and X are the gauge and Yukawa coupling constants, respectively, and
we use the notation
tr (TT%) = T(R) 6%, (THMT) = C(R);

fACDfBCD = (0,675, r=0d0s4 =dimG.
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Explicit calculation and the problem of constructing an NSVZ scheme

Three- and four-loop calculations in A/ = 1 supersymmetric theories made with
dimensional reduction supplemented by modified minimal subtraction (i.e. in the
so-called DR-scheme)

L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; l.Jack, D.R.T.Jones,
C.G.North, Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

revealed that the NSVZ relation in the DR-scheme holds only in the one- and
two-loop approximations, where the S-function is scheme independent.

However, in the three- and four-loop approximations it is possible to restore
the NSVZ relation with the help of a specially tuned finite renormalization
of the gauge coupling constant. Note that a possibility of making this finite
renormalization is highly nontrivial.

This implies that the NSVZ relation holds only in some special renormalization
schemes, which are usually called “NSVZ schemes”, and the DR-scheme is not
NSVZ.

Now, let us discuss how one can derive the NSVZ equation in all orders and
construct some all-loop NSVZ schemes with the help of the higher covariant
derivative regularization.
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Supersymmetric gauge theories

Renormalizable N/ = 1 supersymmetric gauge theories with matter superfields
at the classical level are described by the action

1 ) )
S=— Retr/d4xd20 WeW, + = /d4xd40 o (e*V)i 5
2eg 4
1 1.
+{/d4:c 420 (Zmoquiqu T 6A01k¢i¢j¢k) n c.c.}.
We assume that the gauge group is simple, and the chiral matter superfields
¢i lie in its representation R. The gauge and Yukawa coupling constants are

denoted by ey and A", respectively. The strength of the gauge superfield V' is
defined by the equation

W, = éD2 (efQVDanV) .

The theory under consideration is gauge invariant if the (bare) masses and
Yukawa couplings satisfy the conditions

mg™ (T4)m” +mg? (T4)m' = 0;

AT TN AT (T ? + AT (T )" = 0.
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The background superfield method and the nonlinear renormalization

For quantizing the theory it is convenient to use the background field method.
Moreover, it is necessary to take into account nonlinear renormalization of the
quantum gauge superfield

O. Piguet and K. Sibold, Nucl.Phys. B197 (1982) 257; 272;
L.V.Tyutin, Yad.Fiz. 37 (1983) 761.

This can be done with the help of the replacement €2V — €27 V)2V where V
and V are the background and quantum gauge superfields, respectively, and the
function F(V) includes an infinite set of parameters needed for describing the
nonlinear renormalization. In the lowest order

J.W.Juer and D.Storey, Phys.Lett. 119B (1982) 125; Nucl. Phys. B216 (1983) 185. ‘

FW)A =V + €5y GAPPVEVOVP 4

GABCD is 3 certain function

where g is one of the constant entering this set, and
of the structure constants.

The background gauge invariance
Ay j —Aty, At 2 —At 2v A
¢ = (e7) ¢y Ve ™ Ve eV et Ve

parameterized by a chiral superfield A remains a manifest symmetry of the
effective action.
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The higher covariant derivative regularization

For constructing the regularized theory we first add to its action terms with
higher derivatives,

1 4 2 a -2V _—2F(V v2v2
Sreg = ﬁRetr/d zd?oW* (e7?Ve ))Ade<’ W)Adj

1 ; \Yave ;
2F(V) 2V 1 A Ap xi _ 2F(V) 2V j .
><(e ¢ )Adde+4/dmd0¢ [F( 16A2 )e ¢ L %

—|—[ /d496 d*0 (iméjlﬁitﬁj + éAEjkfﬁilﬁj(ﬁk) + C.C.],

where the covariant derivatives are defined as

Vo = Do v, = eQ}'(V)e2VDd672V672}"(V)V

Gauge is fixed by adding the term

Sgf = — tr/d;r:d OVVE (- <

2 2
Vv ) o2V
165060 Adj
Also it is necessary to introduce the Faddeev-Popov and Nielsen—Kalosh ghosts.
The regulator functions R(z), F(z), and K(z) should rapidly increase at infinity
and satisfy the condition R(0) = F'(0) = K(0) = 1.
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The Pauli—Villars determinants in the non-Abelian case

For regularizing residual one-loop divergences we insert into the generating
functional two Pauli—Villars determinants,

A /DH Det(PV, M,) 'Det(PV, M)*

X exp {i(Sreg + Sgf + SFp + SNK + Ssources) }7

where Dy is the functional integration measure, and
Det(PV, M,) /Dgpl Dy; D3 exp(iS,);

Det(PV, M)~ /D<I> exp(iSs).

Here we use chiral commuting Pauli-Villars superfields.

The superfields 1,23 belong to the adjoint representation and cancel one-loop
divergences coming from gauge and ghost loops. The superfields ®; lie in a
representation Rpy and cancel divergences coming from a loop of the matter
superfields if c = T'(R)/T(Rpv). The masses of these superfields are

M, = apA; M = al,

where the coefficients a, and a do not depend on couplings.
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Different definition of renormalization group functions

It is important to distinguish renormalization group functions (RGFs) defined in
terms of the bare couplings ap and o,

_danx
dln A

d()zo
dln A

,6(@07 >\O) =

Y (a0, Ao) =

; >
a,A=const a,A=const

and RGFs standardly defined in terms of the renormalized couplings a and A,

N _dInZ,

~ da

Bla,\) =

; .
dIn plag,no=const g, \o=const

\ A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459. \

RGFs defined in terms of the bare couplings do not depend on a renormalization
prescription for a fixed regularization, but depend on a regularization.

