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We show how to use Zamolodchikov's Higher Equations of Motion
(HEM) in Liouville �eld theory to explicitly calculate N-point
correlation numbers in Minimal Liouville Gravity (MLG) for N > 4.

We �nd the explicit expression for the 5-point correlation numbers
and compare it with calculations in the one-matrix models.



Results and open questions.
There exist two di�erent approaches to 2D quantum gravity. First
of them (MLG) is the "continuous" approach, given by the
functional integral over 2D Riemannian metric and the matter �elds
of a model of 2D conformal �eld theory (CFT) with central charge
c . After the conformal gauge �xing we get the theory which is
called Liouville gravity (Polyakov). If the matter sector is described
by one of t Minimal models of CFT, it is called Minimal Liouville
gravity(KPZ, DDK).
The second "discrete" approach, de�ned via the integral over
N × N matrices, with N tending to in�nity, is called Matrix models
(MM) approach.
Both approaches is based on the same idea of �uctuating geometry.
Therefore we can expect that they are identical. This conjecture
has been con�rmed by a few calculations by comparing the
gravitational dimensions and correlation numbers in both (MLG
and MM) approaches. These checks were only made for 2-, 3- and
4-point correlators since only these cases were calculated on the
MLG side. At the same time on the MM side the expressions for
N-point correlators for any N are known in one-matrix model case.



Therefore in this work we consider the problem of how to compute
the N-point correlation numbers in MLG when N > 4 (we will focus
on the case when the 2D worldsheet is topologically a sphere.)
N-point correlation numbers in MLG are de�ned as vacuum
averages of the product of physical (i.e. BRST-closed) observables.
Physical observables of MLG appear either as local BRST-closed
�elds located at the point x on the sphere, or as integrals of local
densities ((1, 1)- forms) over their positions.
We will consider two kinds of local BRST-closed �elds in MLG. We
denote them by Wm,n(x) and Om,n(x). The local densities whose
integrals are physical observables will be denoted by Um,n(x). We
remind the de�nition of these objects and the relations between
them in the next section. Below we will consider the correlators
which only include the product of Wm,n(x) �elds and integrals of
the Um,n(x) densities.



The �elds Wm,n(x) have ghost numbers equal to one, and the
ghost numbers of �elds Um,n(x) are equal to zero. The correlators
of the considered �elds on the sphere do not vanish only if the total
ghost number is 3.
It follows that the N-point correlator must contain three �elds of
the type Wmi ,ni (xi ), i = 1, 2, 3 and (N − 3) integrated �elds of type
Umi ,ni (xi ), i = 4, ...,N. The 3-point correlation numbers do not
contain the �elds Umi ,ni (x) at all. To �nd them, one only needs to
know the three point functions in minimal models of CFT (BPZ)
and in Liouville �eld theory (DO) and (ZZ). The four-point
correlator contains one integration over the position of Um,n(x). In
(ABAlZ) a way for computing the moduli integrals was developed.
Using the AlZ HEM of allows one to reduce the moduli integrals to
the boundary terms. This approach was applied for 4-point
correlation numbers. In this case, the fact was used that, besides
the �eld Um,n(x), the other three �elds in the correlator Wmi ,ni (xi )
are BRST-closed. Then BRST exact terms in the r.h.s. of the
HEM relation for the �eld Um,n(x) can be neglected. The integral
of the remaining term is reduced to computable boundary
contributions from the vicinity of points xi and ∞.



The situation in the case when N > 4 is di�erent.
In addition to three BRST closed �elds Wmi ,ni (xi ), the vacuum
average includes N − 3 > 1 integrals of Um,n(x). In this case,
BRST-exact terms on the right side of the HEM relation for one of
two (or more) Um,n(x) �elds can not be neglected.
However, as we will demonstrate below, these contributions, added
to the contribution of the main (not Q-exact) term, reduce the
entire expression to a sum of boundary contributions, which have
the same form as in a 4-point correlator.



