Split Casimir operator for simple Lie superalgebras, solutions of Yang-Baxter equations and Vogel parameters

A. P. Isaev¹ A. A. Provorov²

¹Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research

²Faculty of Physics, M. V. Lomonosov Moscow State University

³Moscow Institute of Physics and Technology

SQS, August 2022

Introduction

The split Casimir operator \widehat{C} is an element the centre of the tensor product of enveloping algebras of simple Lie algebras and superalgebras.

- The operator \widehat{C} can be used to construct projectors onto invariant subspaces of Lie algebras and superalgebra representations in a uniform way.
- The split Casimir operator can be used in the study of the universal Lie algebra. This is a model of all simple Lie algebras (and some Lie superalgebras), in which many quantities that characterize a Lie algebra and its representations can be expressed in a universal way as rational functions of the three Vogel parameters.

In our work, we generalize the results of a recent paper by A.P. Isaev and S. K. Krivonos to the case of Lie superalgebras and derive some additional identities.

Comultiplication and the split Casimir operator

Let $\mathfrak{g}=\mathfrak{g}_{\overline{0}}\oplus\mathfrak{g}_{\overline{1}}$ be a Lie superalgebra over \mathbb{C} , and $\mathcal{U}(\mathfrak{g})$ be its enveloping algebra. Then if the Cartan-Killing metric g of \mathfrak{g} is nondegenerate, we can define the quadratic Casimir operator Consider the quadratic Casimir operator $C_2\in\mathcal{U}(\mathfrak{g})$

$$C_2 = g^{ij} X_i X_j \in \mathcal{U}(\mathfrak{g}). \tag{2.1}$$

 C_2 is even and $[C_2, X_i] = 0$ for all the generators $X_i \in \mathcal{U}(\mathfrak{g})$, that is, C_2 is invariant under the adjoint action of \mathfrak{g} .

We also define the comultiplication $\Delta: \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{g}) \otimes \mathcal{U}(\mathfrak{g})$ defined on the generators X_i of $\mathcal{U}(\mathfrak{g})$ by

$$\Delta(X_i) = X_i \otimes I + I \otimes X_i \tag{2.2}$$

and extended to any $X_{i_1} \cdot \ldots X_{i_r}$ by being a homomorphism.

Acting on C_2 by Δ yields

$$\Delta(C_2) = C_2 \otimes I + I \otimes C_2 + 2\widehat{C}, \qquad (2.3)$$

where

$$\widehat{C} = \overline{g}^{ij} X_i \otimes X_j \tag{2.4}$$

is called the split Casimir operator of g and satisfies

$$[\widehat{C}, \Delta(X_i)] = 0 \qquad \forall X_i. \quad \exists (2.5)_{\odot}$$

SQS 2022

Projectors onto invariant subspaces

Let an operator A act on a space V (for example, $A = T_f^{\otimes 2} \widehat{C}$ or $\operatorname{ad}^{\otimes 2} \widehat{C}$ where T_f and ad are the defining and adjoint representations). Then if A satisfies

$$(A - a_1 I)(A - a_2 I) \dots (A - a_p I) = 0, (2.6)$$

where all the a_i 's different, then A is diagonalizable and the projector onto the eigenspace of A with the eigenvalue a_j is given by

$$P_{j} \equiv P_{a_{j}} = \prod_{\substack{i=1\\i\neq j}}^{p} \frac{A - a_{i}I}{a_{j} - a_{i}},$$
 (2.7)

and then $P_i \cdot P_j = \delta_{ij} P_i$.