RGFs defined in terms of the renormalized couplings depend both on a
regularization and on a renormalization prescription.
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The HD+MSL scheme. The main statements.

Both definitions of RGFs give the same functions in the HD+MSL-scheme,
when a theory is regularized by Higher Derivatives, and divergences are removed
by Minimal Subtractions of Logarithms. This means that the renormalization
constants include only powers of In A/u, where p is a renormalization point.

E(a,/\)‘ = B(ao = a, X0 = A);
HD+MSL

~z 7)\‘ = Yz — 7)\ — ).
Vo (x )HD+MSL Yz (o = o, Ao = A)

Here we will briefly describe the proof of the following statements:

1. NSVZ equation is valid for RGFs defined in terms of the bare couplings in
the case of using the higher covariant derivative regularization for an arbitrary
renormalization prescription.

2. For RGFs defined in terms of the renormalized couplings some NSVZ schemes

are given by the HD+MSL prescription. (MSL can supplement various versions
of the higher covariant derivative regularization.)
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The all-loop derivation of the NSVZ equation: the main steps

1. First, one proves the ultraviolet finiteness of triple vertices with two external
lines of the Faddeev—Popov ghosts and one external line of the quantum gauge

superfield.
2. Next, it is necessary to rewrite the NSVZ relation in the equivalent form
5(0607/\0) 1 (
—— = =——1(3C2 — T(R) — 2C27c (o, A
> 5 (3C2 = T(R) 27e (a0, Ao)

20277 (a0, 20) + C(R): (36); (00, Do) /).

‘ K.S., Nucl.Phys. B909 (2016) 316. ‘

3. After this we prove that the S-function is determined by integrals of double
total derivatives with respect to loop momenta and present a method for
constructing this integrals.

‘ K.S., JHEP 10 (2019) 011. ‘

4. Then the NSVZ equation is obtained by summing singular contributions.
5. Finally, an NSVZ scheme is constructed.

‘ K.S., Eur.Phys.J. C80 (2020) 10, 911. ‘
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Non-renormalization of the three-point gauge-ghost vertices

The all-order finiteness of triple vertices in which two external lines correspond
to the Faddeev—Popov ghosts and one external line corresponds to the quantum
gauge superfield has been proved in the paper

K.S., Nucl.Phys. B909 (2016) 316.

using the Slavnov-Taylor identities and rules for calculating supergraphs. The
result is valid for the superfield formulation of the theory in the general {-gauge.

The one-loop contribution to these vertices comes from the superdiagrams
presented below. The ultraviolet finiteness of their sum has been verified by
an explicit calculation

- ‘," -~
corc' %L‘m;ﬂ %m

corc*

R
%Hgﬁ‘;
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Non-renormalization of the triple gauge-ghost vertices and the new form of

the NSVZ (S-function

There are 4 vertices of the considered structure, Ve, ¢ Ve, éVel, and e Ve,
All of them have the same renormalization constant Z;l/QZCZV. Therefore, due
to their finiteness

d_ 172 _
dn A G 2 2v) =0,
where
1 Lo —1/2 ~ —1_
ai() = E, V = VR, V = ZVZQ ‘/VR7 CcC = Z(;Za CRCR.

The non-Abelian NSVZ equation can equivalently be rewritten as

Blao, do) _ _3C2 = T(R) + C(R)! (9);' (a0, Ao)/r | Co flan, Ao)

a3 27 2 Qo

The S-function in the right hand side can be expressed in terms of the charge
renormalization constant Z,:
dao(a, \, A/ ) dln Z,

Blag, \o) = ———2—2112 _— )
B0, 2o) din A a,\=const ao dIn A la,x=const
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Non-renormalization of the triple gauge-ghost vertices and the new form of

the NSVZ (S-function

Using the finiteness of the triple gauge-ghost vertices we obtain

dIn(Z.Zv)

Blag, Ao) = —2
B(ao, Ao) @0 dln A a,A=const

= 2ap (%(&07 Ao) + v (e, )\o)),
where 7. and 7y are the anomalous dimensions of the Faddeev—Popov ghosts
and of the quantum gauge superfield (defined in terms of the bare couplings),
respectively.
Substituting this expression into the the right hand side we obtain the equivalent
form of the NSVZ equation

B(ao, o)

1
=—— — T(R) — 2027 (v,
ag o (302 (R) 02’}/ (Oéo )\Q)

22 (a0, Xo) + C(R)? (36)' (00, ho) /).
It relates the B-function in a certain loop to the anomalous dimensions of

quantum superfields in the previous loop, because the right hand side does not
contain a denominator depending on couplings.
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The B-function of N' = 1 supersymmetric gauge theories as an integral of

double total derivatives

A key observation needed for derivation of the NSVZ relation is that in the case
of using the higher covariant derivative regularization the integrals giving the
SB-function defined in terms of the bare couplings are integrals of double total
derivatives in A/ = 1 supersymmetric gauge theories. This was first noted in

A.A.Soloshenko, K.S., ArXiv: hep-th/0304083v1 (the factorization into
total derivatives);

AV.Smilga, AlVainshtein, Nucl.Phys. B 704 (2005) 445 (the
factorization into double total derivatives).