The results of MLG were �rst tested against the corresponding
correlation numbers from the matrix models by Moore, Seiberg,
and Staudacher (MSS) one- and two-point correlators.
In (ABAZ) the agreement between the Matrix Models and minimal
Liouville gravity results has been reached up to the level of
four-point correlation numbers by demanding that the higher order
correlation numbers satisfy the fusion rules inherent to the MLG. In
the process, the higher order resonance terms were determined from
this requirement. In (ABAZ) the full resonance transformation
which relates coupling parameters in the p-critical one-matrix
models and (2, 2p + 1) minimal Liouville gravity was conjectured.
But this conjecture has been checked against MM only up to
4-point numbers since the results for higher correlation numbers in
MLG were not available at that time.
G. Tarnopolsky continued investigations of (2, 2p + 1) minimal
gravity using ABAZ conjecture and obtained the explicit expression
for the �ve-point correlation numbers in one-matrix model. He
checked that the correlation numbers satisfy the necessary fusion
rules.



Since in this work we obtained the explicit expression for 5-point
case in MLG, we can now compare it to GT results.
The plan is as follows. 1. I recall the known facts about MLG.
2. Next I present an approach to computing N-point correlation
numbers in MLG with N > 4.
3. Then I compute a 5-point correlation number in MLG.
4. The we use this to compare the expression for the 5-point
correlation numbers in MLG with the expressions for the 5-point
correlation numbers in MM given in (GT).



Preliminaries
The minimal Liouville gravity (MLG) is a special case of the
Liouville gravity. This is a CFT of total central charge equal to 0
consisting of Liouville �eld theory (LFT) describing the gravity
sector, a minimal modelMq′,q of CFT for the matter sector, and
the reparametrization BRST ghosts B,C CFT of central charge
−26:

AMLG = AL + AMq′,q +
1

π

∫
d2x (CB + CB)︸ ︷︷ ︸

Aghost

. (1)

The central charge of Liouville theory is de�ned the requirement of
vanishing total central charge of the theory.

Minimal models of CFTMq′,q [?] are consistently de�ned if the
parameters q and q′ are coprime integers. In this case the �nite set
of Virasoro irreducible representations consisting of degenerate
primary �elds Φm,n with 1 ≤ m < q and 1 ≤ n < q′ and their
descendants form the whole space of states ofMq′,q model. It is
self-consistent, i.e. satis�es all axioms of the conformal bootstrap,
and is an exactly solvable CFT.



In what follows, we will consider only the models of such type. Let
us denote by b2 the parameter q′/q. ThenMq′,q has central
charge

c = 1− 6(b−1 − b)2 (2)

and the degenerate primary �elds Φm,n have dimension

∆M
m,n = −(b−1 − b)2/4 + λ2m,−n (3)

where yet another convenient notation

λm,n = (mb−1 + nb)/2 (4)

is introduced. We will also use notation Φα to denote minimal
model primary �elds of dimension ∆

(M)
α = α(α− b−1 + b).



The main restrictions, which �nally �x the construction of the
minimal model are as follows:

1. The degenerate �elds Φ1,2 and Φ2,1 (and therefore in general
the whole set {Φm,n}) are in the spectrum;

2. The null-vector in the degenerate representation Φm,n vanishes
for all m, n

D
(M)
m,n Φm,n = D̄

(M)
m,n Φm,n = 0. (5)

Here D
(M)
m,n (D̄

(M)
m,n ) are the operators made of the holomorphic

(antiholomorphic) Virasoro generators LMn (L̄Mn ), which create
the singular vector on level mn in the Virasoro module of Φm,n.

3. The identi�cation Φq−m,q′−n = Φm,n is also assumed.

It turns out that these de�nitions impose severe restrictions on the
structure of the theory. In particular, the three-point function of
primary �elds can be unambiguously recovered from these
requirements.



Liouville �eld theory.
LFT is the quantized version of the classical theory based on the
Liouville action. LFT is a conformal �eld theory with central charge
cL. We parametrize it in terms of variable b or

Q = b−1 + b (6)

as
cL = 1 + 6Q2 (7)

In MLG from the requirement of vanishing total central charge it
follows that b is the same as the parameter of the minimal model
de�ned in the previous subsection, which is why we denote it by the
same letter.
The parameter b enters the local Lagrangian

LL =
1

4π
(∂aφ)2 + µe2bφ (8)

where µ is the scale parameter called the cosmological constant
and φ is the dynamical variable for the quantized metric

ds2 = exp (2bφ) ĝabdx
adxb. (9)

Here ĝab is the "background" metric.



