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Supersymmetric theories at the quantum level

Investigation of quantum corrections in supersymmetric theories is very important
both for theory and for phenomenology. Certainly, for calculating quantum
corrections a theory should be regularized.

Dimensional regularization breaks supersymmetry and is not convenient for
calculations in supersymmetric theories. That is why supersymmetric theories
are mostly regularized by dimensional reduction. However, dimensional reduction
is not self-consistent.

W.Siegel, Phys.Lett. B 84 (1979) 193; B 94 (1980) 37.

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272.

As a consequence, supersymmetry can be broken by quantum corrections in
higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.
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The higher covariant derivative regularization

Here we will discuss the application of the higher covariant derivative method
for the regularization of various supersymmetric theories. We will argue that this
regularization allows to reveal some interesting features of quantum corrections
which cannot be seen in the case of using dimensional reduction.

The higher covariant derivative regularization was proposed by A.A.Slavnov

A.A.Slavnov, Nucl.Phys. B31, (1971), 301;
Theor.Math.Phys. 13 (1972) 1064.

By construction, it includes insertion of the Pauli�Villars determinants for
removing residual one-loop divergencies

A.A.Slavnov, Theor.Math.Phys. 33, (1977), 977.

Unlike dimensional reduction, this regularization is self-consistent. It can be
formulated in a manifestly supersymmetric way in terms of N = 1 super�elds

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B268, (1986), 113.
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The exact NSVZ β-function

Moreover, the exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) β-
function

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

can naturally be obtained in the case of using the higher covariant derivative
regularization. It relates the β-function and the anomalous dimension of the
matter super�elds in N = 1 supersymmetric gauge theories,

β(α, λ) = −
α2

(
3C2 − T (R) + C(R)i

j(γϕ)j
i(α, λ)/r

)
2π(1− C2α/2π)

.

Here α and λ are the gauge and Yukawa coupling constants, respectively, and
we use the notation

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA = dimG.
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Explicit calculation and the problem of constructing an NSVZ scheme

Three- and four-loop calculations in N = 1 supersymmetric theories made with
dimensional reduction supplemented by modi�ed minimal subtraction (i.e. in the
so-called DR-scheme)

L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; I.Jack, D.R.T.Jones,
C.G.North, Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

revealed that the NSVZ relation in the DR-scheme holds only in the one- and
two-loop approximations, where the β-function is scheme independent.

However, in the three- and four-loop approximations it is possible to restore
the NSVZ relation with the help of a specially tuned �nite renormalization
of the gauge coupling constant. Note that a possibility of making this �nite
renormalization is highly nontrivial.

This implies that the NSVZ relation holds only in some special renormalization
schemes, which are usually called �NSVZ schemes�, and the DR-scheme is not
NSVZ.

Now, let us discuss how one can derive the NSVZ equation in all orders and
construct some all-loop NSVZ schemes with the help of the higher covariant
derivative regularization.
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Supersymmetric gauge theories

Renormalizable N = 1 supersymmetric gauge theories with matter super�elds
at the classical level are described by the action

S =
1

2e20
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ ϕ∗i(e2V )i

jϕj

+
{∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

}
.

We assume that the gauge group is simple, and the chiral matter super�elds
ϕi lie in its representation R. The gauge and Yukawa coupling constants are
denoted by e0 and λijk

0 , respectively. The strength of the gauge super�eld V is
de�ned by the equation

Wa ≡ 1

8
D̄2

(
e−2V Dae

2V
)
.

The theory under consideration is gauge invariant if the (bare) masses and
Yukawa couplings satisfy the conditions

mim
0 (TA)m

j +mmj
0 (TA)m

i = 0;

λijm
0 (TA)m

k + λimk
0 (TA)m

j + λmjk
0 (TA)m

i = 0.
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The background super�eld method and the nonlinear renormalization

For quantizing the theory it is convenient to use the background �eld method.
Moreover, it is necessary to take into account nonlinear renormalization of the
quantum gauge super�eld

O. Piguet and K. Sibold, Nucl.Phys. B197 (1982) 257; 272;
I.V.Tyutin, Yad.Fiz. 37 (1983) 761.

This can be done with the help of the replacement e2V → e2F(V )e2V , where V
and V are the background and quantum gauge super�elds, respectively, and the
function F(V ) includes an in�nite set of parameters needed for describing the
nonlinear renormalization. In the lowest order

J.W.Juer and D.Storey, Phys.Lett. 119B (1982) 125; Nucl. Phys. B216 (1983) 185.

F(V )A = V A + e20 y0 G
ABCD V BV CV D + . . . ,

where y0 is one of the constant entering this set, and GABCD is a certain function
of the structure constants.
The background gauge invariance

ϕi → (eA)i
jϕj ; V → e−A+

V eA
+

; e2V → e−A+

e2V e−A.

parameterized by a chiral super�eld A remains a manifest symmetry of the
e�ective action.
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The higher covariant derivative regularization

For constructing the regularized theory we �rst add to its action terms with
higher derivatives,

Sreg =
1

2e20
Re tr

∫
d4x d2θW a

(
e−2V e−2F(V )

)
Adj

R
(
− ∇̄2∇2

16Λ2

)
Adj

×
(
e2F(V )e2V

)
Adj

Wa +
1

4

∫
d4x d4θ ϕ∗i

[
F
(
− ∇̄2∇2

16Λ2

)
e2F(V )e2V

]
i

jϕj

+
[ ∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

]
,

where the covariant derivatives are de�ned as

∇a = Da; ∇̄ȧ = e2F(V )e2V D̄ȧe
−2V e−2F(V ).

Gauge is �xed by adding the term

Sgf = − 1

16ξ0e20
tr

∫
d4x d4θ∇2V K

(
− ∇̄2∇2

16Λ2

)
Adj

∇̄2V.

Also it is necessary to introduce the Faddeev-Popov and Nielsen�Kalosh ghosts.
The regulator functions R(x), F (x), and K(x) should rapidly increase at in�nity
and satisfy the condition R(0) = F (0) = K(0) = 1.
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The Pauli�Villars determinants in the non-Abelian case

For regularizing residual one-loop divergences we insert into the generating
functional two Pauli�Villars determinants,

Z =

∫
DµDet(PV,Mφ)

−1Det(PV,M)c

× exp
{
i
(
Sreg + Sgf + SFP + SNK + Ssources

)}
,

where Dµ is the functional integration measure, and

Det(PV,Mφ)
−1 ≡

∫
Dφ1 Dφ2 Dφ3 exp(iSφ);

Det(PV,M)−1 ≡
∫

DΦ exp(iSΦ).