Split Casimir operator of osp(M|N) in the defining representation

Let ε be a superform on $V_{(M|N)}$, N is even. The osp(M|N) Lie superalgebra is the algebra of operators $A:V_{(M|N)}\to V_{(M|N)}$ that leave the form ε invariant. Define operators $\mathbf{1},\mathcal{P},\mathcal{K}:V_{(M|N)}^{\otimes 2}\to V_{(M|N)}^{\otimes 2}$ with the components

$$\mathbf{1}^{k_1 k_2}{}_{m_1 m_2} = \delta^{k_1}_{m_1} \delta^{k_2}_{m_2} \qquad \mathcal{P}^{k_1 k_2}{}_{m_1 m_2} = (-1)^{[k_1][k_2]} \delta^{k_1}_{m_2} \delta^{k_2}_{m_2} \qquad \mathcal{K}^{k_1 k_2}{}_{m_1 m_2} = \varepsilon^{k_1 k_2} \varepsilon_{m_1 m_2} \; .$$

Here ${f 1}$ is the identity operator, ${\cal P}$ is the superpermutation, and

$$\mathcal{P}^2 = \mathbf{1}, \quad \mathcal{K}^2 = \omega \mathcal{K}, \quad \mathcal{P} \mathcal{K} = \mathcal{K} \mathcal{P} = \mathcal{K},$$
 (3.8)

where $\omega = M - N$. Then \widehat{C}_f can be written as

$$\widehat{C}_f = \frac{1}{2(\omega - 2)} (\mathcal{P} - \mathcal{K}) . \tag{3.9}$$

and satisfies

$$\left(\widehat{C}_f - \frac{1}{2(\omega - 2)}\right)\left(\widehat{C}_f + \frac{1}{2(\omega - 2)}\right)\left(\widehat{C}_f + \frac{\omega - 1}{2(\omega - 2)}\right) = 0. \tag{3.10}$$

The invariant projectors are then given by

$$P_1 = \frac{1}{2}(1+\mathcal{P}) - \frac{1}{\omega}\mathcal{K}, \quad P_2 = \frac{1}{2}(1-\mathcal{P}), \quad P_3 = \frac{1}{\omega}\mathcal{K}.$$
 (3.11)

Solution of YBE in terms of \widehat{C}_f

The solution $R_{k_1k_2}^{i_1i_2}(u)$ of the graded Yang-Baxter equation

$$R^{i_{1}i_{2}}_{j_{1}j_{2}}(u)(-1)^{[j_{1}][j_{2}]}R^{j_{1}i_{3}}_{k_{1}j_{3}}(u+v)(-1)^{[k_{1}][j_{2}]}R^{j_{2}j_{3}}_{k_{2}k_{3}}(v) = = R^{i_{2}i_{3}}_{j_{2}j_{3}}(v)(-1)^{[i_{1}][j_{2}]}R^{i_{1}j_{3}}_{j_{1}k_{3}}(u+v)(-1)^{[j_{1}][j_{2}]}R^{i_{1}j_{2}}_{k_{1}k_{2}}(u),$$

$$(3.12)$$

which is invariant under the action of osp(M|N) in the defining representation can be written as a rational function of \widehat{C}_f :

$$R(u) = \frac{(\omega - 2)\widehat{C}_f + 1/2 + u}{(\omega - 2)\widehat{C}_f + 1/2 - u}.$$
 (3.13)

Split Casimir operator of osp(M|N) in the adjoint representation

To simplify the consideration of $\operatorname{ad}^{\otimes 2}\widehat{C}\equiv\widehat{C}_{\operatorname{ad}}$, we introduce analogs of the operators $\mathbf{1},\mathcal{P}$ and \mathcal{K} used in the case of the defining representation:

$$\mathbf{I}^{A_1A_2}{}_{B_1B_2} = \delta^{A_1}_{B_1}\delta^{A_2}_{B_2} \quad \mathbf{P}^{A_1A_2}{}_{B_1B_2} = (-1)^{[A_1][A_2]}\delta^{A_1}_{B_2}\delta^{A_2}_{B_2} \quad \mathbf{K}^{A_1A_2}{}_{B_1B_2} = \overline{\mathbf{g}}^{A_1A_2}\mathbf{g}_{B_1B_2} \; ,$$

where A_i , B_i are vector indices in the adjoint representation, $g_{B_1B_2}$ is the Cartan-Killing metric and $\overline{g}^{A_1A_2}$ is its inverse.