Basic primary �elds are the exponential operators Va ≡ exp (2aφ),
parameterized by a continuous (in general complex) parameter a in
the way that the corresponding conformal dimension is

∆
(L)
a = a(Q − a) (10)

In what follows, two types of primary �elds of Liouville sector will
play an important role in constructing the physical �elds of the
MLG.
The �rst kind are degenerate primary �elds Vm,n ≡ Vam,n with

am,n = −b−1 (m − 1)

2
− b

(n − 1)

2
. (11)

These �elds satisfy equations D
(L)
m,nVm,n = D̄

(L)
m,nVm,n = 0 analogous

to the ones in minimal models.
The second kind are the primary �elds Vm,−n, whose role together
with the ghost �eld C is to dress the primary �elds Φm,n of the
matter sector and get as a result a BRST-closed �eld Wm,n. We
will show it below.



Liouville �eld theory is exactly solvable. The three-point correlation
function CL(a1, a2, a3) = 〈Va1(x1)Va2(x2)Va3(x3)〉L is known
explicitly for arbitrary exponential �elds

CL(a1, a2, a3) =
(
πµγ(b2)b2−2b

2
)(Q−a)/b Υb(b)

Υb(a− Q)

3∏
i=1

Υb(2ai )

Υb(a− ai )

(12)
where a = a1 + a2 + a3 and Υb(x) is a special function related to
the Barnes double gamma function.
The local structure of LFT is completely determined by the general
�continuous� operator product expansion (OPE) of Liouville
exponential �elds

Va1(x)Va2(0) =

∫ ′ dP
4π

C
(L)Q/2+iP
a1,a2 (xx̄)

∆
(L)

Q/2+iP
−∆

(L)
a1
−∆

(L)
a2
[
VQ/2+iP(0)

]
(13)

where the structure constant is expressed through (12)

C
(L)p
a1,a2 = CL(g , a,Q − p). The integration contour here is the real

axis if a1 and a2 are in the �basic domain�

|Q/2− Re a1|+ |Q/2− Re a2| < Q/2 (14)



Ghost �eld theory. BRST invariance.
The ghost sector is the fermionic BC system of spin (2,−1)

Agh =
1

π

∫
(C ∂̄B + C̄∂B̄)d2x (15)

with central charge −26, which corresponds to the gauge �xing
Faddeev-Popov determinant. The matter+Liouville stress tensor T
is a generator of c = 26 Virasoro algebra. Together with the ghost
�eld theory this forms a BRST complex with respect to the
nilpotent BRST charge, the holomorphic part of which is

Q =

∮
(CT + C∂CB)

dz

2πi
. (16)

By de�nition the physical �elds of MLG belong to BRST cohomogy
of the charge Q and its antiholomorphic part Q̄.



Physical (BRST-closed) �elds and their correlators.
The simplest cohomology representatives of ghost number zero can
be obtained by dressing minimal model primaries Φm,n with
Liouville �elds Vm,−n so that their total conformal dimension is
(1,1) and then integrating the obtained �elds Um,n ≡ Vm,−nΦm,n

over the surface. The variation of Um,n is a full derivative

QUm,n = (CUm,n) (17)

so such �elds integrated over the sphere are BRST invariant
(subtleties connected with boundary terms could emerge depending
on the other insertions).
To get physical states of ghost number 1, instead of integrating,
one can dress the Um,n �eld with the ghost �elds C , C and obtain
the (0, 0) form Wm,n ≡ CCUm,n which is BRST-closed,
QWm,n = QWm,n = 0. We will also in the future denote these
�elds by their Liouville parameter a : Wa = VaΦa−b.



If we are interested in correlators of multiple operators∫
d2x Um,n(x) and Wm,n(x) on a sphere, the ghost number

anomaly (presence of C -zero modes of kinetic operator in ghost
action) requires number of C -ghosts in such correlator to be equal
to three. Thus we need to insert three Wmi ,ni (xi ), i = 1, 2, 3 �elds
at some points x1, x2, x3 and all the other operators should be
integrals of densities Um,n(x).

