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Introduction



Basics

Definition

Higher-spin theories are theories involving massless fields of spin greater than 2. It is usually

assumed that graviton is in the spectrum, so these are extensions of gravity.

Why interesting?

Massless fields of spin >1/2 inevitably lead to symmetries.
Symmetries are important in physics and mathematics. In particular, these lead to improved

quantum behaviour. Higher-spin theories — a promising approach to quantum gravity.



Basics

Problems

Interacting higher-spin theories are very hard to construct. For some natural assumptions, no-go

theorems show that interacting higher-spin theories in flat space do not exist.

[Weinberg '64; Coleman, Mandula '67]

Roughly speaking, there are too many symmetries for any interactions to be possible.



Basics

Positive results

Interacting higher-spin theories in AdS were suggested by Vasiliev.
[Vasiliev ‘90, ‘03]

olography gives solid support for the existence of higher-spin theories in AdS
[Sezgin, Sundell ‘02, Klebanov, Polyakov ‘02]

Via holography, the boundary theory defines «the AdS space S matrix» of higher-spin theories.
This S-matrix can then be used to reconstruct the action

[Petkou ‘03, Bekaert, Erdmenger, DP, Sleight 15, Sleight, Taronna '16]



Basics

Positive results

Chiral (selt-dual) higher-spin theories can be constructed in 4d flat space
[Metsaev ‘90, DP, Skvortsov '16]

There is no contradiction with no-go theorems, as scattering in self-dual theories is (almost) trivial



This talk

We will make an extension with selt-dual higher-spin theories in a way that scattering becomes
more non-trivial.

Symmetries is the main guiding principle

We will define the theory via its S-matrix
We will learn the recipe from the AdS case

The S-matrix is expected to be rather exotic, not to contradict the no-go theorems.



No-go theorems



The Coleman-Mandula theorem

It the following assumptions are satistied:

There are finitely many particles with mass below any M

The S-matrix is non-trivial at almost all energies

The S-matrix is analytic at almost all energies

Then, the symmetry of the S-matrix may only be a direct product of the Poincare group and
internal symmetry.

[Coleman, Mandula '67]



The Coleman-Mandula theorem

It the following assumptions are satistied:

The S-matrix is non-trivial at almost all energies

The S-matrix is analytic at almost all energies

Then, the symmetry of the S-matrix may only be a direct product of the Poincare group and
internal symmetry.



Higher-spin holography



Boundary theory

In the simplest case, the boundary theory is a theory of N free massless scalars

S—; [ dze'De,

igher-spin fields are dual to higher-spin conserved currents

Sy =10 0, - 0u,Pa t + ...
Higher-spin S-matrix is computed by the correlators of these currents

ooy (1) o Ty, (T0))

[Sezgin, Sundell '02, Klebanov, Polyakov '02]



Higher-spin symmetry

Higher-spin symmetry is defined as a symmetry of the free equation of motion

p =0

't is generated by differential operators L such that

L : =10 = (L) =
L=1L
with trivial symmetries
L=M

factored out.

Higher-spin symmetry alone allows one to fix the n-point correlator up to an overall factor.



Employing SL(2,C) spinors



SL(2,C) spinors

Four dimensional Lorentz algebra is isomorphic to

so(3,1) ~ sl(2,C).

Accordingly Lorentz vectors can be converted to sl(2,C) bispinors and back

1

Pac = pa(aa)aéza Pa — _§(O-a)dapozéz-

Here sigma are the Pauli matrices. For light-like vectors (massless momenta) one has

ppe =0 & det(pas) =0 & Pac = —Aala-

For real positive energy momenta

We will relax this condition: lambda’s are independent, hence, momenta are complex.



Massless on-shell tields

In terms of sl(2,C) spinors massless representations are realised by

. 0 0
JO‘B_Z(AO‘(‘Q)\B >\58>\a> y

_ _ 0 _ 0
Ja =3 )\O'é ) P ;
’ Z( IS 58A“>

Pozéz — _)\oz)\ém

which act on functions ®(A, ) on C*/{0}. One can introduce the helicity operator

1, - .~ 0 0
H=-(N-N N =\ — N = \°
(V- 1).
lts elgenspaces
H®p = hdy,

are irreducible helicity h massless representations. Spin s = helicity +s and helicity -s. For
bosonic fields

h e, D(—\, =) = P\, \)



Massless on-shell tields

In summary, we use lambda, bar lambda spinors to encode momenta, and the homogeneity

degree operator H to encode spin. This is very efficient when dealing with amplitudes!