Here we use chiral commuting Pauli�Villars super�elds.
The super�elds φ1,2,3 belong to the adjoint representation and cancel one-loop
divergences coming from gauge and ghost loops. The super�elds Φi lie in a
representation RPV and cancel divergences coming from a loop of the matter
super�elds if c = T (R)/T (RPV). The masses of these super�elds are

Mφ = aφΛ; M = aΛ,

where the coe�cients aφ and a do not depend on couplings.
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Di�erent de�nition of renormalization group functions

It is important to distinguish renormalization group functions (RGFs) de�ned in
terms of the bare couplings α0 and λ0,

β(α0, λ0) ≡
dα0

d lnΛ

∣∣∣
α,λ=const

; γx(α0, λ0) ≡ −d lnZx

d lnΛ

∣∣∣
α,λ=const

,

and RGFs standardly de�ned in terms of the renormalized couplings α and λ,

β̃(α, λ) ≡ dα

d lnµ

∣∣∣
α0,λ0=const

; γ̃x(α, λ) ≡
d lnZx

d lnµ

∣∣∣
α0,λ0=const

.

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459.

RGFs de�ned in terms of the bare couplings do not depend on a renormalization
prescription for a �xed regularization, but depend on a regularization.

RGFs de�ned in terms of the renormalized couplings depend both on a
regularization and on a renormalization prescription.
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The HD+MSL scheme. The main statements.

Both de�nitions of RGFs give the same functions in the HD+MSL-scheme,
when a theory is regularized by Higher Derivatives, and divergences are removed
by Minimal Subtractions of Logarithms. This means that the renormalization
constants include only powers of lnΛ/µ, where µ is a renormalization point.

β̃(α, λ)
∣∣∣
HD+MSL

= β(α0 → α, λ0 → λ);

γ̃x(α, λ)
∣∣∣
HD+MSL

= γx(α0 → α, λ0 → λ).

Here we will brie�y describe the proof of the following statements:

1. NSVZ equation is valid for RGFs de�ned in terms of the bare couplings in
the case of using the higher covariant derivative regularization for an arbitrary
renormalization prescription.

2. For RGFs de�ned in terms of the renormalized couplings some NSVZ schemes
are given by the HD+MSL prescription. (MSL can supplement various versions
of the higher covariant derivative regularization.)

K.V.Stepanyantz The higher covariant derivative regularization
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The all-loop derivation of the NSVZ equation: the main steps

1. First, one proves the ultraviolet �niteness of triple vertices with two external
lines of the Faddeev�Popov ghosts and one external line of the quantum gauge
super�eld.
2. Next, it is necessary to rewrite the NSVZ relation in the equivalent form

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
.

K.S., Nucl.Phys. B909 (2016) 316.

3. After this we prove that the β-function is determined by integrals of double
total derivatives with respect to loop momenta and present a method for
constructing this integrals.

K.S., JHEP 10 (2019) 011.

4. Then the NSVZ equation is obtained by summing singular contributions.
5. Finally, an NSVZ scheme is constructed.

K.S., Eur.Phys.J. C80 (2020) 10, 911.
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Non-renormalization of the three-point gauge-ghost vertices

The all-order �niteness of triple vertices in which two external lines correspond
to the Faddeev�Popov ghosts and one external line corresponds to the quantum
gauge super�eld has been proved in the paper

K.S., Nucl.Phys. B909 (2016) 316.

using the Slavnov�Taylor identities and rules for calculating supergraphs. The
result is valid for the super�eld formulation of the theory in the general ξ-gauge.

The one-loop contribution to these vertices comes from the superdiagrams
presented below. The ultraviolet �niteness of their sum has been veri�ed by
an explicit calculation

c̄ or

K.V.Stepanyantz The higher covariant derivative regularization
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Non-renormalization of the triple gauge-ghost vertices and the new form of

the NSVZ β-function

There are 4 vertices of the considered structure, c̄ V c, c̄+V c, c̄ V c+, and c̄+V c+.
All of them have the same renormalization constant Z

−1/2
α ZcZV . Therefore, due

to their �niteness
d

d lnΛ
(Z−1/2

α ZcZV ) = 0,

where

1

α0
=

Zα

α
; V = VR; V = ZV Z−1/2

α VR; c̄c = ZcZ
−1
α c̄RcR.

The non-Abelian NSVZ equation can equivalently be rewritten as

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γϕ)j

i(α0, λ0)/r

2π
+

C2

2π
· β(α0, λ0)

α0
.

The β-function in the right hand side can be expressed in terms of the charge
renormalization constant Zα:

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d lnΛ

∣∣∣
α,λ=const

= −α0
d lnZα

d lnΛ

∣∣∣
α,λ=const

.
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Non-renormalization of the triple gauge-ghost vertices and the new form of

the NSVZ β-function

Using the �niteness of the triple gauge-ghost vertices we obtain

β(α0, λ0) = −2α0
d ln(ZcZV )

d lnΛ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0) + γV (α0, λ0)

)
,

where γc and γV are the anomalous dimensions of the Faddeev�Popov ghosts
and of the quantum gauge super�eld (de�ned in terms of the bare couplings),
respectively.
Substituting this expression into the the right hand side we obtain the equivalent
form of the NSVZ equation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
.

It relates the β-function in a certain loop to the anomalous dimensions of
quantum super�elds in the previous loop, because the right hand side does not
contain a denominator depending on couplings.
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The β-function of N = 1 supersymmetric gauge theories as an integral of

double total derivatives

A key observation needed for derivation of the NSVZ relation is that in the case
of using the higher covariant derivative regularization the integrals giving the
β-function de�ned in terms of the bare couplings are integrals of double total
derivatives in N = 1 supersymmetric gauge theories. This was �rst noted in

A.A.Soloshenko, K.S., ArXiv: hep-th/0304083v1 (the factorization into
total derivatives);
A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445 (the
factorization into double total derivatives).

The all-loop proof of this statement has been done in

K.S., Nucl. Phys. 852 (2011) 71.

for the Abelian case and in

K.S., JHEP 10 (2019) 011.

for general non-Abelian gauge theories.