In minimal Liouville gravity, there is an additional set of
BRST-closed �elds with ghost number zero that form the so-called
"ground ring". These �elds have the general form

Om,n(x) = Hm,nHm,nΘm,n, Θm,n ≡ Vm,nΦm,n. (18)

Here Hm,n is a polynomial of degree mn − 1 of Virasoro generators
and ghosts B and C . The general form for Hm,n is unknown, but it
can be found case by case by requiring Q-closedness of the
operator Om,n.



The polynomials Hm,n play an important role in the derivation of
the so-called higher equations of motion (HEM) of Al.
Zamolodchikov and the key properties of the physical �elds
Wm,n(x) and Um,n(x).
We quote the expressions for Hm,n for the �rst couple of cases

H1,2 = LM−1 − L−1 + b2CB (19)

H1,3 = (LM−1)2 − LM−1L−1 + L2−1 − 2b2(LM−2 − L−2)+ (20)

2 + b2CB(LM−1 − L−1)− 4b4CB (21)

where by LMn are denoted Virasoro generators of the matter
Minimal model and by Ln of the Liouville theory.



Properties of the ground ring operators include:

1. independence of the correlator on their position in the sense
that

Om,n = BRST-exact. (22)

This is valid for any BRST-closed operator since we have

= LL+M
−1 + Lgh−1 = {Q,B−1} (23)

2. Fusion of two operators O is very simple in cohomology:

Om,n(x)Om′,n′(0) =
m+m′+1∑

r=|m−m′|+1:2

n+n′+1∑
s=|n−n′|+1:2

G
(m,n)|(m′,n′)
r ,s Or ,s(0)+BRST-exact.

(24)

3. Similarly for the fusion with ghost number 1 operators Wa we
have

Om,nWa =
m−1∑

r=−m+1:2

n−1∑
s=−n+1:2

A
(m,n)
r ,s (a)W

a+ rb−1+sb
2

+BRST-exact

(25)



The algebra of the ground ring operators is such that both

coe�cients G
(m,n)|(m′,n′)
r ,s and A

(m,n)
r ,s (a) can be put to one with

renormalization of the operators Om,n and Wm,n.
In fact, the following formulas are valid

G
(m,n)|(m′,n′)
r ,s =

Λm,nΛm′,n′

Λr ,s
; Λm,n =

Bm,n

π
N (am,−n) (26)

A
(m,n)
r ,s (a) =

Bm,n

π

N (a)N (am,−n)

N (a + λr ,s)
(27)

with some coe�cients Bm,n and N (a).
So, after renormalizing Om,n = Λ−1m,nOm,n and Wa = N (a)−1Wa,
both G and A become equal to one

Om,nOm′,n′ =
m+m′+1∑

r=|m−m′|+1:2

n+n′+1∑
s=|n−n′|+1:2

Or ,s . (28)

Similarly for the fusion Om,n with the operator Wa we have

Om,nWa =
m−1∑

r=−m+1:2

n−1∑
s=−n+1:2

W
a+ rb−1+sb

2

. (29)



HEM and key relations of MLG.
The important progress in computation of the integrals over the
moduli space was achieved using higher equations of motion
(HEM) of Al. Zamolodchikov. HEM involve the so-called
logarithmic �elds V ′a and O ′m,n,

V ′a(x) =
1

2 a
Va(x). (30)

These �elds are called logarithmic since its OPE with ordinary
primary operators generally involve logarithms. Let V ′m,n such
logarithmic operator evaluated at the point corresponding to
degenerate dimension a = am,n.
The HEM equate an descendant of logarithmic operators to some
multiple of Vm,−n.

D
(L)
m,nD

(L)
m,nV

′
m,n = Bm,nVm,−n (31)

Bm,n = (πµγ(b2)b2−2b
2
)n

Υ′b(2αm,n)

Υb(2αm,−n)
(32)



As shown in (ABVB) there exists the following Key relation
between the BRST-closed �eld Wm,n and the �eld O ′m,n,
"logarithmic counterpart" of the element Om,n

Wm,n = B−1m,nQQO ′m,n (33)

where O ′m,n := Hm,nHm,nΘ′m,n and Θ′m,n := Φm,nV
′
m,n.

