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Dynamical breaking of symmetries beyond the
standard model and supergeometry

Andrej B. Arbuzov and Diego J. Cirilo-Lombardo

Group theoretical realizations containing the electroweak sector of the Standard Model are
discussed from the supersymmetry point of view. Dynamical breaking of the symmetry is
performed and the corresponding quadratic (super Yang-Mills) Lagrangian is obtained.
Supercoherent states of the Klauder-Perelomov type are defined to enlarge the symmetry taking
into account the geometry of the coset based in the simplest supergroup SU (2]1) as the structural
basis of the electroweak sector of the SM. The extended model is superintegrable and the
superconnection in the odd part takes a dynamical character. The physical and geometrical
implications of the additional degrees of freedom interpreted as a hidden sector of the
representation are briefly discussed
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Preliminary aspects

Phenomenological motivation:

Unification, hierarchies and matter antimatter asymmetry
Exotic states necessity in astrophysical/cosmological scenarios

Mathematical structure

Physical origin: works of Fairlie, Neeman, spin-statistics interpretation of the
couplings with physical fields. Electroweak sector of SM and beyond.
Mathematical/geometrical: Quillen (superconnection) with a fiber bundle concept

Other developments: Todorov (Clifford), Therry Mieg and Jarvis, Kanno and
Sugimoto (anomalies)

Extended geometry: Azcarraga et al. (expansion from MC), Bergshoeff et al. (3D
sugra), Gomis et al., etc

Coherent states appr.: SO(2,4) gauge grav., CS construction SU(2I1) and rel. with
nonlinear realized symmetries, Noncommutative issues (Moyal, star product, etc).

3) AA andDICL, Int.J.Geom.Meth.Mod.Phys. 15 (2017) 01, 1850005
4) DICL, Int.J.Geom.Meth.Mod.Phys. 19 (2022) 01, 2250006
5) DICL, Int.J.Geom.Meth.Mod.Phys \/ol. 19, No. 1 (2022) 2250006



MAIN FEATURES

(i) Introduction of a superconnection valued in the supergroup and not in the superalgebra.
This fact, allows us to introduce the geometric imprint of the group manifold (or the tangent
space).

(I1) The principal idea is to develop the theory beyond the SM using the group and not the
vector space defined by the algebra, since physics lives in the group: the equations are similar
but the geometry of the group manifold is embodied in the equations through the
nonlinearity of a (super)Kahler’s metric.

(ii) The other fundamental issue in our approach is the extension of the group theoretical
connection by means of super coherent states [3,4] conveniently chosen and constructed by
the action of an element g of SU(2|1). This point is novel and very important (the explicit
detailed construction of the SU(2|1) coherent states is developed in [2]) given that it allows a
dynamical breaking of symmetry alternative to other methods.

We analyze if a NLR relationship certainly exists, because under particular conditions the
coherent states which extend the structure of the superconnection have the ability of natural
projectors to reduce the general element from the full supergroup to a coset

G— G =G6GGy— G/H,

3) AA andDICL, Int.J.Geom.Meth.Mod.Phys. 15 (2017) 01, 1850005
4) DICL, Int.J.Geom.Meth.Mod.Phys. 19 (2022) 01, 2250006



GAUGE STRUCTURE AND
SUPERCONNECTIONS: SU(2|1)



A. Supergroup structure

M & _
= _ (1)
¢ N
The even generators in this structure are
010 0 —2 0 1 00 -1 0 0
A = LO0O0 |, M= 1 0 0], Ma=10-=101]., A= 0 —1 0 (2)
000 0 0 0 0 0 0 0o 0 -2
and the odd ones are
001 00 — 000 00 0
M=1000). A=]1000 |, A=[001}, A=]00—7|. (3)
100 i 00 010 07 0
The diagonal matrices are related to the following important operators: I; = %)\3: the

gradation operator Uy = v/3As. and the new operator that is fixed by the orthogonality in
U(2/1):

10 0
2 .
No=q/zlo1 0 | (4)
00 —1

In previous studies the latter was related with the chirality of the model defined by \/%)tg_



B. Element of the supergroup: H&B,, HE Bo:
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02 = 07 + 05 + 03, O_ = (0, —iy) . 0, = (8, +i6s). (10)




The final form of the supergroup-valuated connection being the following

~ A ']I2><2 0le
01><2 A2

tan(((6s)/(V3))) identified with B’=B/vV3 due the exponential



B. Element of the supergroup: X&B,, H € Bo:

~ —raD
WA PA
u=\| """ ¢N2 (13)
o WA A

The following definitions to simplify (to hide the nonlinearity of
square root factors) are introduced:

7 o) -~ WE.i =/ B’
@O = ' , W3 4 = ’ ., B = . (14)
J1 + &' V1 4+ w2 J1 + B2
o I> <2 : z:«: W; _ I x> LW o
V1 + w2 W, —Ws) 1+ w2
(15)

i) in U, the even part of the group structure (corresponding with the electroweak sector,

namely SU(2)®U(1)) is exactly preserved;

ii) the non diagonal blocks (the odd part) in U can be interpreted as new fermion-boson

interaction;
iii) I(=exp(>06kok}) (k=1,2,3,8) and w=exp(>6kok}) (k=1,2,3) €SU(2)L;

iv) there are other parameterization symmetrical (Borel type) ones involving ladder
operators that we will use in the construction of the corresponding supercoherent
states.