The all-loop proof of this statement has been done in

‘ K.S., Nucl. Phys. 852 (2011) 71. ‘

for the Abelian case and in

‘ K.S., JHEP 10 (2019) 011. ‘

for general non-Abelian gauge theories.

As an example, at the next slide we present the three-loop expression for the
B-function of A" =1 SQED with Ny flavors.
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The three-loop B-function of N’ =1 SQED as an integral of double total

derivatives

B(ao) d d'Q 0 0 In(Q*+ M?) d*Q d'K é?
{QW/ (2m)* 0QH 0Q, Q? + 47r/ (2m)* (2m)* K2R%

xli< ! - L NR (1+62Nf1n§)
9Qr 90, \Q*(K + Q)2 (@ +M2)(K+Qp2+M2)) [~ An? T

(| G e~ | o e

+4ﬂ/ d*Q d*K d'L et o 0 {(_ 2K
(2m)* (2m)* (2m)* K2Rk L>Rr 0Q" 0Q, Q*(Q+ K (Q+K+L)?
o L 2 )7(7 2(K* + M?)
(@+L)*  Q*(Q+K)*(Q+L)3 (Q+ K)*+ M?)((Q + L)* + M?)
1 2

@ IP)(Q+ K+ LR+ ) (@2 MA(Q+ K) + M((Q + L) + M%)

4AM? 6
@ IEE(Q T R+ ME(Q T D) +M2)) +ol) }
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Integrals of double total derivatives and a graphical interpretation of the

NSVZ relation for A/ =1 SQED

The integrals of double total derivatives do not vanish due to singularities of the
integrands. Really, if f(Q?) is a non-singular function which rapidly decrease at
infinity, then

[ a0 (Fort) = [y (- @)+ s @)

1 52

= 5/(0) £0.

Due to similar equations the double total derivatives effectively cut lines of
quantum superfields. As a result, we obtain diagrams contributing to various
anomalous dimensions, in which a number of loops is less by 1. For example, in
the Abelian case this gives the NSVZ S-function

_ o’Ny

Bla) = L (1-7).

M.A.Shifman, A.l.Vainshtein, V.l.Zakharov, JETP Lett. 42 (1985) 224;
Phys.Lett. B 166 (1986) 334.
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Graphical interpretation of the new form of the NSVZ relation

This allows to give a simple qualitative interpretation of the new form of the
NSVZ equation:

For each vacuum supergraph the NSVZ equation relates a contribution to the
[-function obtained by attaching two external lines of the background gauge
superfield to the corresponding contribution to the anomalous dimension of
quantum superfields obtained by all various cuts of internal lines:

(D
|y
=) A

In the non-Abelian case internal lines can correspond to the quantum gauge
superfield, the Faddeev—Popov ghosts, and the matter superfields, but all features
are the same as in the Abelian case.
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An example of a certain contribution to the S-function

The two- and three-loop contributions to the S-function which depend on the
Yukawa couplings are generated by the vacuum supergraphs

S P O & S

Here we write down the contributions of the supergraphs (1) and (5) which
determine the three-loop part of the 3-function quartic in the Yukawa couplmgs

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345;
A.E.Kazantsev, V.Yu.Shakhmanov, K.S., JHEP 1804 (2018) 130.

AB(ao,Ao) 2w i d /d4K d*Q L imn g 90 (1
a? T (R)i dln A Ao Aojmn (

(2m)* (2m )4 9Q,. 0Q~

d4K d4L d*Q T iab
7 A
dl A 27r)

1
“Fr QFa (Q + K)?me) o
0 0 8 0

* ked y * iab cde a
X)‘Okab)‘() AOde(TI(HaK” aQH 8@#) +2)\0 )\Ojac)\o )\Obde 8@ aQu]

x ! = C(R) (M),
K2FZ Q2Fq (Q + K)2Fgyx L2Fr, (L + K)2Frix 271' Vo)
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Deriving the new form of the exact NSVZ S-function by summing singular

contributions

Due to the factorization into integrals of double total derivatives the function
B/a? can be found by summing singular contributions. In all loops this has been
done in

‘ K.S., Eur.Phys.J. C80 (2020) 10, 911.

The result can be written as

B(a[h /\0) _ 51—|oop (OCO)

ag ag
1 1 1 j i
= —Cayv (a0, M) + =C27c(@0, M) — 5—C(R)i’ (7v4);" (a0, Ao)-
T T 2mr
gauge propagators matter propagators

Faddeev—Popov ghost propagators
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Conditions required for validity of the NSVZ relation in all loops

Thus, the NSVZ relation

5(060>>\0) 1
Tg = _g (302 — T(R) — 202’}’(;(@07 )\0)

207w (00, 20) + C(R) (7)o, Ao) ),
and, therefore, the NSVZ relation

o (8C2 = T(R) + C(R) (1), (a0, Xo) /)
271'(1 — Czao/Qﬂ)

B(ao, Ao) = —
are valid in all orders of the perturbation theory for RGFs defined in terms of the
bare couplings if a theory is regularized by higher covariant derivatives.