This relation seems "strange", since on its l.h.s. we see a
non-trivial BRST-closed element, but the element on r.h.s. looks
BRST-exact. However, there is no contradiction here, because the
logarithmic �elds V ′m,n and O ′m,n do not belong to the space where
the BRST operator Q is de�ned. Because here Q acts on some
extension of this space.



Using the relations Wm,n = C̄CUm,n, L
M
−1 + L−1 = B−1Q+QB−1

and B−1C (z) = I , (here B−1 is a Fourier component of the ghost
B(z)), we can derive from (33) the second key relation

Um,n = B−1m,n(∂̄ − Q̄B̄−1)(∂ −QB−1)O ′m,n. (34)

Then using Key relation we can perform the explicit calculations of
N-point correlation functions in MLG, reducing step by step
(N − 3) integrals of type

∫
Um,n(x)d2x in the correlators to the

boundary contributions in the positions of the other �elds and in ∞.



Calculation of four-point correlation number. We will calculate
the correlator

1

ZL

〈∫
d2x Um,n(x)Wa1(x1)Wa2(x2)Wa3(x3)

〉
(35)

Such a correlator will be considered thinking of matter �elds Φai−b
as �elds with generic conformal dimension (i.e. OPEs containing
them and degenerate operators have maximally possible number of
terms); only for the integrated operator matter dimension is
signi�cantly degenerate. This allows to not care about subtleties in
OPE when we will need to use it. We will also separate the

normalization factors
3∏

i=1
N (ai )×N (am,−n) and, in fact, consider

the correlator of normalized operators

C4(a1, a2, a3|m, n) ≡ 1

ZL

〈∫
d2x

Um,n(x)

N (am,−n)
Wa1(x1)Wa2(x2)Wa3(x3)

〉
(36)



First, we will rewrite the integral operator Um,n according to Key
equation. Since W -operators are Q-closed, we ignore BRST-exact
terms that appear there and write

ZL C4(a1, a2, a3|m, n) =
1

Bm,nN (am,−n)

〈∫
d2x O ′m,nWa1(x1)Wa2(x2)Wa3(x3)

〉
=

=
1

π

〈∫
d2x O′m,nWa1(x1)Wa2(x2)Wa3(x3)

〉
(37)

(we switched to normalized operator O′m,n =
O′m,n

Λm,n
). Now we have

integral of full derivative in the correlator, and can use the Stokes
formula to take it. It reduces to boundary contributions from the
vicinity of points xi and in�nity, which are non-zero because of
special nature of operator O ′m,n.
Indeed, in the OPE with W there will be logarithmic terms, which
after di�erentiation give delta-functions:

log(xx) = πδ(2)(x) (38)

(after reducing integral to contour one, logarithm gives 1/z after
di�erentiation). We need to get these logarithmic contributions.



First we deal with what comes from in�nity. As follows from the
Liouville OPE, operator V ′m,n for x →∞ behaves like

V ′1,2(x) ∼ −∆′m,n log(xx)V1,2(0), ∆′m,n ≡ 2λm,n = mb−1 + nb
(39)

Operator O ′m,n behaves similarly; at in�nity we can replace it with
Om,n with this coe�cient and the logarithm. Then, corresponding
boundary contribution is

−2λm,n 〈Om,n(0)Wa1(x1)Wa2(x2)Wa3(x3)〉 (40)

We note that this expression does not depend on the position of
Om,n since this �eld is BRST-closed, as are other �elds in this
correlator. For this reason we can perform OPE of O with any of
W operators to obtain e.g.