As an example, at the next slide we present the three-loop expression for the
β-function of N = 1 SQED with Nf �avors.
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The three-loop β-function of N = 1 SQED as an integral of double total

derivatives

β(α0)

α2
0

= Nf
d

d lnΛ

{
2π

∫
d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

ln(Q2 +M2)

Q2
+ 4π

∫
d4Q

(2π)4
d4K

(2π)4
e2

K2R2
K

× ∂

∂Qµ

∂

∂Qµ

(
1

Q2(K +Q)2
− 1

(Q2 +M2)((K +Q)2 +M2)

)[
RK

(
1 +

e2Nf

4π2
ln

Λ

µ

)
−2e2Nf

(∫
d4L

(2π)4
1

L2(K + L)2
−

∫
d4L

(2π)4
1

(L2 +M2)((K + L)2 +M2)

)]
+4π

∫
d4Q

(2π)4
d4K

(2π)4
d4L

(2π)4
e4

K2RKL2RL

∂

∂Qµ

∂

∂Qµ

{(
− 2K2

Q2(Q+K)2(Q+K + L)2

× 1

(Q+ L)2
+

2

Q2(Q+K)2(Q+ L)2

)
−

(
− 2(K2 +M2)

((Q+K)2 +M2)((Q+ L)2 +M2)

× 1

(Q2 +M2)((Q+K + L)2 +M2)
+

2

(Q2 +M2)((Q+K)2 +M2)((Q+ L)2 +M2)

− 4M2

(Q2 +M2)2((Q+K)2 +M2)((Q+ L)2 +M2)

)
+O(e6)

}
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Integrals of double total derivatives and a graphical interpretation of the

NSVZ relation for N = 1 SQED

The integrals of double total derivatives do not vanish due to singularities of the
integrands. Really, if f(Q2) is a non-singular function which rapidly decrease at
in�nity, then∫

d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

(f(Q2)

Q2

)
=

∫
S3
ε

dSµ

(2π)4

(
− 2Qµ

Q4
f(Q2) +

2Qµ

Q2
f ′(Q2)

)
=

1

4π2
f(0) ̸= 0.

Due to similar equations the double total derivatives e�ectively cut lines of
quantum super�elds. As a result, we obtain diagrams contributing to various
anomalous dimensions, in which a number of loops is less by 1. For example, in
the Abelian case this gives the NSVZ β-function

β(α) =
α2Nf

π

(
1− γ(α)

)
.

M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985) 224;
Phys.Lett. B 166 (1986) 334.
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Graphical interpretation of the new form of the NSVZ relation

This allows to give a simple qualitative interpretation of the new form of the
NSVZ equation:

For each vacuum supergraph the NSVZ equation relates a contribution to the
β-function obtained by attaching two external lines of the background gauge
super�eld to the corresponding contribution to the anomalous dimension of
quantum super�elds obtained by all various cuts of internal lines:





In the non-Abelian case internal lines can correspond to the quantum gauge
super�eld, the Faddeev�Popov ghosts, and the matter super�elds, but all features
are the same as in the Abelian case.

K.V.Stepanyantz The higher covariant derivative regularization
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An example of a certain contribution to the β-function

The two- and three-loop contributions to the β-function which depend on the
Yukawa couplings are generated by the vacuum supergraphs

(1) (2) (3) (4) (5)

Here we write down the contributions of the supergraphs (1) and (5) which
determine the three-loop part of the β-function quartic in the Yukawa couplings

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345;
A.E.Kazantsev, V.Yu.Shakhmanov, K.S., JHEP 1804 (2018) 130.

∆β(α0, λ0)

α2
0

= −2π

r
C(R)i

j d

d lnΛ

∫
d4K

(2π)4
d4Q

(2π)4
λimn
0 λ∗

0jmn
∂

∂Qµ

∂

∂Qµ

( 1

K2

× 1

FK Q2FQ (Q+K)2FQ+K

)
+

4π

r
C(R)i

j d

d lnΛ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4

[
λiab
0

×λ∗
0kabλ

kcd
0 λ∗

0jcd

( ∂

∂Kµ

∂

∂Kµ
− ∂

∂Qµ

∂

∂Qµ

)
+ 2λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde
∂

∂Qµ

∂

∂Qµ

]
× 1

K2F 2
K Q2FQ (Q+K)2FQ+K L2FL (L+K)2FL+K

= − 1

2πr
C(R)i

j(∆γϕ)j
i.
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Deriving the new form of the exact NSVZ β-function by summing singular

contributions

Due to the factorization into integrals of double total derivatives the function
β/α2 can be found by summing singular contributions. In all loops this has been
done in

K.S., Eur.Phys.J. C80 (2020) 10, 911.

The result can be written as

β(α0, λ0)

α2
0

− β1-loop(α0)

α2
0

=
1

π
C2γV (α0, λ0) +

1

π
C2γc(α0, λ0)−

1

2πr
C(R)i

j(γϕ)j
i(α0, λ0).

6 6 6

gauge propagators

Faddeev�Popov ghost propagators

matter propagators

K.V.Stepanyantz The higher covariant derivative regularization



22

Conditions required for validity of the NSVZ relation in all loops

Thus, the NSVZ relation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
,

and, therefore, the NSVZ relation

β(α0, λ0) = −
α2
0

(
3C2 − T (R) + C(R)i

j(γϕ)j
i(α0, λ0)/r

)
2π(1− C2α0/2π)

are valid in all orders of the perturbation theory for RGFs de�ned in terms of the
bare couplings if a theory is regularized by higher covariant derivatives.

Consequently, for RGFs de�ned in terms of the renormalized couplings, similar
equations hold in the HD+MSL scheme in all orders of the perturbation theory.

K.V.Stepanyantz The higher covariant derivative regularization
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The NSVZ relations for theories with multiple gauge couplings

The NSVZ equations can also be written for theories with multiple gauge
couplings. In this case a number of the NSVZ equations is equal to a number of
(simple or U(1)) factors in the gauge group G = G1 ×G2 × . . .×Gn. They can
be written in the form

D.Korneev, D.Plotnikov, K.S., N.Tereshina, JHEP 10 (2021) 046.