Consequently, for RGFs defined in terms of the renormalized couplings, similar
equations hold in the HD+MSL scheme in all orders of the perturbation theory.
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The NSVZ relations for theories with multiple gauge couplings

The NSVZ equations can also be written for theories with multiple gauge
couplings. In this case a number of the NSVZ equations is equal to a number of
(simple or U(1)) factors in the gauge group G = G1 X G2 X ... X G They can
be written in the form

‘ D.Korneev, D.Plotnikov, K.S., N.Tereshina, JHEP 10 (2021) 046. ‘

ﬁK(g ap C2r(1- CQ(IGK)QK/%) [302(GK) - ;TM (1 el A))}’

where the subscript a numerates chiral matter superfields in irreducible
representations of simple G,

Tx(R) = > Tax,

and we use the notation

Sin MO KT T (Rak) ey K4 .. 00, if G is simple;
Takx = ' ' . .
Sin B T R B, KT8, if Gk = U(1).

in
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The NSVZ relations for N/ = 1 SQCD+SQED

As a particular case one can consider N' = 1 SQCD interacting with the Abelian
gauge superfield. This theory is based on the gauge group G x U(1) and is
described by the action

S = —Retr/d xd OW“WQ—F—Re/d rd*0 W*W,

2g2
+Z /d 40 ¢+ 2V+2an¢ +¢+ —2v— 2q3V¢ )

The NSVZ equations for this model take the form

ﬁS(Zg ) _ _277(1 — 61(2065/270 |:3CQ —2T(R) azz:l (1 — va(as, a))];
@ = %dimRquS(l —a(as,a)),

where a; = g2 /47 is an analog of the strong coupling constant, and o = e? /47
is an analog of the electromagnetic coupling constant.
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The NSVZ relation for the Adler D-function in N/ =1 SQCD+SQED

The Adler D-function encodes quantum corrections to the electromagnetic
coupling constant appearing due to the strong interaction,

D(as) = 3n lim 75(013,(1).

2 a0 a?

Taking into account that in the limit o — 0 all chiral matter superfields have the
same anomalous dimension, limofya(as,oz) = 7v(as), from the NSVZ equation
a—r

for B(a, as) we obtain the all-loop relation

3 a
Dias) = FdimRY_a3(1-(as))

M.Shifman, K.S. Phys. Rev. Lett. 114 (2015) no.5, 051601;
Phys. Rev. D 91 (2015), 105008.

see also

‘ A.L.Kataev, A.E.Kazantsev, K.S., Nucl. Phys. B 926 (2018), 295. ‘

Various definitions of the Adler D-function and the validity of the NSVZ equation
for various renormalization prescriptions were analyzed in

\ S.S.Aleshin, A.L Kataev, K.S., JHEP 03 (2019), 196. \
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Another form of the NSVZ equations for theories with multiple gauge

couplings

The non-renormalization theorem for the triple gauge-ghost vertices is also valid
for theories with multiple gauge couplings, so that forall k =1,...,n

Z;;/QZCK ZVK =1L

Therefore, the NSVZ equations can be rewritten as relations between the (-
functions in a certain loop and the anomalous dimensions of the quantum
superfields in the previous loop,

BK(O‘7 A) 7i

2
af 2

[ €2(Gr) (3= 2w (00.0) = 2 (00 1))
—ZTaK(l —’ya(a,)\))}.

It seems that (as for the case of theories with a single gauge couplings) the NSVZ
equations are valid for RGFs defined in terms of the bare coupling in the case
of using the higher covariant derivative regularization, and for RGFs defined in
terms of the renormalized couplings in the HD+MSL scheme.
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The exact NSVZ (S-functions for MSSM

Let us present the all-order exact NSVZ -functions for some phenomenologically
interesting theories. For instance, for MSSM they are given by the equations

,83((1,)\) o 1 1 1 .

CV% - _271,(1 _ 30&3/271’) [3 + tr(’YQI (Oé, >‘) + QPYUI (O[, )\) + §FYDI (Oé, A)):| 3
;A 3

ﬁ2(§§ ) = _Qﬂ(l jaz/w) |:_ 1 +tr(§'YQ1 (a, ) + %'YLI (O‘»A)) + %’YHu (a, )

1
prma(an)];

Bl(av)‘) 3 1 1 4 1
PRBA) 2 2 it (ah) + 5 1o
af 5 27 +tr(67QI(a/’\)+ 3’YUI(CV:)\)+ BWDI(a,)\)
1 1 1
s (@) + 787 (0, X)) + 57, (@A) + 57 (e )\)} :

where the traces are taken with respect to the generation indices.

(In a different form) they were first presented in

‘ M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761. \

and correctly reproduce the (scheme-independent) two-loop contributions.
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The exact NSVZ S-functions for the flipped SU(5) model

As another example we consider the flipped SU(5) Grand Unification Theory.

S. M. Barr, Phys. Lett. B 112 (1982), 219; |. Antoniadis, J. R. Ellis,
J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B 194 (1987), 231.

The quark and lepton superfields belong to the representation 3 X
(10(1) 4+ 5(—3) + 1(5)) of the gauge group SU(5) x U(1). Also the theory
includes Higgs superfields H and H in 10(—1) and 10(1); k and h in 5(2)
and 5(—2), and four singlets ¢. The exact NSVZ B-functions for this model are

Bs(c, \) B 1 3 1
a2 27m(l - 5as/2m) 5+tr(27101(a7)\)+2,}/51(0[7)\))

3 3 1 1
+§’YH(C¥7 )+ 571}(% A) + 5%(% A) + 5%(@7 A)};

frla) 1 1

o2 8 or

—2vm (o, A) — 275 (a, A) — dyn(a, A) — 4v; (o, )\)} .