12]°
12][23][31]

ATL+L=1 54()\15\1 + )\25\2 + )\35\3)

where

]| = 5\35\26‘5‘5, (17) = )\3)\%60‘5



Practical convenience

Instead of a multiplet of fields ©**)(p)  with trace, divergence, on-shell constraints and gauge
invariance, now we have a single field ®(\, \).



Massless on-shell fields in AdS

Massless fields in AdS can be realised as

The rest remains the same except that helicity +s and helicity -s are equivalent representations.

[Vasiliev theory, twistor literature]



Higher-spin invariant amplitudes in AdS

[Colombo, Sundell '12; Didenko, Skvortsov '12; Geltond, Vasiliev '13]



Higher-spin algebra
Higher-spin algebra in AdS space is defined in terms of the associative star product (Weyl-Moyal)

(\Ifl * \Ifg)()\g, 5\3) — /d2)\1d25\1d2)\2d25\2\lfl()\1, 5\1)\112(>\2, 5\2)67;([21]_'_[13]_'_[32])€i(<21>+<13>+<32>).

The Lie algebra commutator is just
[\Ifl, \Ifg]* — \Ifl * \112 — \112 * \Ifl.

The AdS isometries so(3,2) are generated by commutators with quadratic polynomials

Pad ™~ )\Oz)\dm Jaa ™ Aa)\aa Jdéz ™~ j\dj\d-

[Fradkin, Vasiliev '87]



On-shell fields

The representation of this algebra, which carries on-shell fields is constructed as

Sg®=—-TVxP+PxU, TN =T(=\A) =T\ -N).

't can then be checked that for Psi that correspond to the so(3,2) generators, Phi, indeed,

transform as massless on-shell fields.



Invariants of the higher-spin algebra

The star product features a trace, which is cyclic for bosonic fields

tI’(\Ifl * \112) — tI‘(\PQ * \Ifl),

() = / PXEAT (A, N2(N)52(R) = T(0,0).

Together with associativity, this implies that

antr(\lfl*\llz*---*\lln)

s invariant under higher-spin algebra transformations

Thus one constru

as fields, but as a

cts invariants of the h

0cW = [V, .

igher-spin algebra. Here, however, Psi does not transtform

gebra parameters (ac

joint representation).



Invariant scattering amplitudes

One can show that if
0e® = —ExPHDAE

then U = ® «6%(\) transformsas d:¥ = [V, ¢],.
[Didenko, Vasiliev '09]

Accordingly,
Gy = tr(®1 % 62(N) % @z % 62(A) 5o+ x Dy % 6%(N)),

where Phi's now transform as on-shell fields is HS-invariant.

These give candidate higher-spin amplitudes, which have been checked holographically.

[Colombo, Sundell '12; Didenko, Skvortsov '12; Geltond, Vasiliev '13]



Invariant scattering amplitudes

More explicitly, for 3-point functions one finds
G :/d2>\1d2)\1d2A2d2A2d2)\3d2)\3<I>1()\1,)\1)<I>2()\2,)\2)<I>3()\3,)\3)
e12152(X, + Ay + Ag)ei(@D+{(13)+(32))
The kernel of this integral can be regarded as an amplitude

Az = 252N + Xy + Ng)el(@DH13)+(32))



Chiral higher-spin theory



Chiral higher-spin theory

In 4d Minkowski flat space there exists the so-called chiral higher-spin theory. It is constructed in
the light-cone gauge, by requiring Poincare invariance of the action.

[Metsaev '91: DP, Skvortsov '16]

In a well-defined sense it can be regarded as the higher-spin generalisation ot self-dual Yang-
Mills theory and self-dual gravity. It is also chiral, the action is not real in the (3,1) signature.