The operators I, P and K satisfy:

$$P^{2} = I,$$
 $KP = PK = K,$ $K^{2} = \frac{\omega(\omega - 1)}{2}K,$ (3.14)

where $\frac{\omega(\omega-1)}{2}=\operatorname{sdim} osp(M|N)$. We also introduce the symmetric \widehat{C}_+ and antisymmetric \widehat{C}_- projections of \widehat{C}_{ad} :

$$\widehat{C}_{\pm} = \frac{1}{2} (\mathbf{I} \pm \mathbf{P}) \widehat{C}_{\mathsf{ad}}, \tag{3.15}$$

which satisfy:

$$\widehat{C}_{\pm}\,\widehat{C}_{\mp}=0,\qquad \mathbf{P}\,\widehat{C}_{\pm}=\pm\,\widehat{C}_{\pm}.$$

Split Casimir operator of osp(M|N) in the adjoint representation

Proposition 1

The antisymmetric \widehat{C}_{-} and symmetric \widehat{C}_{+} parts of the split Casimir operator of the osp(M|N) Lie superalgebra for $M-N\equiv\omega\neq0,1,2,4,8$ satisfies:

$$\hat{C}_{-}^{2} = -\frac{1}{2}\hat{C}_{-} \iff \hat{C}_{-}(\hat{C}_{-} + \frac{1}{2}) = 0,$$
 (3.16)

$$\widehat{C}_{+}\left(\widehat{C}_{+}+\mathbf{I}\right)\left(\widehat{C}_{+}-\frac{\mathbf{I}}{\omega-2}\right)\left(\widehat{C}_{+}+\frac{2\mathbf{I}}{\omega-2}\right)\left(\widehat{C}_{+}+\frac{(\omega-4)\mathbf{I}}{2(\omega-2)}\right)=0. \tag{3.17}$$

The split Casimir operator $\widehat{C}_{ad}=\widehat{C}_{-}+\widehat{C}_{+}$ for $\omega \neq 0,1,2,4,6,8$ satisfies:

$$\widehat{C}_{ad}(\widehat{C}_{ad}+\frac{1}{2})(\widehat{C}_{ad}+1)(\widehat{C}_{ad}-\frac{1}{\omega-2})(\widehat{C}_{ad}+\frac{2}{\omega-2})(\widehat{C}_{ad}+\frac{\omega-4}{2(\omega-2)})=0~.~~(3.18)$$

The projectors onto invariant subspaces of osp(M|N) in the adjoint representation are given by