βK(α, λ)

α2
K

= − 1

2π(1− C2(GK)αK/2π)

[
3C2(GK)−

∑
a

TaK
(
1− γa(α, λ)

)]
,

where the subscript a numerates chiral matter super�elds in irreducible
representations of simple GI ,

TK(R) =
∑
a

TaK ,

and we use the notation

TaK =


δi1

i1 . . . δiK−1

iK−1TK(RaK) δiK+1

iK+1 . . . δin
in if GK is simple;

δi1
i1 . . . δiK−1

iK−1 q2aK δiK+1

iK+1 . . . δin
in if GK = U(1).
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The NSVZ relations for N = 1 SQCD+SQED

As a particular case one can consider N = 1 SQCD interacting with the Abelian
gauge super�eld. This theory is based on the gauge group G × U(1) and is
described by the action

S =
1

2g2
Re tr

∫
d4x d2θW aWa +

1

4e2
Re

∫
d4x d2θW aWa

+

Nf∑
a=1

1

4

∫
d4x d4θ

(
ϕ+
a e

2V +2qaV ϕa + ϕ̃+
a e

−2V −2qaV ϕ̃a
)
.

The NSVZ equations for this model take the form

βs(αs, α)

α2
s

= − 1

2π(1− C2αs/2π)

[
3C2 − 2T (R)

Nf∑
a=1

(
1− γa(αs, α)

)]
;

β(αs, α)

α2
=

1

π
dimR

Nf∑
a=1

q2a

(
1− γa(αs, α)

)
,

where αs ≡ g2/4π is an analog of the strong coupling constant, and α = e2/4π
is an analog of the electromagnetic coupling constant.
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The NSVZ relation for the Adler D-function in N = 1 SQCD+SQED

The Adler D-function encodes quantum corrections to the electromagnetic
coupling constant appearing due to the strong interaction,

D(αs) =
3π

2
lim
α→0

β(αs, α)

α2
.

Taking into account that in the limit α → 0 all chiral matter super�elds have the
same anomalous dimension, lim

α→0
γa(αs, α) = γ(αs), from the NSVZ equation

for β(α, αs) we obtain the all-loop relation

D(αs) =
3

2
dimR

Nf∑
a=1

q2a

(
1− γ(αs)

)
M.Shifman, K.S. Phys. Rev. Lett. 114 (2015) no.5, 051601;
Phys. Rev. D 91 (2015), 105008.

see also

A.L.Kataev, A.E.Kazantsev, K.S., Nucl. Phys. B 926 (2018), 295.

Various de�nitions of the AdlerD-function and the validity of the NSVZ equation
for various renormalization prescriptions were analyzed in

S.S.Aleshin, A.L.Kataev, K.S., JHEP 03 (2019), 196.
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Another form of the NSVZ equations for theories with multiple gauge

couplings

The non-renormalization theorem for the triple gauge-ghost vertices is also valid
for theories with multiple gauge couplings, so that for all k = 1, . . . , n

Z−1/2
αK

ZcKZVK = 1.

Therefore, the NSVZ equations can be rewritten as relations between the β-
functions in a certain loop and the anomalous dimensions of the quantum
super�elds in the previous loop,

βK(α, λ)

α2
K

= − 1

2π

[
C2(GK)

(
3− 2γVK (α, λ)− 2γcK (α, λ)

)
−
∑
a

TaK
(
1− γa(α, λ)

)]
.

It seems that (as for the case of theories with a single gauge couplings) the NSVZ
equations are valid for RGFs de�ned in terms of the bare coupling in the case
of using the higher covariant derivative regularization, and for RGFs de�ned in
terms of the renormalized couplings in the HD+MSL scheme.
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The exact NSVZ β-functions for MSSM

Let us present the all-order exact NSVZ β-functions for some phenomenologically
interesting theories. For instance, for MSSM they are given by the equations

β3(α, λ)

α2
3

= − 1

2π(1− 3α3/2π)

[
3 + tr

(
γQI (α, λ) +

1

2
γUI (α, λ) +

1

2
γDI (α, λ)

)]
;

β2(α, λ)

α2
2

= − 1

2π(1− α2/π)

[
− 1 + tr

(3
2
γQI (α, λ) +

1

2
γLI (α, λ)

)
+

1

2
γHu(α, λ)

+
1

2
γHd(α, λ)

]
;

β1(α, λ)

α2
1

= −3

5
· 1

2π

[
− 11 + tr

(1
6
γQI (α, λ) +

4

3
γUI (α, λ) +

1

3
γDI (α, λ)

+
1

2
γLI (α, λ) + γEI (α, λ)

)
+

1

2
γHu(α, λ) +

1

2
γHd(α, λ)

]
,

where the traces are taken with respect to the generation indices.

(In a di�erent form) they were �rst presented in

M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761.

and correctly reproduce the (scheme-independent) two-loop contributions.
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The exact NSVZ β-functions for the �ipped SU(5) model

As another example we consider the �ipped SU(5) Grand Uni�cation Theory.

S. M. Barr, Phys. Lett. B 112 (1982), 219; I. Antoniadis, J. R. Ellis,
J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B 194 (1987), 231.

The quark and lepton super�elds belong to the representation 3 ×(
10(1) + 5(−3) + 1(5)

)
of the gauge group SU(5) × U(1). Also the theory

includes Higgs super�elds H and H̃ in 10(−1) and 1̄0(1); h and h̃ in 5(2)
and 5̄(−2), and four singlets ϕ. The exact NSVZ β-functions for this model are

β5(α, λ)

α2
5

= − 1

2π(1− 5α5/2π)

[
5 + tr

(3
2
γ10I (α, λ) +

1

2
γ5I (α, λ)

)
+
3

2
γH(α, λ) +

3

2
γH̃(α, λ) +

1

2
γh(α, λ) +

1

2
γh̃(α, λ)

]
;

β1(α, λ)

α2
1

=
1

8
· 1

2π

[
60− tr

(
2γ10I (α, λ) + 9γ5I (α, λ) + 5γEI (α, λ)

)
−2γH(α, λ)− 2γH̃(α, λ)− 4γh(α, λ)− 4γh̃(α, λ)

]
.

D.Korneev, D.Plotnikov, K.S., N.Tereshina, JHEP 10 (2021) 046.
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The two-loop anomalous dimension of the matter super�elds with the higher

derivative regularization

For theories with a single gauge coupling the two-loop anomalous dimension
de�ned in terms of the bare coupling constant forN = 1 supersymmetric theories
regularized by higher derivatives has been calculated in

A.E.Kazantsev, K.S., JHEP 2006 (2020) 108.