[60 — tr(ZWI (o, A) + 975, (a, A) + 5vE, (@, /\))

‘ D.Korneev, D.Plotnikov, K.S., N.Tereshina, JHEP 10 (2021) 046. ‘
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The two-loop anomalous dimension of the matter superfields with the higher

derivative regularization

For theories with a single gauge coupling the two-loop anomalous dimension
defined in terms of the bare coupling constant for A" = 1 supersymmetric theories
regularized by higher derivatives has been calculated in

\ A E Kazantsev, K.S., JHEP 2006 (2020) 108. \

j [e7s) j 1 * jmmn Oé% 2 j 1
(7¢)i’ (@0, Xo) = *FC(R)ZJ + H)‘O’hnn)‘g) + o2 [C(R) ]ij T 1674
* jab y\ * cde 3&% j A aé j
X)\omc/\f) )\obde)\o - 2771_2 CQC(R)H (ln (%) + 1+ 5) + 2771_2 T(R)O(R)ﬂ
A Qg |« jmn Q0 jm
x(mat1+2) - o Aot N C(R) (L= B+ A) L5 A N

XC(R)" (1~ A+ B) + O(af, a8, ao)y, X6,

where
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Obtaining the three-loop S-function from the NSVZ equation

If the anomalous dimension of the matter superfields defined in terms of the bare
couplings has been calculated in L-loops with the higher derivative regularization,
then it is possible to construct the (L + 1)-loop S-function from the NSVZ
equation without loop calculations. For example, in the three-loop approximation

Bloo, do) _ - (302 - T(R) + 25 ~3CE + ~Cour O(R) + 2 v [O(R)?] }

Oéo 471-2
_8733740(1%)3-%81-%%%, + %{ — 303 + %(122 tr C(R) — %tr [C(R)®] + %
xCotr [C(R)?] (3 Inag + 4+ %) - %trC(R) tr [C(R)?] (lna +1+ g)}
- ﬁsﬁi C(R); Nimn 5™ + 16?474 [C(R)*], AGimn A" (1 +A- B) — 8:gr

XC(R); C(R)™ Ny N (1 ' B) n C(R); Niae NN AT g NG

3275y
+O(ag, QeNE, g, )\8).

Certainly, RGFs defined in terms of the renormalized couplings can also be
calculated for an arbitrary renormalization prescription.
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Obtaining RGFs defined in terms of the renormalized couplings

To calculate RGFs defined in terms of the renormalized couplings, first, we
integrate the equations

; d(In Zg)?
. J =_ /v
(7‘15)74 (a0>)\0) - dh’lA

b)
a,A=const

dao
dln A

IB(a07 )\0) =

a,A=const

and obtain the expressions for the renormalized gauge coupling constant and
(In Z4):7. They depend on a set of finite constants which determine a subtraction
scheme in the considered approximation. Next, we substitute the expressions
obtained in this way into the equations

Bla,n) = -2

. d(InZy):’
~ dlIn plag,ro=const’

dlnp  lag,xo=const’

(Fo)i” (e, A)

These RGFs will nontrivially depend on the finite constants due to the scheme
dependence.

The results for the two-loop anomalous dimension and the three-loop S-function
defined in terms of the renormalized couplings are rather large and are not
presented here. They can be found in

A E Kazantsev, K.S., JHEP 2006 (2020) 108. \
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Finite constants fixing a renormalization prescription

The finite constants in the lowest approximation are defined by the equations

1

3 _a J A _
(0 Z5) (@, 3) = ZC(R) (n ’ +o1) - 13

; A
* jimn A .
)‘zmn)‘ (ln /j, + gu)
+0(a?, aX®, \h);
1 1 3 A 1 A 3a o/ A
E_EO7_%02<1np+b11)+%T(R)(lnﬁ+b12)_RCQ(IDE
«

272y

« A
+bo1) + o Catr C(R)(1n o+ baz) +

B 1
8m3r

tr [C(R)?] (1n % + b23>

C(R)/Af,,mvm”(ln % + b24) +0(a?,aX?)Ah).

In the HD+MSL scheme all finite constants g; and b; are equal to 0, and the
NSVZ relation is valid in the O(a?, a\?, A*) approximation. For other schemes
this in general is not true.

Here (at the next slide) we present the result for considered RGFs only for a
particular case, namely, for one-loop finite N' = 1 supersymmetric theories, see

P.West, Phys.Lett. B 137 (1984) 371;
A.Parkes, P.West, Phys.Lett. B 138 (1984) 99.
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RGFs for the one-loop finite theories

An important particular case is theories finite in the one-loop approximation
which satisfy the conditions

T(R) = 3C5; Nn M = 4maC(R) .

In this case the two-loop anomalous dimension and the three-loop S-function
defined in terms of the renormalized couplings have the form

o7 ‘ 3a2 ] a a 1 * jml n
(Yo)i’ (a, ) = —ﬁCEC(R)iJ (ln f — b1 + blz) - F(;)\imn)\J C(R),
+2a [C(R)],7) (A= B = 2012+ 2911 ) + 0(a®,a’»?, ad", 3%);

E(Oz,x\) 3a? 5 ay o /1 . .

e 47r37'02 tr [C(R) ] (1n7 — b + blZ) + m(;C(R)j C(R),

KN N 4 20 tr [C(R)?] ) (A — B —2g1> + 2911) + O(a37 a®A2, a, )\6).