$$\begin{split} \mathsf{P}_1 &= \frac{1}{2} (\mathbf{I} - \mathbf{P}) + 2 \widehat{C}_- \;, \qquad \mathsf{P}_2 = -2 \widehat{C}_- \;, \qquad \mathsf{P}_3 = \frac{2 \mathbf{K}}{(\omega - 1) \omega} \;, \\ \mathsf{P}_4 &= \frac{2}{3} (\omega - 2) \widehat{C}_+^2 + \frac{\omega}{3} \widehat{C}_+ + \frac{(\omega - 4) (\mathbf{I} + \mathbf{P})}{3(\omega - 2)} - \frac{2(\omega - 4) \mathbf{K}}{3(\omega - 2)(\omega - 1)} \;, \\ \mathsf{P}_5 &= -\frac{2(\omega - 2)^2}{3(\omega - 8)} \widehat{C}_+^2 - \frac{(\omega - 2)(\omega - 6)}{3(\omega - 8)} \widehat{C}_+ + \frac{(\omega - 4) (\mathbf{I} + \mathbf{P})}{6(\omega - 8)} + \frac{2 \mathbf{K}}{3(\omega - 8)} \;, \\ \mathsf{P}_6 &= \frac{4(\omega - 2)}{\omega - 8} \widehat{C}_+^2 + \frac{4}{\omega - 8} \widehat{C}_+ - \frac{4 (\mathbf{I} + \mathbf{P})}{(\omega - 2)(\omega - 8)} - \frac{8(\omega - 4) \mathbf{K}}{\omega(\omega - 2)(\omega - 8)} \;. \\ \mathsf{str} \; \mathsf{P}_1 &= \frac{1}{8} \omega(\omega - 1)(\omega + 2)(\omega - 3) \;, \qquad \mathsf{str} \; \mathsf{P}_4 &= \frac{1}{12} \omega(\omega + 1)(\omega + 2)(\omega - 3) \;, \\ \mathsf{str} \; \mathsf{P}_2 &= \frac{1}{2} \omega(\omega - 1) \;, \qquad \mathsf{str} \; \mathsf{P}_5 &= \frac{1}{24} \omega(\omega - 1)(\omega - 2)(\omega - 3) \;, \\ \mathsf{str} \; \mathsf{P}_3 &= 1 \;, \qquad \mathsf{str} \; \mathsf{P}_6 &= \frac{1}{2} (\omega - 1)(\omega + 2) \;. \end{split}$$

Definition of sl(M|N) Lie superalgebra

The $s\ell(M|N)$ Lie superalgebra (where $M \neq N$) is defined as the algebra of operators $A: V_{(M|N)} \to V_{(M|N)}$ that satisfy:

$$\operatorname{str} A = (-1)^{[a]} A^{a}_{a} = 0. \tag{4.21}$$

In terms of the previously introduced operators $\mathbf{1}$ and $\mathcal{P}: V_{(M|N)}^{\otimes 2} \to V_{(M|N)}^{\otimes 2}$ the split Casimir operator in the defining representation reads

$$\widehat{C}_f = \frac{1}{2\omega} \left(\mathcal{P} - \frac{1}{\omega} \mathbf{1} \right) \tag{4.22}$$

and satisfies the following characteristic equation

$$\left(\widehat{C}_f - \frac{\omega - 1}{2\omega^2} \mathbf{1}\right) \left(\widehat{C}_f + \frac{\omega + 1}{2\omega^2} \mathbf{1}\right) = 0. \tag{4.23}$$

Here, $\omega = M - N$. The invariant projectors are

$$\mathsf{P}_{\pm} = \pm \left(\omega \widehat{\mathsf{C}}_{\mathsf{f}} + \frac{1 \pm \omega}{2\omega}\right) = \frac{1}{2} (\mathbf{1} \pm \mathcal{P}). \tag{4.24}$$

Solution of YBE in terms of \widehat{C}_f

The solution $R^{i_1i_2}_{k_1k_2}(u)$ of the graded Yang-Baxter equation

$$R^{i_{1}i_{2}}_{j_{1}j_{2}}(u)(-1)^{[j_{1}][j_{2}]}R^{j_{1}i_{3}}_{k_{1}j_{3}}(u+v)(-1)^{[k_{1}][j_{2}]}R^{j_{2}j_{3}}_{k_{2}k_{3}}(v) = = R^{i_{2}i_{3}}_{j_{2}j_{3}}(v)(-1)^{[i_{1}][j_{2}]}R^{i_{1}j_{3}}_{j_{1}k_{3}}(u+v)(-1)^{[j_{1}][j_{2}]}R^{j_{1}j_{2}}_{k_{1}k_{2}}(u),$$

$$(4.25)$$

which is invariant under the action of sl(M|N) in the defining representation, can be written in terms of \widehat{C}_f :

$$R(u) = \frac{\mathsf{P}_{+} + u}{\mathsf{P}_{+} - u} = \frac{\omega \widehat{C}_{f} + \frac{1 + \omega}{2\omega} + u}{\omega \widehat{C}_{f} + \frac{1 + \omega}{2\omega} - u}. \tag{4.26}$$

