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General remarks

® 1878, J. Maxwell, distribution function for rotating gas

1902, J. Gibss, statistical mechanics of rotating ensembles

—kTIhZ=®=U-TS+ (w,J). (2)

1915, S. Barnett, A. Einstein and S. de Haas discover chiral effects

1925, G. Uhlenbeck and S.Goudsmit postulate existence of spin

1926, J. Frenkel, classical spinning particle concept

Modern studies: quantum theory of chiral effects
[Becattini, Tinti'10, Chernodub, Gongyo'17; Fukushima'19]
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Motivation: three reasons

Universal description for
general mass and spin

C.e. are small
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Problem setting

We consider a system of non-interacting non-relativistic particles with spin
in a rotating cylinder;

® the radius of cylinder is r;
® the height of cylinder is h;
® the angular velocity of cylinder is w = (0,0,w).

Distribution function
1 €:— (w,j
p=pop1---PN-1, ,oazzoexp<—a(1"’)>, a=0,...,.N—1,

Partition function
1 .

Our aim is to find pg and Zj.
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Model of non-relativistic spinning particle

We consider a non-relativistic point particle with the mass m and spin s.
The state of particle is determined by the eight variables:

® the particle position vector r;
® the particle linear momentum p;
® two angular variables describing spin «, .

Total angular momentum
c=p’/2m,  jo=[r,pl+S, (5.8)=Ms(s+1); (5)
S = hy/s(s + 1)(cos asin 3, sin acsin 3, cos 3) . (6)

Phase-space invariant measure

_ (2s+1)dpdrsin 3dfda
dlo = 47 (27h)3 (7)

[Gorbunov et al."99;Ramirez et al'14]
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Generalized Maxwell-Boltzmann distribution

One-particle distribution function (by positions, momenta, and directions
of spin) has the following form

%0 = 1 exp < P Z;u_\/mcos 6) (8)

Zo 2mkT

Here, p = p — [w, r] is the particle momentum in the rotating frame.

It includes:
® the Maxwell distribution for linear momenta;
® the for coordinates;

® the (new) distribution function for spin.

As the one-particle distribution function factorizes, the behaviour of
translational and spinning degrees of freedom is statistically independent.

This justifies consideration of statistical mechanics of spin.
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Distribution function for o,

Integrating by the coordinates and momenta, we obtain the one-particle
distribution function by states of spin

hw (s+1)

<hwm> <h°“’ (s+1)cos,8>. (9)

0o(sp) =
sinh

It has the following properties:
® it does not depend on the azimutal angle «;
® it predicts polarization of spinning degree of freedom;

® the value of chiral effects is controlled by the dimensionless parameter

hw

¢ =1 (10)

Remark. Usually, ¢ is a very small quantity (order 10712 or smaller).
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Indicatrix for ( = 0.01,0.03,0.1,0.3
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Thermodynamics of classical spin

Partition function factorizes into the product of translational and spinning
contributions, so

2o = ZuyZsp = O =Dy + Dgp, Osp = —kT In Dy, . (11)

Thermodynamic potential

2s+1 _ s(s + 1)hw hw
bOop = —kT | IN ——= + | h —1 . 12
s” [n Grp kT n2kT} (12
Entropy
\/ s —l— ﬁw Vs(s+1)hw
Sep = —k oth . (13)
kT kT
Heat capacity (at constant w)
1)h%w? v/ 1)hw
Cop = k — 5(5—12(7_)2710.: sinh—2 <S(Sk—;_)> ) (14)



High temperature expansion

Thermodynamic potential*

O, = —kT(In(2s—|— 1)+

s(s+1) h2w?  s%(s+1)? h2w?
6 k2 10 etz ) 1)
Entropy

Sop = k(ln(2s—|— - s(s+1) R2w?  s2(s+1)? p*wt ) (16)

6 k2T2 + 60 k4T4 o
Heat capacity

2,2 1) 2w
Csp:s(s—i—l)hw 1_s(s—l— ) hfw Y (17)
3 kT? 5 k272
Angular momentum
s(s +1) hPw s(s + 1) h2w?
o = 1- o 18
Jev 3 kT ( 5 kT2 (18)

* The dots denote terms that are at least fifth order in w.
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Comparison with quantum case

Partition function in quantum case

s
hws, o 1Aw ) . 2s +1 hw
Zsp = sdexp(— T > = sinh <2 kT) sinh < 5 kT) . (19)
Thermodynamic potential
B . (2s+1)hw . 1hw
oy = kT(Insmh KT Insinh 55T |- (20)
Entropy
o} (2s 4+ 1)hw (2s+ 1w  hw
Sep = k|2 th — th (21
P [kT T O T ok O o] (D)
Heat capacity
h2w? hw (25 +1)% h2w? (25 + 1)hw
Cop = inh—2 — inh 22— % 22
* = akr2™™ 2%T 4 kr2°" 2kT (22)



Comparison with quantum case - high temp.

Thermodynamic potential*

s(s+1) h2w?

s2(s +1)%+1/2s(s + 1) h2w?

by = _kT<|n(2s+1)+

Entropy

Sep = k<|n(2s+1)—

Heat capacity

2,2
C. :s(s+1)hw (

3 kT2
Angular momentum
s(s +1) hPw (1 B

Jo = =3 34T

s(s+1)+1/2 hPw?

s(s+1)+1/2 h?w?

* The dots denote terms that are at least fifth order in w.

6 kT2 180 kT
(23)

s(s+1) hPw? s%(s+1)2+1/2s(s + 1) htw? N
6 kT2 60 KT )
(24)

(25)

(26)
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Conclusion

Results.

® Statistical mechanics of classical rotating non-relativistic ideal gas of
spinning particles is developed.

® Generalised Maxwell-Boltzmann distribution (by positions, momenta
and spin) for classical particle with spin is obtained.

® |t is shown that the thermodynamic parameters depend on the angular
velocity. This confirms the presence of chiral effects in the system.

Further research.
® Generalized Maxwell-Juttner distribution for a particle with spin.
® Massless particles with continuous helicity.

® Systems with self-interaction.

The study is supported by the RSF grant No.21-71-10066.
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