IDP"17]



Chiral higher-spin theory

Other properties carry over from self-dual theories: integrability, vanishing of tree-level n-point
amplitudes with n>3.

he three-point amplitude is

gh—l

Mhl 7h27h3 .

; _ g(h — 1)' [12]h1-|-h2—h3 [23]h2+h3—h1 [31]h3+h1—h27 h=hy+ ho+ hs.

To be non-trivial it requires complex momenta (feature of massless 3-pt amplitudes)



Chiral higher-spin theory

Chiral higher-spin theories have also been studied at quantum level: finite at one loop

[Skvortsov, Tran, Tsulaia '18'20]

Twistor space and free differential algebra reformulations are available

[Krasnov, Skvortsov, Tran '21; Skvortsov, Van Dongen '22;

Sharapov, Skvortsov, Sukhanov, Van Dongen '22]



Chiral theory

Direct analysis in the light-cone gauge shows that there is no local parity-invariant completion.
The same, however, applies to theories in AdS as well.

his is why we attempt here to go beyond the selt-dual sector using higher-spin symmetries — at
least this works in AdS.



Higher-point amplitudes in flat space



Chiral theory

What we will do: consider 2-pt and 3-pt functions in the chiral theory and try to identify the
associative HS product and the cyclic trace, which will enable us to construct HS invariant higher-
point amplitudes



2-point amplitudes

By two-point amplitudes in flat space we understand the Wightman functions. For scalar fields

one has

Gl — / A prd*pa0(p0)5 (p2)5 (b1 + p2) @1 (p1)Pa(p2).

Converting this to the spinor-helicity representation, using regularisation

to sum over helicities, we obtain

Ay = 52 — X2)67 (A1 + Aa).



S-point amplitudes

We need to sum
gh—l

Agl,hQ,hs = (h — 1)' [12]h1—|-h2—h3 [23]h2+h3—h1 [31]h3+h1—h254()\15\1 1+ )\25\2 4 )\35\3)

over helicities on each leg. With the previous regularisation this gives
As = g[12]3e125([12] — [23])6([12] — [31]))6% (A1 A1 4+ A2 da + Aghs).
One can turther simplify this expression by changing arguments of delta functions
As = ge 252 (N + Ao+ X3)02(Aa — A3)0% (A1 — A3).

It is very reminiscent of the result that we have in AdS!



Algebraic structures

Following the AdS setup, we introduce the associative product

(B X Po)( N3, \3) = /d2A1d2A1d2A2d2A2¢1(A1, A1) Pa( A2, A2)e 262 (N + Ao — X3)0%2 (A2 — A3)0% (M1 — A3)

and trace, which is cyclic with respect to it

try (P(N, ) = /d2>\d25\<1>(>\,5\)52(5\), try (B X Pg) = try (Py x Py).

hese are chosen so that the kernels of

GQ s tI’[X((I)l X (I)Q), Gg — tI'[X((I)l X (I)Q X (I)g)

reproduce amplitudes that we have just computed



Higher-spin algebra in tlat space

Associativity of the product and cyclicity of the trace implies that A_2 and A_3 are invariant under

0. P=[P,eluy =P xe—ex d.

In this way we find that chiral higher-spin theories have some global higher-spin symmetry. This

was not built in!

Relevance of this algebra was seen before when reformu
the self-dual theory, in terms of twistors and free differentia

[DP '17: Krasnov, Skvortsov,

ati

d

ng the chiral higher-spin theory as

gebras

ran ‘21: Skvortsov, Van

Sharapov, Skvortsov, Sukhanov, Van

Dongen '22;

Dongen '22]



Higher-point amplitudes

In the same way as in AdS, one can construct higher point amplitudes

GnEtI'[X(q)l D(q)QD("‘D(q)n),

which are manitestly higher-spin invariant.



Properties

Computing explicitly we find

n

G, = /ﬁdQ)\idQ)\i@i()\i,)\i) ] ef[jﬂ(SQ(i A) [ o2 (0 = M)
1=1 1=1 )

n>i>j>2 —92

For four-point function one gets

Ay = e UZBIFRAFBAD 52 (X 4 Xy + X3 4+ X)02 (A1 — X2)0%2 (A1 — X3)0%( A1 — \a).