(γϕ)i
j(α0, λ0) = −α0

π
C(R)i

j +
1

4π2
λ∗
0imnλ

jmn
0 +

α2
0

2π2

[
C(R)2

]
i

j − 1

16π4

×λ∗
0iacλ

jab
0 λ∗

0bdeλ
cde
0 − 3α2

0

2π2
C2C(R)i

j
(
ln aφ + 1 +

A

2

)
+

α2
0

2π2
T (R)C(R)i

j

×
(
ln a+ 1 +

A

2

)
− α0

8π3
λ∗
0lmnλ

jmn
0 C(R)i

l(1−B +A) +
α0

4π3
λ∗
0imnλ

jml
0

×C(R)l
n(1−A+B) +O

(
α3
0, α

2
0λ

2
0, α0λ

4
0, λ

6
0

)
,

where

A =

∞∫
0

dx lnx
d

dx

1

R(x)
; B =

∞∫
0

dx lnx
d

dx

1

F 2(x)
a =

M

Λ
; aφ =

Mφ

Λ
.
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Obtaining the three-loop β-function from the NSVZ equation

If the anomalous dimension of the matter super�elds de�ned in terms of the bare
couplings has been calculated in L-loops with the higher derivative regularization,
then it is possible to construct the (L + 1)-loop β-function from the NSVZ
equation without loop calculations. For example, in the three-loop approximation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
+

α0

4π2

{
− 3C2

2 +
1

r
C2 trC(R) +

2

r
tr
[
C(R)2

] }
− 1

8π3r
C(R)j

iλ∗
0imnλ

jmn
0 +

α2
0

8π3

{
− 3C3

2 +
1

r
C2

2 trC(R)− 2

r
tr
[
C(R)3

]
+

2

r

×C2 tr
[
C(R)2

] (
3 ln aφ + 4 +

3A

2

)
− 2

r2
trC(R) tr

[
C(R)2

] (
ln a+ 1 +

A

2

)}
− α0C2

16π4r
C(R)j

iλ∗
0imnλ

jmn
0 +

α0

16π4r

[
C(R)2

]
j

iλ∗
0imnλ

jmn
0

(
1 +A−B

)
− α0

8π4r

×C(R)j
iC(R)l

nλ∗
0imnλ

jml
0

(
1−A+B

)
+

1

32π5r
C(R)j

iλ∗
0iacλ

jab
0 λ∗

0bdeλ
cde
0

+O
(
α3
0, α

2
0λ

2
0, α0λ

4
0, λ

6
0

)
.

Certainly, RGFs de�ned in terms of the renormalized couplings can also be
calculated for an arbitrary renormalization prescription.
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Obtaining RGFs de�ned in terms of the renormalized couplings

To calculate RGFs de�ned in terms of the renormalized couplings, �rst, we
integrate the equations

β(α0, λ0) ≡
dα0

d lnΛ

∣∣∣
α,λ=const

; (γϕ)i
j(α0, λ0) ≡ −d(lnZϕ)i

j

d lnΛ

∣∣∣
α,λ=const

and obtain the expressions for the renormalized gauge coupling constant and
(lnZϕ)i

j . They depend on a set of �nite constants which determine a subtraction
scheme in the considered approximation. Next, we substitute the expressions
obtained in this way into the equations

β̃(α, λ) ≡ dα

d lnµ

∣∣∣
α0,λ0=const

; (γ̃ϕ)i
j(α, λ) ≡ d(lnZϕ)i

j

d lnµ

∣∣∣
α0,λ0=const

.

These RGFs will nontrivially depend on the �nite constants due to the scheme
dependence.

The results for the two-loop anomalous dimension and the three-loop β-function
de�ned in terms of the renormalized couplings are rather large and are not
presented here. They can be found in

A.E.Kazantsev, K.S., JHEP 2006 (2020) 108.
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Finite constants �xing a renormalization prescription

The �nite constants in the lowest approximation are de�ned by the equations

(lnZϕ)i
j(α, λ) =

α

π
C(R)i

j
(
ln

Λ

µ
+ g11

)
− 1

4π2
λ∗
imnλ

jmn
(
ln

Λ

µ
+ g12

)
+O(α2, αλ2, λ4);

1

α
− 1

α0
= − 3

2π
C2

(
ln

Λ

µ
+ b11

)
+

1

2π
T (R)

(
ln

Λ

µ
+ b12

)
− 3α

4π2
C2

2

(
ln

Λ

µ

+b21
)
+

α

4π2r
C2trC(R)

(
ln

Λ

µ
+ b22

)
+

α

2π2r
tr
[
C(R)2

] (
ln

Λ

µ
+ b23

)
− 1

8π3r
C(R)j

iλ∗
imnλ

jmn
(
ln

Λ

µ
+ b24

)
+O(α2, αλ2, λ4).

In the HD+MSL scheme all �nite constants gi and bi are equal to 0, and the
NSVZ relation is valid in the O(α2, αλ2, λ4) approximation. For other schemes
this in general is not true.

Here (at the next slide) we present the result for considered RGFs only for a
particular case, namely, for one-loop �nite N = 1 supersymmetric theories, see

P.West, Phys.Lett. B 137 (1984) 371;
A.Parkes, P.West, Phys.Lett. B 138 (1984) 99.
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RGFs for the one-loop �nite theories

An important particular case is theories �nite in the one-loop approximation
which satisfy the conditions

T (R) = 3C2; λ∗
imnλ

jmn = 4παC(R)i
j .

In this case the two-loop anomalous dimension and the three-loop β-function
de�ned in terms of the renormalized couplings have the form

(γ̃ϕ)i
j(α, λ) = −3α2

2π2
C2C(R)i

j
(
ln

aφ

a
− b11 + b12

)
− α

4π2

( 1

π
λ∗
imnλ

jmlC(R)l
n

+2α
[
C(R)2

]
i

j
)(

A−B − 2g12 + 2g11
)
+O

(
α3, α2λ2, αλ4, λ6

)
;

β̃(α, λ)

α2
=

3α2

4π3r
C2 tr

[
C(R)2

] (
ln

aφ

a
− b11 + b12

)
+

α

8π3r

( 1

π
C(R)j

iC(R)l
n

×λ∗
imnλ

jml + 2α tr
[
C(R)3

] )(
A−B − 2g12 + 2g11

)
+O

(
α3, α2λ2, αλ4, λ6

)
.