As in the osp(M|N) case, we will use the three operators ${\bf I}, {\bf P}$ and ${\bf K}$ which, this time, satisfy the identities

$${\bf P}^2 = {\bf I}, \qquad {\bf P}{\bf K} = {\bf K} = {\bf K}{\bf P}, \qquad {\bf K}^2 = (\omega^2 - 1){\bf K}$$
 (4.27)

with $\omega^2 - 1 = \text{sdim}(M|N)$ being the superdimension of sl(M|N). The symmetric and antisymmetric parts of \widehat{C}_{ad} are

$$\widehat{C}_{\pm} = \frac{1}{2} (\mathbf{I} \pm \mathbf{P}) \widehat{C}_{\mathsf{ad}}, \tag{4.28}$$

and satisfy

$$\widehat{C}_{\pm}\,\widehat{C}_{\mp}=0, \qquad \mathbf{P}\,\widehat{C}_{\pm}=\pm\,\widehat{C}_{\pm}.$$

Proposition 2

The antisymmetric \widehat{C}_{-} and symmetric \widehat{C}_{+} parts of the split Casimir operator of the $s\ell(M|N)$ Lie superalgebra for $\omega \neq 0,1,2$ satisfy

$$\widehat{C}_{-}^{2} = -\frac{1}{2}\widehat{C}_{-} \iff \widehat{C}_{-}(\widehat{C}_{-} + \frac{1}{2}\mathbf{I}) = 0.$$
 (4.29)

$$\widehat{C}_{+}(\widehat{C}_{+}+\mathbf{I})(\widehat{C}_{+}-\frac{1}{\omega}\mathbf{I})(\widehat{C}_{+}+\frac{1}{\omega}\mathbf{I})(\widehat{C}_{+}+\frac{1}{2}\mathbf{I})=0.$$
 (4.30)

The split Casimir operator $\widehat{\mathcal{C}}_{\mathsf{ad}} = \widehat{\mathcal{C}}_- + \widehat{\mathcal{C}}_+$ for $\omega \neq 0, 1, 2$ satisfies

$$\widehat{C}_{ad}(\widehat{C}_{ad} + \mathbf{I})(\widehat{C}_{ad} - \frac{1}{\omega}\mathbf{I})(\widehat{C}_{ad} + \frac{1}{\omega}\mathbf{I})(\widehat{C}_{ad} + \frac{1}{2}\mathbf{I}) = 0.$$
 (4.31)

Since $\mathbf{P}_{\pm}^{(ad)}$ are invariant operators, the projectors onto symmetric and antisymmetric invariant spaces can be constructed separately. The explicit expressions are

$$\begin{split} \mathsf{P}_{1}^{(-)} &= 2\widehat{C}_{-} + \mathbf{P}_{-}^{(\mathsf{ad})}, \qquad \mathsf{P}_{2}^{(-)} = -2\widehat{C}_{-}, \\ \mathsf{P}_{1}^{(+)} &= \frac{1}{\omega^{2} - 1} \mathbf{K}, \\ \mathsf{P}_{2}^{(+)} &= -\frac{\omega}{2(\omega + 1)(\omega + 2)} \mathbf{K} + \frac{\omega^{2}}{\omega + 2} \widehat{C}_{+}^{2} + \frac{\omega}{2} \widehat{C}_{+} + \frac{\omega}{2(\omega + 2)} \mathbf{P}_{+}^{(\mathsf{ad})}, \\ \mathsf{P}_{3}^{(+)} &= \frac{\omega}{2(\omega - 1)(\omega - 2)} \mathbf{K} - \frac{\omega^{2}}{\omega - 2} \widehat{C}_{+}^{2} - \frac{\omega}{2} \widehat{C}_{+} + \frac{\omega}{2(\omega - 2)} \mathbf{P}_{+}^{(\mathsf{ad})}, \\ \mathsf{P}_{4}^{(+)} &= \frac{4}{\omega^{2} - 4} (\omega^{2} \widehat{C}_{+}^{2} - \mathbf{P}_{+}^{(\mathsf{ad})} - \mathbf{K}). \end{split}$$
(4.32)