We see that in this case the NSVZ equation is satisfied in the lowest nontrivial
approximation for an arbitrary renormalization presription,
Bla, ) 1

- J K 3 242 4 6
a? - QWTC(R)Z (V(b)] (CM,)\)‘FO(O[ es A ,CM/\ 7A )
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The NSVZ equation for theories finite in the lowest loops

For N' = 1 supersymmetric theories finite in the one-loop approximation it is
possible to tune a subtraction scheme so that the theory will be all-loop finite

D.l.Kazakov, Phys. Lett. B 179 (1986) 352; A.V.Ermushev, D.l.Kazakov, O.V.Tarasov,
Nucl.Phys. B 281 (1987) 72; C.Lucchesi, O.Piguet, K.Sibold, Helv.Phys.Acta 61 (1988)
321; Phys.Lett. B 201 (1988) 241.

If a subtraction scheme is tuned in such a way that the S-function vanishes in
the first L loops and the anomalous dimension of the matter superfields vanishes
in the first (L — 1) loops, then

‘ K.S., Eur.Phys.J. C 81 (2021) 571. ‘

for an arbitrary renormalization prescription the (L + 1)-loop gauge S-function
satisfies the equation
Brii(a,A) 1

= J 4
o2 o C(R):" (vg,1.)5 (a, A).

Therefore, if a theory is finite in a certain approximation, its S-function vanishes
in the next order. This exactly agrees with the earlier known result of

A.J.Parkes, P.West, Nucl.Phys. B 256 (1985) 340;
M.T.Grisaru, B.Milewski and D.Zanon, Phys.Lett. 155B (1985) 357.
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Three-loop MSSM p-functions for an arbitrary supersymmetric

renormalization prescription

Starting from the two-loop expressions for the anomalous dimensions of the
matter superfields it is possible to find the three-loop MSSM S-functions for an
arbitrary supersymmetric renormalization prescription supplementing the higher
covariant derivative regularization

0.Haneychuk, V_Shirokova, K.S., arXiv:2207.11944[hep-ph]. \

The result is very large and depends on both regularization parameters and finite
constants fixing a subtraction scheme. For certain values of these finite constants
it reproduces the DR result obtained earlier. Also it is possible to construct a
class of the NSVZ schemes, which are related to the HD+MSL scheme by the
finite renormalizations satisfying the constraint

1 1 +CQ(GK)

oy 1

; ln———ZTaKana:BK7
a

o' QK 27 aK 27

where Bx are some constants. B
As an example, we present the three-loop expression for the function 3.
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MSSM, three-loop (3

Bs(a,Y) 1 1la;  9a2 Taz 1 n N 1 [137a?
gl t) g en Jaz (os —t(ZYY 2YY> -
a2 o 20m A 2w gz C\CTUTUTEED YD) o5 To00
27&% (xg 3agan llajas 3aza 363&% A 9(1%
e B - - 1 14 = 4bosi—b ) 2
6 T o 60 4 100 (mar+1+ g Uty
A A 7
X(— Glnflr 2 + 7111(!_) + 1 + 5 + 52‘32 — bl.g) — 24043(31nur,;; — 211’1(1;; + 1 + 5 + 176[)2’33
7 1 3o 3 131 . 3as
~ Ly ) —t (Y 7 | B R B — A+ 2bs 5y — 2 ) 222
T }4— gt U) 20 T Tles ( 20230 = 2ju1 ) + =5
§ . 8asz . 1 £\ [3a1 | 3o
X (b — A+2by 3y — 2JU2) + =5 (b — A+2by 3y — 2]U3):| + 8?”(YDYD> > T 1

+3as + %(U — A+42b33p — 2j1)1) + % (U — A+42by3p — 2:1'/)2) + &% (b’ — A
+2b253D — 2.7D3>:| - ﬁ |: gtr(O/UYBL)2) <]_ -+ 4b2,3[; - 4jUU> -+ %tr((YDYgf)Z) (l
by 55— 4ipp ) +3(r(VY)) (14 20250 — 20 ) +3( (VoY) (14 22an
72.7DtD> + tr(YEYE> tF<YDY5r) <1 +2b23p — 2thE> + tr(YDygrYUY[}L> (1 + 2b2 3U

+2b2 3p — 2jup — QJDU)} } +0(a®,0?Y? ay?, YO).
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The four-loop B-function for N' =1 SQED with Ny flavors

Similarly, it is possible to obtain the four-loop S-function of A =1 SQED with
Ny flavors starting from the three-loop anomalous dimension

\ I.Shirokov and K.S., JHEP 04 (2022) 108. \

The result (for RGFs defined in terms of the renormalized coupling constant) is

2 2 3 3

~ o« a“Ny Ay 6% o’ Ny
=24 na+1+ 2t —bio) ~ 53

F(e) —toat 3 ( nat+l+—+go—bo)-gz+—3

3 3(Ny)? 2
X(—lna— 1 —C —b20+0bi,0—9g20 +91,0) + Oé(7r73f){ — (lna+ 1 —bu)>

A
+I2 —Dilna— Dy + b1 0A1 — ,112.1} + 0(014)5

Ba) Ny aN; o®>N;y  a?(Ng)? Aq
02 a2 T s 3 (lna+1+7+b2’0 71)1,[))
a®Ny | a®(Ny)? 3 a®(Ny)? 2
+ ot + 1 (hlaJrZJrCer:s,()*bl.[))+T{(lna+1fb1‘())
As