SUPERCURVATURE AND LAGRANGIAN



Due to the i1dentification of the superconnection and I/, we can see that from

r— e—ifs/V3 w 02,1 N 0s,2 G #/V3 (13)
2/ ]_"' mld" lei IEl_z-IglEi'"llr""lllf§ le U
= Peven + rodd (]4)

one can ohtain the super-Riemannian curvature 1in the language of superforms:

dreven + Feuen N reven + Fﬂu’ﬂ' V rﬂdri — dreven + [Feuen-, reven] + {Farid-, radd} (]5)

dradd + Feven N rodd — dFeven + [Feuen: rodd] - (]ﬁ)

To compute the above equations that define the supercurvature, it i1s useful to have in
mind that the tensor product of a commutative superalgebra of differential forms and a Lie

superalgebra 1s again a Lie superalgebra with the product

@ X, b@Y]=—-1XP(aAd) @ [X,Y]. (17)



A. Odd supercurvature and Weinberg angle

dFGdd + Pevm A Fadd. —

_ 0252 do — 2i [gﬁ; o—g'B- ]lzxz] &
el PO e
dot + 2igp [QW O — %B - ]szg} 0
where we defined ¢' = m, g = ﬁli =
r* 1+ B
in? Gy = —* - 40
W T R T 31 W) 41 (40)
If W2, B? ~ 0 then

sin® Oy | s o — 0.25. (41)

It is important to note that, if we take sin® #y; with respect to the fields without tilde of the

expression (39) we see that, due to % = ¢’ with g =

1 _
V3 Ve
12 1
Siﬂz 9'[,1; = 9 = -
gQ + g;z 4

exactly. In this case we see that the result sin® 8y, = % 18 independent of the fields W and

B, depending only on the particular structure of the supergroup.




B. Even supercurvature

In the same way as before for the odd part of the supercurvature, discarding terms
involving pure geometry of the group manifold (e.g., terms involving df), we get the even

part in the form

dreuen + [Pevena Peuen] + {Fadd F{dei} —* (42)
~ AWy + W; A Wyeizon + d (5 B) — 4661M 0ot
0;.2 d (%B) — 4¢t o (M)
Consequently, the full supercurvature takes the form
S AWy + Wi A Wieizon + d (LB — 4061M D& "
— " 1- — ~
(Df;.) d (%B) — 44t¢ (M)

Note that a tilde indicates here that the respective quantity is affected by the induced super-

curvature due to the pullback from the algebra (vector space) to the group representation.

1
VI+Wi/1+B?
Analog to [5,6] model but the geometry of the group M = (ﬂlm N ﬁ;gf) |

manifold is embodied into the equations

k=(1+f) and f=

oMo HW B¢
oo

oo
5)Fairlie Phys.Lett.B 82 (1979) 97-100; 6)Aydemir et al, Phys.Rev.D 91 (2015) 045020



Gauge transformation properties

QCDh

dG + 3 |G, G] transform as Fo — UFgU" under SU (3) gauge transformations

Our case

-,

W — u,Wu' +iduu/, B —B —dfs, ¢ — u.cfhg.

Consequently the curvatures remain with the required invar-
1ance, namely

Fyg — upr;fu:, Fg — Fp, Do — ufeiﬂﬂ-’""ﬁﬂa

k=1,2,3,8 k=1,2,3

even part of the SU(2|1) superalgebra: U.= exp (Z QkAk) with u.= exp (Z Qkak)

in[6] explicitly broken g.inv
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SUPERCONNECTIONS AND SUPERGEOMETRY



* The strategy to extend the symmetry without breaking the group theoretical features of the model is
realized as follows.

1) If we have two diffeomorphic (or gauge) non-equivalent SU(2|1) valuated superconnec-

tions, namely I'*% and TAB_ Their difference transforms as a second rank three-supertensor

under the action of SU(2|1):

P = GLGE P, (37)

RAP =TAE 45 (38)

1) If we calculate now the curvature from [AB ., we obtain

RAZ = R*E 4 DB, (39)

where the SU(2|1) supercovariant derivative 1s defined in the usual way (see the previous

Section)

Dr?E = d® + T4 A% + T8 A r?P. (40)




ii1) Redefining the SU(2|1) three vectors as V' = ¥ and V;Z = ©® (in order to put all

in the standard notation), the 2-form x*Z can be constructed as
AP — A BraU, (41)
where U 1s a super-scalar function. Then we introduce all into the R*F and get

EAB _ RAB +D (ilb[AwB}d-U)
= RAZ + (vt DBt — oDy B AdU. (42)
Note that the supercurvature RAB sphits into even and odd parts as indicated 1in the pre-

vious Section, being the capital letters the multi-index A, B, C etc. corresponding to the

supercoordinates of the su(2|1) superspace.