−2λm,n
m−1∑

r=−m+1:2

n−1∑
s=−n+1:2

〈
Wa1+λr,s (x1)Wa2(x2)Wa3(x3)

〉
(41)



To examine the logarithmic factors in the OPE of O ′ with W ,
looking at Liouville OPE, we can note that the logarithmic factors
can appear only when di�erentiating by a power factors (xx) in the
discrete terms. In every other factor we can put a = am,n without
trouble. For example, when considering such terms for V ′1,2 we
obtain

log(xx)
(
q

(1,2)
0,1 (a)(xx)abC+

L (a)[Va−b/2(0)] + q
(1,2)
0,−1(a)(xx)1−ab+b2)C−L (a)[Va+b/2(0)]

)
(42)

q
(m,n)
r ,s ≡ |a− λr ,s −

Q

2
| − λm,n (43)

In other words, logarithmic part is similar to what we get for OPE
with usual primary �eld V1,2, but the terms are decorated by

additional factors q
(1,2)
r ,s . This is valid for arbitrary V ′m,n as well.

Multiplying Liouville OPE with OPE for minimal model and acting
with operators Hm,n, in logarithmic terms only contributions from

Wa−λr,s will remain and coe�cients A
(m,n)
r ,s will appear additionally.



Thus, we obtain the following OPE:

O′m,n(x)Wa(0) = log(xx)
m−1∑

r=−m+1:2

n−1∑
s=−n+1:2

q
(m,n)
r ,s (a)Wa−λr,s +less singular terms

(44)
and contributions to the correlator

−
3∑

i=1

m−1∑
r=−m+1:2

n−1∑
s=−n+1:2

q
(m,n)
r ,s (ai )〈Wai−λr,s . . . 〉 (45)

The additional minus sign appears because boundary component
contours surrounding ∞ and points xi have opposite orientation.
Now, using that all normalized three-point functions of W
operators become the same constant −b−2(b−4 − 1), we arrive at
the expression for total normalized correlation function

C4(a1, a2, a3|m, n) =

-(b−6−b−2)

[
−2mnλmn −−

3∑
i=1

m−1∑
r=−m+1:2

n−1∑
s=−n+1:2

q
(m,n)
r ,s (ai )

]
.(46)



Five-point correlator in MLG.
Here we begin to extend the results obtained in MLG earlier to the
case of higher multipoint correlators and consider 5-point
correlation numbers in (2, 2p + 1) MLG . We will assume that only
two integrated �elds are degenerate and are of the form
Uk ≡ U1,k+1:

C5(a1, a2, a3|k1, k2) =

Z−1L

〈∫
d2x

U1,k1+1(x)

N (a1,−1−k1)

∫
d2y

U1,k2+1(y)

N (a1,−1−k2)
Wa1(x1)Wa2(x2)Wa3(x3)

〉
.(47)

As before, we assume that matter �elds Φai−b in the three
non-integrated operators have "generic" dimension.
We start the calculation by integrating over the variable x and
using HEM for the �eld Uk1 . The term with the full derivative O′m,n
can be reduced to boundary terms in the vicinity of xi , y and ∞.



Contributions of non-integrated �elds Wa(xi ).
For xi contributions, we perform OPE of O′ with Wa(xi ). As
before, only the logarithmic terms are important. In total, these
contributions are

−
3∑

i=1

k1∑
s=−k1:2

q
(1,k1+1)
0,s (ai )

〈∫
d2y

U1,k2+1(y)

N (a1,−1−k2)
Wai−λ0,s (xi ) . . .

〉
.

(48)
Therefore, the xi boundary contributions are expressed in terms of
4-point correlators with 3 generic and 1 degenerate �elds that were
calculated earlier.



Contribution from x =∞ .
Contribution from x =∞ in the integral over x are given by the
following expression

−2λ1,k1+1

∫
d2y

〈
O1,k1+1(0)

U1,k2+1(y)

N (a1,−1−k2)
Wa1(x1)Wa2(x2)Wa3(x3)

〉
.

(49)
To compute it we rewrite the second integrated operator U1,k2+1(y)
via HEM and integrate it by parts. The Q-exact terms are
irrelevant, since all other insertions are Q-closed. After this we get

−
2λ1,k1+1

π

∫
d2y

〈(
O′1,1+k2(y)

)
O1,k1+1(0)Wa1(x1)Wa2(x2)Wa3(x3)

〉
,

(50)
which is, as before, reduced to a sum of boundary terms in the
vicinity of 0, xi and contribution from in�nity.