We see that in this case the NSVZ equation is satis�ed in the lowest nontrivial
approximation for an arbitrary renormalization presription,

β(α, λ)

α2
= − 1

2πr
C(R)i

j(γϕ)j
i(α, λ) +O(α3, α2λ2, αλ4, λ6).
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The NSVZ equation for theories �nite in the lowest loops

For N = 1 supersymmetric theories �nite in the one-loop approximation it is
possible to tune a subtraction scheme so that the theory will be all-loop �nite

D.I.Kazakov, Phys. Lett. B 179 (1986) 352; A.V.Ermushev, D.I.Kazakov, O.V.Tarasov,
Nucl.Phys. B 281 (1987) 72; C.Lucchesi, O.Piguet, K.Sibold, Helv.Phys.Acta 61 (1988)
321; Phys.Lett. B 201 (1988) 241.

If a subtraction scheme is tuned in such a way that the β-function vanishes in
the �rst L loops and the anomalous dimension of the matter super�elds vanishes
in the �rst (L− 1) loops, then

K.S., Eur.Phys.J. C 81 (2021) 571.

for an arbitrary renormalization prescription the (L + 1)-loop gauge β-function
satis�es the equation

βL+1(α, λ)

α2
= − 1

2πr
C(R)i

j(γϕ,L)j
i(α, λ).

Therefore, if a theory is �nite in a certain approximation, its β-function vanishes
in the next order. This exactly agrees with the earlier known result of

A.J.Parkes, P.West, Nucl.Phys. B 256 (1985) 340;
M.T.Grisaru, B.Milewski and D.Zanon, Phys.Lett. 155B (1985) 357.
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Three-loop MSSM β-functions for an arbitrary supersymmetric

renormalization prescription

Starting from the two-loop expressions for the anomalous dimensions of the
matter super�elds it is possible to �nd the three-loop MSSM β-functions for an
arbitrary supersymmetric renormalization prescription supplementing the higher
covariant derivative regularization

O.Haneychuk, V.Shirokova, K.S., arXiv:2207.11944[hep-ph].

The result is very large and depends on both regularization parameters and �nite
constants �xing a subtraction scheme. For certain values of these �nite constants
it reproduces the DR result obtained earlier. Also it is possible to construct a
class of the NSVZ schemes, which are related to the HD+MSL scheme by the
�nite renormalizations satisfying the constraint

1

α′
K

− 1

αK
+

C2(GK)

2π
ln

α′
K

αK
− 1

2π

∑
a

TaK ln za = BK ,

where BK are some constants.
As an example, we present the three-loop expression for the function β̃3.
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MSSM, three-loop β3

β̃3(α, Y )

α2
3

= −
1

2π

{
3−

11α1

20π
−

9α2

4π
−

7α3

2π
+

1

8π2
tr
(
2Y +

U YU + 2Y +
D YD

)
+

1

2π2

[
137α2

1

1200

+
27α2

2

16
+

α2
3

6
+

3α1α2

40
−

11α1α3

60
−

3α2α3

4
+

363α2
1

100

(
ln a1 + 1 +

A

2
+ b2,31 − b1,1

)
+

9α2
2

4

×
(
− 6 ln aφ,2 + 7 ln a2 + 1 +

A

2
+ b2,32 − b1,2

)
− 24α2

3

(
3 ln aφ,3 − 2 ln a3 + 1 +

A

2
+

7

16
b2,33

−
7

16
b1,3

)]
+

1

8π3
tr
(
YUY +

U

)[3α1

20
+

3α2

4
+ 3α3 +

13α1

30

(
B −A+ 2b2,3U − 2jU1

)
+

3α2

2

×
(
B −A+ 2b2,3U − 2jU2

)
+

8α3

3

(
B −A+ 2b2,3U − 2jU3

)]
+

1

8π3
tr
(
YDY +

D

)[3α1

20
+

3α2

4

+3α3 +
7α1

30

(
B −A+ 2b2,3D − 2jD1

)
+

3α2

2

(
B −A+ 2b2,3D − 2jD2

)
+

8α3

3

(
B −A

+2b2,3D − 2jD3

)]
−

1

(8π2)2

[
3

2
tr
(
(YUY +

U )2
)(

1 + 4b2,3U − 4jUU

)
+

3

2
tr
(
(YDY +

D )2
)(

1

+4b2,3D − 4jDD

)
+ 3

(
tr(YUY +

U )
)2(

1 + 2b2,3U − 2jUtU

)
+ 3

(
tr(YDY +

D )
)2(

1 + 2b2,3D

−2jDtD

)
+ tr

(
YEY +

E

)
tr
(
YDY +

D

)(
1 + 2b2,3D − 2jDtE

)
+ tr

(
YDY +

D YUY +
U

)(
1 + 2b2,3U

+2b2,3D − 2jUD − 2jDU

)]}
+O(α3, α2Y 2, αY 4, Y 6).
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The four-loop β-function for N = 1 SQED with Nf �avors

Similarly, it is possible to obtain the four-loop β-function of N = 1 SQED with
Nf �avors starting from the three-loop anomalous dimension

I.Shirokov and K.S., JHEP 04 (2022) 108.