- + Dilna+ Dy — by 0A1 + 53,1} +0(a").
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Here the notations are

7 d, 1 7 d, 1
Alz/dx lnac—(i); A = dx 1n2x—(7);
dz \ R(zx) dz \ R(zx)
0 0
P d 1 7 d, 1
CE/dm/dymlny—(i); Dlz/drlnr ( )
S dy \ R(y)R(z?y) dz \ R?(z)

Do = O/dz Inx — {R2(73) [7 5(1 - I) 1nz+ \ arctanhm }

and the finite constants are defined by the equations

2

A A
an:%(ln;—i—gl_o) —L(ln +920+Nf921>

2
Ny
92 5 (lna+1

A A  o&’N
_’_71_1)“))1117_’_06 Qf
n 27

2A 3

i:1—&(llﬂﬁ-l-bl,o)—O;i\sz(11“1%4—52.0) aQN (lné-f—bso
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Minimal scheme for N’ = 1 SQED with Ny flavors

We see that the terms in the anomalous dimension without Ny and terms in the
B-function proportional to (N)! are scheme-independent in agreement with the
general all-loop statement proved in

A.L.Kataev and K.S., Phys. Lett. B 730 (2014), 184; Theor. Math. Phys. 181
(2014), 1531 [Teor. Mat. Fiz. 181 (2014) 475].

From the explicit above expressions for RGFs we see that by a special choice
of the finite constants b; and g; it is possible to remove all terms proportional
to (Ns)* with k& > 1 in the anomalous dimension and all terms proportional
to (N)* with k& > 2 in the B-function. Then we obtain the simplest, so-called
minimal scheme, in which

2 3
- x> o 4
’Y(a) - T 271_2 271_3 +O(a )7
2 3 4 5
= _« Nf « Nf « Nf « Nf 6
Bla) = ™ 2 273 + 274 +0(a)

The minimal renormalization scheme for the considered theory can be chosen in
all orders of the perturbation theory. This scheme is NSVZ in all orders.
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N = 2 supersymmetric gauge theories in N' = 1 superspace

N = 2 supersymmetric theories can be considered as a particular case of V' =1
supersymmetric theories. Therefore, they can be formulated in terms of N/ =1
superfields,

S = iQtr(Re/d‘lx EOWW, +/d4x doot Vo) + l/d‘*yc '
2e5 4

x (¢+62V¢ + $+e‘2VT$) + [/d4:r 426 (%Jf@qﬁ + émogw) + c.c.]

Here the chiral superfield ® in the adjoint representation is an N = 2
superpartner of the gauge superfield V. The chiral superfields ¢ and ¢ in the
representations Ro and Ry form an A/ = 2 hypermultiplet.

Therefore, we obtain an A/ = 1 supersymmetric theory with chiral matter
superfields in the reducible representation

R = Adj + Ro + Ro,

containing nontrivial Yukawa interaction.

In this formulation only A/ = 1 supersymmetry is manifest, while the second
supersymmetry is hidden.
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Special features of quantization and renormalization in N = 1 superspace

A higher derivative term S invariant under both supersymmetries has been
constructed in

I.L.Buchbinder and K.S., Nucl.Phys. B883 (2014) 20.

However, with the help of the NV = 1 superfield technique it is impossible to
quantize a theory in the A/ = 2 supersymmetric way. Therefore, in this case
quantum corrections can break the hidden supersymmetry.

In this case from the NSVZ equation and the non-renormalization of
superpotential we obtain

Blaw) = _a?g (Cz—T(Ro)) (1+% 7@(060)) = _047% (02—T(R0)) (1_’7¢(0‘0))'

This implies that, in general, higher loop (L > 1) contributions to the S-function
do not vanish and are determined by the function va (av).

To construct a renormalization prescription for which the S-function (defined in
terms of the bare coupling) vanishes beyond the one-loop approximation, one
should use a manifestly N' = 2 supersymmetric regularization and quantization.
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Explicitly N' = 2 supersymmetric formulation in the harmonic superspace

N = 2 supersymmetry is a manifest symmetry in the case of using NV = 2
harmonic superspace

A.Galperin, E.lvanov, S.Kalitzin, V.Ogievetsky and E.Sokatchev,
Class.Quant.Grav. 1 (1984) 469.

with the coordinates (z*, 0%, 0,5, u), where u; = (u)* and utiu; = 1.
With the help of the harmonic superspace one can quantize the theory in a
manifestly A/ = 2 supersymmetric way. That is why the harmonic superspace
technique together with the background superfield method allow having manifest
N = 2 supersymmetry and gauge invariance at all steps of calculating quantum
corrections.

A.S.Galperin, E.A.lvanov, V.l.Ogievetsky and E.S.Sokatchev,
Harmonic superspace. Cambridge University Press (2001) 306p.

The higher covariant derivative regularization can also be formulated in the
harmonic superspace

I.L.Buchbinder, N.G.Pletnev and K.S., Phys.Lett. B751 (2015) 434.
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N = 2 non-renormalization theorem and the NSVZ ;

The higher covariant derivative regularization allows to prove simply the N' =2
non-renormalization theorem starting from the NSVZ [-function.