1v) Let us define

a—

6* = Dyp* (43)
with the extended superconnection 4B = A8 4 A8 then

6% = Dp? + npe”,

aA

04 = 0"+ [v* (¢°) =" (¥ )| A aD, (44)

where (@B)z = (cp BpB) and (¥ - @) = ¥pp® ete.

In the same manner we also define

. | T~ A
n- =Dy,

_ , 2
7t =nt+ [i.ffff (¥ - ) — ™ (¥®) ] A dU. (45)




Some aspects of coset coherent states

Hy={geG|U(g)Vy =V} CG. (53)
Consequently the orbit of the V is isomorphic to the coset, i.e.
O (W) ~ G/ Hy. (54)
Analogously, if we remit to the operators
Vo) {(Vol = po. (55)

Then the orbit
O W) =G/H (56)

with

H={geG|U(g)Vo=0V}

={9€G|U(g) plt' (9) = po} CG. (57)




Some aspects of coset coherent states

Vo = Vi, (59)

(Vp is extreme in the sense of the previous paragraph) and it also belongs to the vacuum,

that is, it is annihilated by all the lower generators of the complete supergroup, that is to

say
A 0 0 0 0 0
U | B|=0—=| -w* 0 0|VW=]0]—=Vw=]0], (60)
C —®, -7, 0 0 C

where —w;* : even ,—5;’, —p; = odd (e.g. Grassmannian), are the generic parameters associ-
ated with the lower generators corresponding to SU(2[1).Consequently with g € SU(2|1)
P (1 —pp+ wrw — 5@)_1/45
V=gVo=| p(l-pp+w'w—30)""C [, thatis gl —V (61)
C

e.g.: V is in the orbit of Vj.




Some aspects of coset coherent states
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EXTENDED SUPERCURVATURE



From the original superconnection
the extended supercurvature is

FAE =F*E +D, (v pPlav)

ext
_ FAB | (w[AD@B} _ cpIA'D?,bB}) A dU
+ (VR — PRy AdU
DW, + %DE — 494! Do — 2065
(ng) +270' DB — 4616+ (t.bd*ﬁ - gg"d;g;) + 207"

(46)

(47)

(48)

Iﬂﬁ + WA ﬁ'jfm:ﬂ]: d(%m)

Note that, at the supercurvature level, a Dirac-type term,
namely (dZ — Zdu) + 2{52@2 plus the couplings with :&
and 5;5 are geometrically induced by the extension of the
original superalgebra.




Superlagrangian

Dynamically introduce through the coherent states the ¢ VEV,
resulting symmetry breaking in the proposed BSM model.

Case 1:1, » = const.

L, 1
dp=dg =0 S:E{fmﬂ Fewt) = ——

4
<[ AT FFO + ) (FF )

~ i S Py e e
+ (DO)DP — V(@' ¢, 0. F)+ Z(@'. . B, W),

(69)
Fif = dWi + Wi A W, (70)
ngtp — Ir,.[BLr - a!.-'B[.h (?1]
Py gy V(e VP
V(§ha. U, ) = 16[[ 3P — E][qﬂm + g]] (72)

Z@'. 6.B.W)=20'WB'$)d'6 + 3 WB'9), (73)

where we defined

r2 A ~a
v =203 4+ (- §)N) = ¢ (74)




In [6], the symmetry breaking is imposed by introducing ‘by hand’ the Higgs
VEV v defining the zero form ¢ with a shift. Here however, VEV is dynamically
introduced through the components of the coherent states (valued in the
coset) taking a dynamic character. Gauge couplings g and g’ are not modified
in the covariant derivative.

W and Z = W B gauge bosons become

].-'
MﬁfZEEa M?_w.“ﬂ + g (75)

.
2

For g=1 the expressions are the simplest ones (e.g. as in
the SM)




Case 2: 1) = 1(2), & = 3(2)

(VAP — Bdy) + 0 2 = v (76)

L L &

(V) = (o5) —= tanhl(z — z0) V2vl. (77)
g

*Note that the equation is on the third components of the respective fiducial vectors , z is a super
coordinate of the manifold SU(2|1) -valuated.

*Here z = (z E) is a general coordinate of the supergeometry (induced via the pullback with {E4} the
corresponding vector basis) from su(2|1)).