The result (for RGFs de�ned in terms of the renormalized coupling constant) is

γ̃(α) = −α

π
+

α2

2π2
+

α2Nf

π2

(
ln a+ 1 +

A1

2
+ g1,0 − b1,0

)
− α3

2π3
+

α3Nf

π3

×
(
− ln a− 3

4
− C − b2,0 + b1,0 − g2,0 + g1,0

)
+

α3(Nf )
2

π3

{
−

(
ln a+ 1− b1,0

)2

+
A2

4
−D1 ln a−D2 + b1,0A1 − g2,1

}
+O(α4);

β̃(α)

α2
=

Nf

π
+

αNf

π2
− α2Nf

2π3
− α2(Nf )

2

π3

(
ln a+ 1 +

A1

2
+ b2,0 − b1,0

)
+
α3Nf

2π4
+

α3(Nf )
2

π4

(
ln a+

3

4
+ C + b3,0 − b1,0

)
+

α3(Nf )
3

π4

{(
ln a+ 1− b1,0

)2

−A2

4
+D1 ln a+D2 − b1,0A1 + b3,1

}
+O(α4).
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Notations

Here the notations are

A1 ≡
∞∫
0

dx ln x
d

dx

( 1

R(x)

)
; A2 ≡

∞∫
0

dx ln
2
x

d

dx

( 1

R(x)

)
;

C ≡
1∫

0

dx

∞∫
0

dy x ln y
d

dy

( 1

R(y)R(x2y)

)
; D1 ≡

∞∫
0

dx ln x
d

dx

( 1

R2(x)

)
;

D2 ≡
∞∫
0

dx ln x
d

dx

 1

R2(x)

[
−

1

2

(
1 − R(x)

)
ln x +

√
1 +

4a2

x
arctanh

√
x

x + 4a2

] .

and the �nite constants are de�ned by the equations

lnZ =
α

π

(
ln

Λ

µ
+ g1,0

)
− α2

2π2

(
ln

Λ

µ
+ g2,0 +Nfg2,1

)
− α2Nf

π2

(
ln a+ 1

+
A1

2
− b1,0

)
ln

Λ

µ
+

α2Nf

2π2
ln2 Λ

µ
+O(α3).

1

α0
=

1

α
− Nf

π

(
ln

Λ

µ
+ b1,0

)
− αNf

π2

(
ln

Λ

µ
+ b2,0

)
+

α2Nf

2π3

(
ln

Λ

µ
+ b3,0

+Nfb3,1
)
+

α2(Nf )
2

π3

(
ln a+ 1 +

A1

2
− b1,0

)
ln

Λ

µ
− α2(Nf )

2

2π3
ln2 Λ

µ
+O(α3).
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Minimal scheme for N = 1 SQED with Nf �avors

We see that the terms in the anomalous dimension without Nf and terms in the
β-function proportional to (Nf )

1 are scheme-independent in agreement with the
general all-loop statement proved in

A.L.Kataev and K.S., Phys. Lett. B 730 (2014), 184; Theor. Math. Phys. 181
(2014), 1531 [Teor. Mat. Fiz. 181 (2014) 475].

From the explicit above expressions for RGFs we see that by a special choice
of the �nite constants bi and gi it is possible to remove all terms proportional
to (Nf )

k with k ≥ 1 in the anomalous dimension and all terms proportional
to (Nf )

k with k ≥ 2 in the β-function. Then we obtain the simplest, so-called
minimal scheme, in which

γ̃(α) = −α

π
+

α2

2π2
− α3

2π3
+O(α4);

β̃(α) =
α2Nf

π
+

α3Nf

π2
− α4Nf

2π3
+

α5Nf

2π4
+O(α6).

The minimal renormalization scheme for the considered theory can be chosen in
all orders of the perturbation theory. This scheme is NSVZ in all orders.
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N = 2 supersymmetric gauge theories in N = 1 superspace

N = 2 supersymmetric theories can be considered as a particular case of N = 1
supersymmetric theories. Therefore, they can be formulated in terms of N = 1
super�elds,

S =
1

2e20
tr
(
Re

∫
d4x d2θW aWa +

∫
d4x d4θΦ+e2V Φ e−2V

)
+

1

4

∫
d4x d4θ

×
(
ϕ+e2V ϕ+ ϕ̃+e−2V T

ϕ̃
)
+

[ ∫
d4x d2θ

( i√
2
ϕ̃tΦϕ+

1

2
m0ϕ̃

Tϕ
)
+ c.c.

]
Here the chiral super�eld Φ in the adjoint representation is an N = 2
superpartner of the gauge super�eld V . The chiral super�elds ϕ and ϕ̃ in the
representations R0 and R̄0 form an N = 2 hypermultiplet.

Therefore, we obtain an N = 1 supersymmetric theory with chiral matter
super�elds in the reducible representation

R = Adj +R0 + R̄0,

containing nontrivial Yukawa interaction.

In this formulation only N = 1 supersymmetry is manifest, while the second
supersymmetry is hidden.
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Special features of quantization and renormalization in N = 1 superspace

A higher derivative term SΛ invariant under both supersymmetries has been
constructed in

I.L.Buchbinder and K.S., Nucl.Phys. B883 (2014) 20.

However, with the help of the N = 1 super�eld technique it is impossible to
quantize a theory in the N = 2 supersymmetric way. Therefore, in this case
quantum corrections can break the hidden supersymmetry.

In this case from the NSVZ equation and the non-renormalization of
superpotential we obtain

β(α0) = −α2
0

π

(
C2−T (R0)

)(
1+

1

2
γΦ(α0)

)
= −α2

0

π

(
C2−T (R0)

)(
1−γϕ(α0)

)
.

This implies that, in general, higher loop (L > 1) contributions to the β-function
do not vanish and are determined by the function γΦ(α0).
To construct a renormalization prescription for which the β-function (de�ned in
terms of the bare coupling) vanishes beyond the one-loop approximation, one
should use a manifestly N = 2 supersymmetric regularization and quantization.
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Explicitly N = 2 supersymmetric formulation in the harmonic superspace

N = 2 supersymmetry is a manifest symmetry in the case of using N = 2
harmonic superspace

A.Galperin, E.Ivanov, S.Kalitzin, V.Ogievetsky and E.Sokatchev,
Class.Quant.Grav. 1 (1984) 469.

with the coordinates (xµ, θia, θ̄iȧ, u
±
i ), where u−

i = (u+i)∗ and u+iu−
i = 1.

With the help of the harmonic superspace one can quantize the theory in a
manifestly N = 2 supersymmetric way. That is why the harmonic superspace
technique together with the background super�eld method allow having manifest
N = 2 supersymmetry and gauge invariance at all steps of calculating quantum
corrections.

A.S.Galperin, E.A.Ivanov, V.I.Ogievetsky and E.S.Sokatchev,
Harmonic superspace. Cambridge University Press (2001) 306p.

The higher covariant derivative regularization can also be formulated in the
harmonic superspace

I.L.Buchbinder, N.G.Pletnev and K.S., Phys.Lett. B751 (2015) 434.
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N = 2 non-renormalization theorem and the NSVZ β-function

The higher covariant derivative regularization allows to prove simply the N = 2
non-renormalization theorem starting from the NSVZ β-function.