't has interesting features:
1) Scattering occurs at all lambda equal

2) Barred lambda is conserved separately

3) This means that scattering is non-trivial only for p_i p_j =0. That is all Mandelstam variables

are vanishing

4) Chiral, relies on complex momenta

Distributions in HS occurred before

[Joung, Nakach, Tseytlin "15;Taronna '16; Bekaert, Erdmenger, DP, Sleight

Beccaria, Nakach, Tseytlin '16; Sleight, Taronna’

16]



Contractions from AdS

Contractions at the level of star product

ot R([12]+[23]+[31]) LiR((12)+(23)+(31))  _ 6@R([12]+[23]+[31])52()\1_)\2)52()\1_)\3)’ R — oo

Product becomes commutative in lambdas.

Contraction at the level of 3-pt amplitudes

6_%{[12]52(5\1—|—5\2—|—5\3)€iR(<12>+<23>+<31>) — 6_%[12]52(5\1—|—5\2—|—5\3)52()\1—)\2)52()\1—)\3), R — o0.

We actually reproduce the tlat space amplitude!



‘Global symmetry’

Consider quadratic generators

They commute as

J,J| ~ J, J,P| ~ P, P, P]~ L,
L,J] =0, L, P] =0, L,L]=0.

This is not Poincare! It is some central extension of the chiral part of the Poincare algebra.

Can be obtained as a chiral contraction of so(3,2):

_ _ 1 1
J — J, P >RP, J >R2L where R — oo.

How do we get the Poincare algebra?



‘Global symmetry’

The missing part of the Lorentz algebra — J — is the symmetry of amplitudes, but not part of the
chiral flat space higher-spin algebra.

J, J| ~ J, J, P] ~ P, P,P|~ L,
L,J] =0, L, P] =0, L, L] =0,
J,P] ~ P, J,J| =0, J, L] ~ L, J, J| ~ J.

Moreover, tields transtform in the representation with L = 0. Thus, translations commute and we
indeed reproduce massless representation of the Poincare algebra.




Conclusion



Conclusion

We find that amplitudes in the chiral higher-spin theory quite manifestly have the form of
invariant traces of a certain associative algebra. This pattern closely mimics the one in AdS,
which was confirmed holographically.

This ensures that the chiral higher-spin theory has a certain global higher-spin algebra as a
symmetry.

Using the associative product and the respective cyclic trace extracted from 2-pt and 3-pt
functions, one can construct manifestly higher-spin invariant higher-point amplitudes

This gives us first flat space amplitudes in higher-spin gauge theories, which are non-
vanishing beyond 3-point level

Amplitudes involve distributions



Further directions

1) Restoring parity-invariance. Unlike in AdS, naive addition of parity-conjugate amplitudes

oreaks higher-spin symmetry. So, in the current form, amplitudes are chiral. This means, at
least, that these crucially rely on complex momenta
2) What is the theory (action) these amplitudes correspond to? Is it local?

3) Fix undetermined relative factors for each n-point amplitude. This may require developing
the holographic description of this theory.



Thank you!



[-xternal lines

As usual, on the external lines of the S-matrix one has the on-shell states, which are solutions to

the free equations of motion. For massless fields in flat space EOM's in the covariant form read

naaSOa(S) = 0,
o) =0,
0, 0% =0
Gauge transformations are given by
naaga(s_l) = 0,
590(1,(8) _ aaga(s—l) ga(s—l) =0,

8a€a(8_1) — 0

hese are usually solved in the Fourier space.