*The extended supercurvature becomes to

DW + D[%E ] _43dM  DF = V2 ovtanh[(z — z0)v2v]d

(DY) + V2 ovtanh[(z — z0)y2]3' D(,%E) _ 4GP (M) + 2

W -



with the definitions

k=(+1)

and f=

M = (flaxs + WB'),
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]

.
e =f+[
¢ ¢
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As 1n the standard case, we can take ¢» adimensionalized
as appear m the exponential representation of the SU(2[1)
(from the group to the physical scenaro). To this end we
construct the ¢ field as

1 " 1
¢’ Eﬁ v+ h+irt ; 0 {79}
| Ry T )
o\ 2 \{1 4 E(T_+':r 4 v+ }4+i’r )

including the values v, & for the Higgs field and 7 and some
bare quantity ¢g to be determined. Extracting from the geo-
metrcally induced extended superpotential V{c;f:{'.,g, 0, )
(72) the (adimensionalized) mass term for A

1 16(2vh)*

1 N
E-ﬁl] 4[1 + é(aﬂ-—i-z + M)]
0

4

Then, at the tree level we obtain the adimensionalized Higgs
mass as

4ﬁv

My lireean ~ — (81)
& [1 4 (ﬂ_+g_|_ h=+h‘1*+lf:r'}}')]

4

EI




consequently the physical mass 1s given by
4@ v

A {F+h}1+{ﬁu}1) '
[1+¢%(?T + 1

My lwee = DoMp lireeAD ™~

(82)

The normalizing field ¢y can be determined from the
expression (77) by the constant of integration that would
indicate that p ' ~ ¢.

)

Figure 1. (¢'Z) for v = 0.5.
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Figure 6. Superpotential as function of ¢ and v.



Figure 5. (') as a function of spacetime coordinate and v.
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Figure 7. Shape of the Higgs dnub]e[a as a function of the su(2|1)
valuated coordinates and of the fermion condensate p.



CONCLUDING REMARKS AND OUTLOOK



We developed a possible description of the electroweak sector of the SM using the
methods described in our paper [2], using naturally a coherent superstate based on the
simplest supergroup SU(2|1) which is the group of dynamic symmetry of the
supersphere, keeping invariant in the natural factorization, the even part SU(2) ®U(1).

Possible physical interpretation of the odd sector a potentially hidden counterpart of
the SM.

In one of the cases discussed here the diagonal part corresponding to the even sector
that defines a geometrically induced differential equation for the components of a
superfield.

This differential equation can be considered non-homogeneous, specifically equal to
the constant of the mean value of the condensate v*2 or superscalar product between
such coherent superfields that extend the original superalgebra

The resolution of the differential equation results in a solution that can be compact
(solitonic) or not (depending on v? value)

the superintegrability of the super-extended model is assured by the type of the
obtained solutions [7] beside of the geometrical properties.

the superpotential is an exact difference of squares in contrast to the standard case
where the quadratic part appears.

With respect to the statistics and other issues corresponding to the structure of the
group, here the field corresponding to the Higgs appears as odd in the representation
but as SU(2) scalar (doublet) from the Lagrangian point of view.

[7] Shifman M and Yung A 2009 Supersymmetric Solitons (Cambridge Monographs in
Mathematical Physics) (Cambridge: Cambridge University Press)




Relationship with nonlinear realizations, considering that the field which plays
the role of Higgs could be clearly eliminated at the expense of the fields of the
hidden super-sector and the constant v (playing the final role of expectation
value): the antidiagonal part of the supercurvature ->Maurer—Cartan superform
associated with the breaking of some (super) symmetry in a standard way

(e.g- D$ = wp)

wg =0 — da = ﬁgvtanh[(z — zg)ﬁv]a
—d(In®) = ptanhX dX, (83)

with X = (z — zn)ﬁ v and without taking into account an
ignorable phase factor (dependent on W, B) irrelevant in this
stage of analysis. The result is easily obtained as

b = Py(cosh[(z — z9)V2Vv])’, &, = const (84)

being z = z4E, the supercoordinate SU (2|1) valuated (with
the superbasis carrying the superalgebra symmetry). If we
define again tanh (X /2) = A then (84) can be written as

1 — A?

2\
5 = 50(1 + A ] : 50 = const. (85)




Compact

z, 0, P>—N+|:Z (m+r)l/2

12
Z i)

m=

‘L'm

§

Tm

+dt+b

Tm

+[z2)"

(1+1z?)"

Z (m+1’>uzm|b

rm

—|b,T,m) +

12) +

—|b+12,7-1/2,m —

12,7 —12,m - 1/2) +

—1,m- 1):|

(7 _bZ)_ 12
WL () e
Noee P et N S
- J(-ppro*o-D0) " ot
® p 1tzz

M

C D

(£2)

1
& SdetM = det(A-BD'C)

det D




Non-compact
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