The new thing we need to take into account is a contribution of
OPE O ′1,1+k2

(y)O1,k1+1(0). Since in logarithmic terms OPE of V ′1,k

and Va is similar to the OPE of V1,k and Va (up to additional q
(m,n)
r ,s

factors), it is su�cient to add the same factors for OPE of O ′1,k2+1

and O1,k1+1 compared to those for OPE of O1,k2+1 and O1,k1+1:

O′1,k2+1(y)O1,k1+1(x) = log |y−x |2
k2+k1∑

s=k2−k1

q
(1,k2+1)
0,s−k1 (a1,k1+1)O1,1+s+. . .

(51)
where k2 is in not less than k1 assumed. Thus, we reduced the
contribution to correlators with one O-operators and three W-s
with some coe�cients which can be easily calculated by performing
OPEs of O with one of the W.



Contributions of the vicinity of y . Now we want to calculate the
terms that come from the vicinity of y . These ones are the most
tricky. There are two immediate problems that we see. First, since
now we have operator Uk2(y), which is not BRST-invariant, so
Q-exact terms in HEM become relevant. Second, OPE of
O ′1,1+k1

(x) with U1,1+k2 and, consequently, logarithmic terms in
their OPE are not as easy as in (44). However, we argue that these
two problems cancel each other out in a certain sense. To see this
we must take the following steps.



First, we rewrite a product of local operators U1,1+k1(x)U1,1+k2(y)
in the path integral expectation value for 5-point function, using
keyrelation, as

B1,1+k1U1,1+k1(x)U1,1+k2(y) = (−Q̄B̄−1−QB−1+Q̄B̄−1QB−1)O ′m,n(x)U1,1+k2(y)
(52)

Second, we move the action of Q and Q from O ′m,n(x) to
U1,1+k2(y) and we get in r.h.s. of (52)

O ′m,n(x)U1,1+k2(y)− B−1O
′
m,n(x)QU1,1+k2(y)−

B̄−1O
′
m,n(x)Q̄U1,1+k2(y) + B̄−1B−1O

′
m,n(x)Q̄QU1,1+k2(y).

(53)



At last, using QU1,1+k2(y) =y (CU1,1+k2(y)) we obtain the
following expression for the product of the �elds in this piece of the
5-point correlator∫

d2y Uk2(y)

∫
d2x x x

(
H1,1+k1H1,1+k1Θ′1,1+k1

)
Wa1(x1)Wa2(x2)Wa3(x3)

(54)

−
∫

d2y

∫
d2x x

(
R1,1+k1H1,1+k1Θ′1,1+k1

)
y

(CUk2(y))Wa1(x1)Wa2(x2)Wa3(x3)

(55)

−
∫

d2y

∫
d2x x

(
R1,1+k1H1,1+k1Θ′1,1+k1

)
y (CUk2(y))Wa1(x1)Wa2(x2)Wa3(x3)

(56)

+

∫
d2y

∫
d2x R1,1+k1R1,1+k1Θ′1,1+k1y y (CCUk2(y)) Wa1(x1)Wa2(x2)Wa3(x3),

(57)

where R1,1+k := B−1H1,1+k .



All lines contain one (or both) integrals (over x or y) that reduce
to boundary contributions. Some of them correspond to the region
where x is close to y and can be obtained from the Stokes theorem.
These contributions are equal to the residues at the poles arising
from the di�erentiation of logarithmic factors log(x − y), which
appear in the operator expansion of the logarithmic �eld V ′1,1+k1

(x)
with the primary �elds in y . Other terms, which appear from the
di�erentiation do not contain the �rst-order poles and thus do not
yield any boundary contributions at all.

The boundary terms from the vicinity of y is reduced to an
expression similar to that obtained from the vicinity of xi . Namely

−
k1∑

s=−k1:2

q
(1,k1+1)
0,s (a1,−k2−1)

N (a1,−1−(k2−s))

〈∫
d2y U1,(k2−s)+1(y)Wai (xi ) . . .

〉
.