The degree of divergence (for non-regularized theory) in the harmonic superspace
is written as

I.L.Buchbinder, S.M.Kuzenko and B.A.Ovrut, Phys.Lett. B433 (1998) 335.

ω0 = −Nq −Nc −
1

2
ND,

where Nq is a number of external hypermultiplet lines, Nc is a number of external
ghost lines, and ND is a number of spinor derivatives acting on external lines.
Therefore, all superdiagrams containing hypermultiplet external lines are �nite,
so that γϕ(α0) = 0. Consequently,

β(α0)

α2
0

= − 1

π

(
C2 − T (R)

)(
1− γϕ(α0)

)
= − 1

π

(
C2 − T (R)

)
.

This implies that the β-function is non-trivial only in the one-loop approximation.
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6D, N = (1, 0) supersymmetric theories in harmonic superspace

It is convenient to formulate 6D, N = (1, 0) supersymmetrc theories in 6D,
N = (1, 0) harmonic superspace because in this case N = (1, 0) supersymmetry
is a manifest symmetry even at the quantum level.

The harmonic superspace is parameterized by the coordinates xM , M = 1, . . . 6,
θai, and u± (such that u+iu−

i = 1, u−
i ≡ (u+i)∗).

The 6D, N = (1, 0) supersymmetric gauge theories in the harmonic superspace
are described by the action

B. M. Zupnik, Sov. J. Nucl. Phys. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794].

S =
1

f2
0

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+
1 u

+
2 ) . . . (u

+
nu

+
1 )

−
∫

dζ(−4)du q̃+∇++q+,

where ∇++q+ = D++q++ iV ++Q+; V ++ is an analytic gauge super�eld, and
q+ is an analytic hypermultiplet super�eld, and we use the notation∫

d14z =

∫
d6x d8θ;

∫
dζ(−4) ≡

∫
d6x d4θ+.
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The higher covariant regularization for 6D, N = (1, 0) theories

The coupling constant f0 in six dimensions has the dimension m−1. This implies
that the considered theory is not renormalizable, because the degree of divergence
increases as a number of loops L increases,

I.L.Buchbinder, E.A.Ivanov, B.S.Merzlikin, K.S., Nucl. Phys. B 921 (2017), 127.

ω0 = 2L−Nq −Nc −
1

2
ND,

where Nq, Nc, and ND are the numbers of external hypermultiplets, ghosts, and
spinor derivatives acting on external lines, respectively.
Next, we introduce the gauge super�eld strength F++ ≡ (D+)4V −−, where

(D+)4 = − 1

24
εabcdD+

a D
+
b D

+
c D

+
d ;

V −−(z, u) ≡
∞∑

n=1

(−i)n+1

∫
du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+u+
1 )(u

+
1 u

+
2 ) . . . (u

+
nu+)

.

Using this super�eld we construct the higher derivative term

SΛ =
1

Λ2n

∫
dζ(−4)duF++⌢

□
nF++,

where the operator
⌢

□ ≡ 1

2
(D+)4(∇−−)2 is reduced to the Laplace operator if

it acts on the subspace of analytic super�elds.

K.V.Stepanyantz The higher covariant derivative regularization



46

The higher covariant regularization for 6D, N = (1, 0) theories

The background-quantum splitting is linear, V ++ = V +++v++, and the gauge
�xing term can be chosen in the form invariant under the background gauge
transformations,

Sgf = − 1

2f2
0 ξ0

tr

∫
d14z du1du2

(u−
1 u

−
2 )

(u+
1 u

+
2 )

3
D++

2 v++
2,τ

[
1+

(⌢

□□□ τ,1

Λ2

)n+1
]
D++

1 v++
1,τ .

The corresponding Faddeev�Popov ghost action is given by the expression

SFP = tr

∫
dζ(−4) du b∇++

(
∇++c+ i[v++, c]

)
,

where the covariant derivatives are de�ned as ∇±± ≡ D±± + iV ±±.
Also it is necessary to introduce the Nielsen�Kallosh determinant

∆NK ≡ Det1/2
[

⌢

□□□

(
1 +

( ⌢

□□□
Λ2

)n+1
)]∫

Dφ exp
(
iSNK

)
.

where

SNK = −1

2
tr

∫
dζ(−4) du (∇++φ)2.
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The higher covariant regularization for 6D, N = (1, 0) theories

The degree of divergence for the theory with the action S + SΛ is

ω = 2− 2n(L− 1)− (n+ 2)(Nc +Nq)−
1

2
ND.

Therefore, for n ≥ 1 divergences are present only in the one-loop approximation.
They are removed by inserting the Pauli�Villars determinant

Det−1(PV,M) ≡
∫

DQ̃++DQ++ exp(iSQ),

where SQ can be de�ned as

SQ =
1

Λ2

{∫
dζ(−4) du Q̃++( ⌢

□ +M2)2Q++

−
∫

d14z du1du2
i

(u+
1 u

+
2 )

2
Q̃++

1,τ

(
F++∇−−Q++)

2,τ

}
,

Then the generating functional is given by the expression

Z =

∫
Dv++ Dq̃+ Dq+ DbDcDφDet1/2

[
⌢

□□□

(
1 +

( ⌢

□□□
Λ2

)n+1
)]

×Det(PV,M)x exp
[
i(S + SΛ + Sgf + SFP + SNK + Ssources)

]
,

where x should be chosen so that all one-loop divergences cancel each other.
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Conclusion

The higher covariant derivative regularization allows revealing some
interesting features of supersymmetric theories and deriving some all-loop
results.

The integrals giving the β-function(s) of supersymmetric theories are
integrals of double total derivatives with this regularization.

RGFs de�ned in terms of the bare couplings satisfy the NSVZ relation in
theories regularized by higher derivatives in all loops.

Some all-order NSVZ schemes are given by the HD+MSL prescription.

Validity of the NSVZ equation with the higher covariant derivative
regularization allows to essentially simplify some multiloop calculations.

The higher covariant derivative regularization can be constructed in the
harmonic superspace, in particular for 4D, N = 2 and 6D, N = (1, 0)
theories.

NSVZ equation and the higher covariant derivative regularization in the
harmonic superspace allows to give a simple proof of the
non-renormalization theorems for 4D theories with extended
supersymmetry.
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Thank you for the attention!
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