Constraints from gauge invariance

Solutions from the previous slide define massless representations of the Poincare algebra.
Amplitudes are Poincare invariant forms on these representations

Aal(sl),...an(sn)(pla e 7pn) — Mal(sl),...an(sn)(pla e 7Pn)5d(P1 T ‘|‘pn)
Gauge invariance leads to the familiar Ward identities in massless theories

p?Z al(Sl),...an(Sn)(p17°--7pn) — O, \V/Z

The Ward identities are, however, approach-dependent. In particular, one can use instead of phi
their gauge-fixed counterparts. Then, there will be no gauge symmetries and no Ward identities.
Global symmetries, in turn, are more universal




Global symmetries

Global symmetries in gauge theories occur as follows. One should look into the kernel of the
free gauge transtformation

5¢a(s) _ 8(15&(3_1) — 0

Parameters that solve egn above generate global symmetry transformations. In the non-linear

theory this happens as follows

5‘?%0&(3) _ aaga(s—l) 4 T(g, S0) 4

where T is linear in phi and xi and gives the first non-linear correction to the gauge
transformation law. Global symmetries are generated by

670" =T(€, ).

They still survive in a gauge-tixed theory.



Examples

The Yang-Mills theory. Gauge transtormations in the free theory are
0A%(x) = 0%(x).

So, the global symmetry parameters are x-independent. In the non-linear theory they generate

~ ~

b A% (1) = 0°¢ + [A(x), €] = [A(), ¢

which are, indeed, the global transtormations in internal space.



Examples

Gravity. Gauge transformations in the free theory are

09°"(x) = 0" (x).

Global parameters are just the Killing vectors

~

£ x) =a" + wlxy. Wa b = —Wh q-

In the non-linear theory, these generate the flat space isometries, that is the global Poincare
algebra



Higher-spin case

In the general spin case global symmetry parameters
aaga(s—l) — 0

are given by the traceless Killing tensors of the Minkowski space.

This defines the spectrum of the global higher-spin algebra.



Further consistency conditions

Global symmetry transformations should close into themselves
0z, 0g, [ = 0g, 0 = 0, £,

which defines the commutator of global symmetries. It should satisty the Jacobi identity, that is

global symmetries form a Lie algebra. If we want to have gravity as spin-2, it should have the
Poincare subalgebra

Finally,
0gp = ¢

should be a representation of this algebra. Moreover, under the Poincare subalgebra, fields
should transform in the massless higher-spin representations that we started from.




2-point amplitudes

By two-point amplitudes in flat space we understand the Wightman functions. For scalar fields

one has

G3 = [ d'prd'pad()6(3)6 (1 + p2) 01 (1) 22 p2).
Converting this to the spinor-helicity representation, we obtain

Ay = (1) [p2]0((Lpe) (1] + (2p) [12])8((12))0([12]).
Note that it is not manifestly Lorentz covariant due to the presence of the reference spinor.

Analogously, for helicity-h two-point function one finds

p_ (_[ade2)\"
A = (=) ()3 () ) + (2 23120512




2-point amplitudes

To bring it to the form, which is reminiscent of that in AdS, we sum it over spins

O

- (1) [p2]\ "
A=Y ( wﬂ) (1) ()8 (L) [p1] + (24) [12])3((12))5([12]).

h=—o0

To perform the sum, we use the following standard regularisation

This gives

Az = & (2 1] + (L) [2]) (210 [t](Lpe) (]S ((Lpa) 1] + (200) [12])5((12))5([12]).
By going to new arguments of delta-functions, this can be written as

Ag =62 (A1 — X2)0% (A1 + Xa).




Restoring parity-invariance

Amplitude

G, = tr(Pq *52()\) * g *52()\) Kok By *52()‘))’

is superficially chiral (delta-functions on lambda but not on lambda bar).

One can show that

Gp = tr(P1 x 6°(A) x Do 67 (A) K-+ % By % 07(N)),

is invariant with respect to higher-spin symmetries as well. By adding these, we obtain a parity-
invariant amplitude



Properties

One may try to cure chirality of amplitudes by adding
Gn EtI’N((I)l X (I)Q Xoee e X (I)n),
where

(P1 X Po)( A3, A3) = /d2A1d2A1d2A2d2A2<I>1(>\1, A1) Pa( A2, A2)e* 2 62( N 4+ Aa — A3)02 (A2 — A3)02( A1 — A3)

is parity conjugate to the original x product. Unlike in AdS space, however, amplitudes above
are not invariant with respect to the original symmetry

0. P =[P, ely =P xe—exd.

So, the naive way of curing parity by adding parity-conjugate amplitudes, unlike in AdS, breaks
the original symmetry of the theory:.