(58)
All together

C5(a1, a2, a3|k1, k2) = (b−6 − b−2 [Σ1 + Σ2 + Σ3] ; (59)



Σ1 =

k1∑
s=−k1:2

q
(1,k1+1)
0,s (a1,−k2−1) [2(1 + k2 − s)λ1,1+k2−s+ (60)

+
3∑

i=1

k2−s∑
l=−k2+s:2

q
(1,1+k2−s)
0,l (ai ) (61)

Σ2 =
3∑

i=1

k1∑
s=−k1:2

q
(1,k1+1)
0,s (ai ) [2(1 + k2)λ1,1+k2+ (62)

+

k2∑
l=−k2:2

q
(1,k2+1)
0,l (ai − λ0,s) +

∑
j 6=i

q
(1,k2+1)
0,l (aj)

 (63)

Σ3 = 2λ1,1+k1

 k1∑
s=−k1:2

k2∑
l=−k2:2

(
3∑

i=1

q
(1,1+k2)
0,l (ai ) + 2λ1,k2+1

)
+

(64)

+

k2+k1∑
s=k2−k1

q
(1,k2+1)
0,s−k1 (a1,k1+1)(1 + s) (65)



Five-point correlator in MM approach.
Matrix models give another formulation of the theory of
two-dimensional gravity. The general idea is to integrate over one
or several hermitian matrices Mi of size N × N with a weight
exp(−N Tr V (M)) de�ned by the function V called "potential".
There are speci�c values of parameters of the potential called
"critical points".

For one-matrix model they are parametrized by integer p in their
vicinity, a certain N →∞ limit called "double-scaling limit" can be
taken. Partition function calculated in this way (as a certain
function of parameters tk that de�ne deformation of the potential
away from p-critical point) is supposed to be connected with the
generating functional in (2, 2p + 1) MLG CFT
Z (λk) = 〈exp

(
−λk

∫
d2x Uk(x)

)
〉, perturbative expansion of which

gives the correlators studied in the �rst part of the work.



For some cases, agreement between results of MLG and matrix
model is immediate and was known long ago. However, in the
general case, to achieve coincidence one needs to perform an
analytic change of coordinates from matrix model couplings (KdV
times tk) to MLG coupling λk called "resonance transformations".

These transformations are supposedly completely determined by
requirement that derivatives of matrix model partition function Z
with respect to λ satisfy MLG fusion rules. For 3 and 4-point
correlation numbers correspondence of matrix model answer with
the one obtained from Liouville gravity was already demonstrated in
(ABAlZ).



Matrix-model answer for the �ve-point function.
Five-point number was �rst calculated in (GT) in one- Matrix
model approach.
In general case this expression is quite complicated, but it can be
somewhat simpli�ed in the region of parameter space when for any
i 6= j 6= l kijl < p; it factorizes to be

Zk1k2k3k4k5

(2p − 3− k)(2p − 5− k)
=

1

8

(
4
∑
i

k2i − k2 − 2k − 8−∑
m<n

θ(2kmn − k − 2)(k − 2kmn)(k − 2kmn + 2)+ (66)∑
n

(2kn − k − 2)(2kn − k − 4) (67)

Interesting feature of this answer is the factor in the r.h.s. which is
actually equal to the number of conformal blocks in the minimal
model part of the corresponding MLG correlator. When this
number is maximal and equal to (1 + k1)(1 + k2), this answer
agrees with the expression obtained by Fateev and Litvinov from
CFT calculation using Coulomb integrals.



Comparison with matrix model approach (some examples).
To perform the comparison, we need to substitute ai corresponding
to dressed degenerate �elds a1,−ki−1 and also b =

√
2/(2p + 1).

We suppose that parameters are ordered as
0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ k5 ≤ p − 1.
As it was the case for the four-point function, we expect the
coincidence only for the cases when number of conformal blocks in
the considered �ve-point correlator is speci�c.
However, the MLG and MM expressions generally do not match
even under this condition.
For example, for the case when
(k1, k2, k3, k4, k5) = (1, 1, 2, k − 1, k − 1) in MLG the expression
for 5-point function looks like

ZMLG = 8p2 − 16pk + 8k2 − 48p + 50k + 85, (68)

while in MM model it is

ZMM = 8p2 − 16pk + 8k2 − 48p + 48k + 70. (69)