Calculating the traces and supertraces of these projectors, we get the dimensions and superdimensions of the invariant subspaces:

$$\begin{split} \operatorname{str} \mathsf{P}_{1}^{(-)} &= \frac{1}{2}(\omega^{2} - 1)(\omega^{2} - 4), & \operatorname{str} \mathsf{P}_{1}^{(+)} &= 1, \\ \operatorname{str} \mathsf{P}_{2}^{(-)} &= \omega^{2} - 1, & \operatorname{str} \mathsf{P}_{2}^{(+)} &= \frac{1}{4}\omega^{2}(\omega - 1)(\omega + 3), \\ \operatorname{str} \mathsf{P}_{3}^{(+)} &= \frac{1}{4}\omega^{2}(\omega + 1)(\omega - 3), \\ \operatorname{str} \mathsf{P}_{4}^{(+)} &= \omega^{2} - 1 \end{split} \tag{4.33}$$

Introductory note on Vogel parameters

The Vogel parameters are defined as three numbers (α,β,γ) modulo a common multiplier and an arbitrary permutation from the symmetric group S3 (or, equivalently, as a point in the space \mathbb{P}^2/S_3). Certain values of the Vogel parameters correspond to all simple Lie algebras and some simple Lie superalgebras.

Type	Lie algebra	α	β	γ
A_n	\mathfrak{sl}_{n+1}	-2	2	(n+1)
B_n	\mathfrak{so}_{2n+1}	-2	4	2n-3
C_n	\mathfrak{sp}_{2n}	-2	1	n+2
D_n	\mathfrak{so}_{2n}	-2	4	2n-4
G_2	\mathfrak{g}_2	-2	10/3	8/3
F_4	\mathfrak{f}_4	-2	5	6
E_6	\mathfrak{e}_6	-2	6	8
E_7	\mathfrak{e}_7	-2	8	12
E_8	\mathfrak{e}_8	-2	12	20

Introductory note on Vogel parameters

The Vogel parameters corresponding to simple Lie algebras can be visualized on a Vogel plane:

For the osp(M|N) and $s\ell(M|N)$ Lie superalgebras (which are denoted by $\mathfrak g$ in this section) for $\widehat C_+$ in the adjoint representation can be written in the following general form:

$$\widehat{C}_{+}(\widehat{C}_{+}+\mathbf{I})(\widehat{C}_{+}^{3}+\frac{1}{2}\widehat{C}_{+}^{2}-\mu_{1}\widehat{C}_{+}-2\mu_{2}\mathbf{I})=0,$$
 (5.34)

The parameters μ_1 and μ_2 corresponding to the algebras osp(M|N) and $s\ell(M|N)$ are given in Table 1, where $\omega = M - N$.

Table: The values of μ_1 and μ_2 for the osp(M|N) and $s\ell(M|N)$ Lie superalgebras

	μ_1	μ_2
osp(M N)	$-\frac{\omega-8}{2(\omega-2)^2}$	$\frac{\omega-4}{2(\omega-2)^3}$
$s\ell(M N)$	$\frac{1}{\omega^2}$	$\frac{1}{4\omega^2}$

The factorized form of the latter equation is

$$\widehat{C}_{+}(\widehat{C}_{+}+\mathbf{I})(\widehat{C}_{+}+\frac{\alpha}{2t}\mathbf{I})(\widehat{C}_{+}+\frac{\beta}{2t}\mathbf{I})(\widehat{C}_{+}+\frac{\gamma}{2t}\mathbf{I})=0.$$
 (5.35)