The degree of divergence (for non-regularized theory) in the harmonic superspace
is written as

I.L.Buchbinder, S.M.Kuzenko and B.A.Ovrut, Phys.Lett. B433 (1998) 335. ‘

wop = 7Nq 7Nc — %ND,

where N, is a number of external hypermultiplet lines, N. is a number of external
ghost lines, and Np is a number of spinor derivatives acting on external lines.
Therefore, all superdiagrams containing hypermultiplet external lines are finite,
so that 74 (o) = 0. Consequently,

%.éo) = *% (Cz — T(R)) (1 — ’Y¢(CMO)) = *%(Cz — T(R)),

This implies that the S-function is non-trivial only in the one-loop approximation.
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6D, N = (1,0) supersymmetric theories in harmonic superspace

It is convenient to formulate 6D, N' = (1,0) supersymmetrc theories in 6D,
N = (1,0) harmonic superspace because in this case N' = (1, 0) supersymmetry
is a manifest symmetry even at the quantum level.

The harmonic superspace is parameterized by the coordinates M M=1,...6,
0%, and uF (such that u™'u; =1, u; = (ut?)).

The 6D, N = (1,0) supersymmetric gauge theories in the harmonic superspace
are described by the action

‘ B. M. Zupnik, Sov. J. Nucl. Phys. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794]. \

tF/szdm...du Vi (z ). VI (2 un)

2 (wfud)- - (uiuy)

_ / d((_4)du a“-v-H—q-‘r’

where Vg™ = D¢t +4V Q™ VT is an analytic gauge superfield, and
gt is an analytic hypermultiplet superfield, and we use the notation

/d14z - /d6:vd80; /dg‘(*“) = /d6xd40+.
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The higher covariant regularization for 6D, N/ = (1,0) theories

The coupling constant fo in six dimensions has the dimension m~*. This implies
that the considered theory is not renormalizable, because the degree of divergence
increases as a number of loops L increases,

|.L.Buchbinder, E.A.lvanov, B.S.Merzlikin, K.S., Nucl. Phys. B 921 (2017), 127. ‘

WOZQL*Nq*Nc*%ND,

where Ny, N, and Np are the numbers of external hypermultiplets, ghosts, and
spinor derivatives acting on external lines, respectively.
Next, we introduce the gauge superfield strength F*+ = (DT)*V ™~ where

1
(D+)4 _ _ adeD+D+D+D;,

+t ot
V™ (z,u) = "H/dul .. duy, Viizu).. v (z,un).
(utui ) (ufug) ... (unut)

Using this superfield we construct the higher derivative term

Sy = /dg(*4>duF++ﬁ T

A2n
~ 1 , .
where the operator O = 5(D+)4(V77)2 is reduced to the Laplace operator if

it acts on the subspace of analytic superfields.
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The higher covariant regularization for 6D, N/ = (1,0) theories

The background-quantum splitting is linear, V" = VT 447" and the gauge
fixing term can be chosen in the form invariant under the background gauge
transformations,

_ (U ug) 4, 4+ arl [l [P
ngf 2f050tr/d zdulduQ(u ) Dy v, - 1—1—( Az ) Dy v ;.

The corresponding Faddeev—Popov ghost action is given by the expression
Sep = tr/dg<—4> dubvtt (V++c+ i[v++,c]),

where the covariant derivatives are defined as V** = D+ 4 jy++
Also it is necessary to introduce the Nielsen—Kallosh determinant

=
ANk = Detl/Q{D (1+ (A':'2 )] /DsOexp (iSnk)-

where

SNK = %tr/dc(*‘*) du (V)2
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The higher covariant regularization for 6D, N/ = (1,0) theories

The degree of divergence for the theory with the action S + S, is
w=2-2n(L—-1)— (n+2)(Ne + Ng) — %ND,

Therefore, for n > 1 divergences are present only in the one-loop approximation.
They are removed by inserting the Pauli-Villars determinant

Det™ ' (PV, M) = / DQTTDQT exp(iSo),
where Sq can be defined as
SQ {/d(( 4)d’U/Q++(|:|+]\/[ ) Q++
/d14sz1dU2 (] Tr s +) 177_ (F‘*""‘v——Q+-',-)2’T}7

Then the generating functional is given by the expression

a n+1
Z:/Dv++Da+Dq+DchD¢Det1/2[|:| (1+(A2) )}
xDet(PV, M)” exp [2(5 + Sa + Sgf + Spp + Snk + Ssources)] )

where x should be chosen so that all one-loop divergences cancel each other.
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Conclusion

The higher covariant derivative regularization allows revealing some
interesting features of supersymmetric theories and deriving some all-loop
results.

The integrals giving the S-function(s) of supersymmetric theories are
integrals of double total derivatives with this regularization.

RGFs defined in terms of the bare couplings satisfy the NSVZ relation in
theories regularized by higher derivatives in all loops.

@ Some all-order NSVZ schemes are given by the HD+MSL prescription.

@ Validity of the NSVZ equation with the higher covariant derivative

regularization allows to essentially simplify some multiloop calculations.

The higher covariant derivative regularization can be constructed in the
harmonic superspace, in particular for 4D, N' =2 and 6D, N = (1,0)
theories.

NSVZ equation and the higher covariant derivative regularization in the
harmonic superspace allows to give a simple proof of the
non-renormalization theorems for 4D theories with extended
supersymmetry.
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Thank you for the attention!