The roots

$$a_1 = 0,$$
 $a_2 = -1,$ $a_3 = -\frac{\alpha}{2t},$ $a_4 = -\frac{\beta}{2t},$ $a_5 = -\frac{\gamma}{2t},$ (5.36)

of the latter polynomial are normalized a parameter t and satisfy

$$\frac{\alpha}{2t} + \frac{\beta}{2t} + \frac{\gamma}{2t} = \frac{1}{2}. (5.37)$$

Comparing the two forms of the universal characteristic identity we can see that

$$\mu_1 = -\frac{\alpha\beta + \alpha\gamma + \beta\gamma}{4t^2}, \qquad \mu_2 = -\frac{\alpha\beta\gamma}{16t^3}, \tag{5.38}$$

We choose $t=h^{\vee}$ where h^{\vee} is the dual Coxeter number of \mathfrak{g} . The parameters α , β and γ are called the Vogel parameters. Their values for the algebras osp(M|N) and $s\ell(M|N)$ are given in Table 2.

Table: The Vogel parameters for the osp(M|N) and $s\ell(M|N)$ Lie superalgebras

	$s\ell(M N)$	$osp(2m+1 N), \ \omega > 1 \ osp(2m N), \ \omega > 0$	$osp(2m+1 N), \ \omega \leq 1 \ osp(2m N), \ \omega \leq 0$
α	-2	-2	1
β	2	4	-2
γ	ω	$\omega-4$	$-\frac{1}{2}(\omega-4)$
t	ω	$\omega - 2$	$-\frac{1}{2}(\omega-2)$

The universal characteristic identity allows us to write down a universal form of the projectors $\mathsf{P}_{(a_i)}^{(+)}$ onto the invariant subspaces $V_{(a_i)}$ of the symmetric space $\mathsf{P}_+(V_{\mathrm{ad}}^{\otimes 2})$:

$$P_{(-\frac{\alpha}{2t})}^{(+)} = P^{(+)}(\alpha|\beta,\gamma), \qquad P_{(-\frac{\beta}{2t})}^{(+)} = P^{(+)}(\beta|\alpha,\gamma), \qquad P_{(-\frac{\gamma}{2t})}^{(+)} = P^{(+)}(\gamma|\alpha,\beta)$$

$$P_{(-1)}^{(+)} = \frac{1}{\mathsf{sdim}\,\mathfrak{g}}\mathbf{K}, \tag{5.39}$$

where we denoted

$$\mathsf{P}^{(+)}(\alpha|\beta,\gamma) = \frac{4t^2}{(\beta-\alpha)(\gamma-\alpha)} \Big(\widehat{C}_+^2 + (\frac{1}{2} - \frac{\alpha}{2t}) \widehat{C}_+ + \frac{\beta\gamma}{8t^2} \big(\mathbf{I} + \mathbf{P}^{(\mathsf{ad})} - \frac{2\alpha}{\alpha - 2t} \mathbf{K} \big) \Big). \tag{5.40}$$

The supertrace of $P^{(+)}(\alpha|\beta,\gamma)$ is

$$\operatorname{str} \mathsf{P}^{(+)}(\alpha|\beta,\gamma) = -\frac{(3\alpha - 2t)(\beta - 2t)(\gamma - 2t)(\beta + t)(\gamma + t)t}{\alpha^2(\alpha - \beta)(\alpha - \gamma)\beta\gamma}. \tag{5.41}$$

Thus, we get the superdimensions of the invariant subspaces $V_{(-1)}$, $V_{(-\frac{\alpha}{2t})}$, $V_{(-\frac{\beta}{2t})}$ and $V_{(-\frac{\gamma}{2t})}$ extracted by the projectors (5.39):

$$\begin{aligned} & \operatorname{sdim} V_{(-1)} = 1, \\ & \operatorname{sdim} V_{(-\frac{\alpha}{2t})} = -\frac{(3\alpha - 2t)(\beta - 2t)(\gamma - 2t)(\beta + t)(\gamma + t)t}{\alpha^2(\alpha - \beta)(\alpha - \gamma)\beta\gamma}, \\ & \operatorname{sdim} V_{(-\frac{\beta}{2t})} = -\frac{(3\beta - 2t)(\alpha - 2t)(\gamma - 2t)(\alpha + t)(\gamma + t)t}{\beta^2(\beta - \alpha)(\beta - \gamma)\alpha\gamma}, \\ & \operatorname{sdim} V_{(-\frac{\gamma}{2t})} = -\frac{(3\gamma - 2t)(\beta - 2t)(\alpha - 2t)(\beta + t)(\alpha + t)t}{\gamma^2(\gamma - \beta)(\gamma - \alpha)\beta\alpha}. \end{aligned}$$

Eigenvalues of higher Casimir operators in the adjoint representation

Since \widehat{C}_{ad} is an ad-invariant operator, then so is an its arbitrary power \widehat{C}_{ad}^k . Taking the supertrace of its second component yields another ad-invariant operator

$$\operatorname{ad}(C_k) \equiv \operatorname{str}_2(\widehat{C}_{\operatorname{ad}}^k) = \operatorname{g}^{a_1 \dots a_n} \operatorname{ad}(X_{a_1}) \dots \operatorname{ad}(X_{a_n}), \tag{5.43}$$

where

$$\mathsf{g}^{a_1 \cdots a_2} = (-1)^{\sum_{i>j}^n [a_i] [a_j]} \mathsf{g}^{a_1 b_1} \cdots \mathsf{g}^{a_n b_n} \, \mathsf{str} \, \big(\, \mathsf{ad} \big(X_{b_1} \cdots \mathsf{ad} \big(X_{b_n} \big) \big). \tag{5.44} \big)$$

Let us c_k be the eigenvalue of $ad(C_k)$. The for its generating function c(z) we have

$$c(z) \cdot I \equiv \sum_{p=0}^{\infty} c_p z^p = \operatorname{str}_2 \left(\sum_{p=0}^{\infty} \widehat{C}_{ad}^p z^p \right) = \operatorname{str}_2 \left(\sum_{p=0}^{\infty} \widehat{C}_+^p z^p + \sum_{p=0}^{\infty} \widehat{C}_-^p z^p \right), \tag{5.45}$$

where we assume $\widehat{C}_{\pm}^0 = \frac{1}{2}(\mathbf{I} \pm \mathbf{P})$, and $\widehat{C}_{ad}^0 = \mathbf{I}$. Using expressions for \widehat{C}_+ and \widehat{C}_- in terms of invariant projectors and calculating their supertraces str_2 yields

$$c(z) = \frac{(\alpha - 2t)(\beta - 2t)(\gamma - 2t)}{\alpha\beta\gamma} + z^{2} \frac{96t^{3} + 168t^{3}z + 6(14t^{3} + tt_{2} - t_{3})z^{2} + (13t + 3tt_{2} - 4t_{3})z^{3}}{6(2t + \alpha z)(2t + \beta z)(2t + \gamma z)(2 + z)(1 + z)}.$$
(5.46)

Conclusions

- We have found explicit universal formulas for the projectors onto the invariant subspaces of the representation $\operatorname{ad}^{\otimes 2}$ of the $\operatorname{osp}(M|N)$ and $\operatorname{sl}(M|N)$ Lie superalgebras.
- The split Casimir operator has been used for deriving a universal formula for eigenvalues of higher Casimir operators in the adjoint representation.

To do:

- Find universal formulas for projectors onto invariant subspaces of the $ad^{\otimes 3}$ and $ad^{\otimes 4}$ representations of simple Lie algebras and superalgebras.
- Find a universal solution of the Yang-Baxter equation in the adjoint representation.

Thank you for your attention