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Introduction

The split Casimir operator C is an element the centre of the tensor product of
enveloping algebras of simple Lie algebrsa and superalgebras.

@ The operator C can be used to construct projectors onto invariant subspaces
of Lie algebras and superalgebra representations in a uniform way.

@ The split Casimir operator can be used in the study of the universal Lie
algebra. This is a model of all simple Lie algebras (and some Lie
superalgebras), in which many quantities that characterize a Lie algebra and
its representations can be expressed in a universal way as rational functions of
the three Vogel parameters.

In our work, we generalize the results of a recent paper by A.P. Isaev and S. K.
Krivonos to the case of Lie superalgebras and derive some additional identities.
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Comultiplication and the split Casimir operator

Let g = gg @ g7 be a Lie superalgebra over C, and U(g) be its enveloping algebra.
Then if the Cartan-Killing metric g of g is nondegenerate, we can define the
quadratic Casimir operator Consider the quadratic Casimir operator G, € U(g)

=g/ X: X; cU(g). (2.1)

(, is even and [(,, X;] = O for all the generators X; € U(g), that is, G, is invariant
under the adjoint action of g.

We also define the comultiplication A : U(g) — U(g) ® U(g) defined on the
generators X; of U(g) by

and extended to any Xj, - ... X by being a homomorphism.
Acting on G, by A vyields

AG)=GC®l+1®C+2C, (2.3)
where N )
C=g"Xi®X; (2.4)
is called the split Casimir operator of g and satisfies
[C.AX)=0 VX (2.5)
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Projectors onto invariant subspaces

Let an operator A act on a space V (for example, A = T,@Z(.A' or ad®? C where Tr
and ad are the defining and adjoint representations). Then if A satisfies

(A—ail)(A—axl)...(A—apl) =0, (2.6)

where all the a;'s different, then A is diagonalizable and the projector onto the
eigenspace of A with the eigenvalue a; is given by

P
A— a,-l
Pi=P,=]] -, (2.7)

and then P; - P; = 6;;P;.
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Split Casimir operator of osp(M|N) in the defining

representation

Let £ be a superform on V(i n), N is even. The osp(M|N) Lie superalgebra is the
algebra of operators A : VM|N) — V(M‘N) that leave the form ¢ invariant.
Define operators 1, P, K : VM|N) — VMlN) with the components

1k1k2m1m2 = 6:;116',22 Pklkzmlmz = (_1)[,(1][,(2]51};11265122 ,Cklkzml"h = Eklkz‘g'771fn2 :
Here 1 is the identity operator, P is the superpermutation, and
P’=1, K’=wK, PK=KP=K, (3.8)
where w = M — N. Then Cr can be written as
~ 1
Cr = ) (P-K). (3.9)
and satisfies
(¢ - ! )(C+ : )(G+“’7_1) =0. (3.10)
2(w—2) 2(w —2) 2(w—2)
The invariant projectors are then given by
1 1 1 1
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Solution of YBE in terms of 6,‘

The solution Ril,izlkz(u) of the graded Yang-Baxter equation

R CDIRR, (e )RR =
= RA, ((-DIER, (u+ v)(~ 1) R (u),

which is invariant under the action of osp(M|N) in the defining representation can
be written as a rational function of Cr:

(w—2)Cr+1/2+u
(wW—2)Cr+1/2—u

R(u) = (3.13)
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Split Casimir operator of osp(M|N) in the adjoint

representation

To simplify the consideration of ad®? C= (_A'ad, we introduce analogs of the
operators 1,P and KC used in the case of the defining representation:

ALA A1 SA AlA A1][A2] sA1 SA AlA =ALA
1" g8, :68:582 P g, = (_1)[ i 2](58;682 K" g, =8""88:B, »

where A;, B; are vector indices in the adjoint representation, gg, s, is the
Cartan-Killing metric and g2 is its inverse.

The operators I, P and K satisfy:

P2—1, KP=PK=K, K= L“’; D, (3.14)
where w(w;l) = sdim osp(M|N). We also introduce the symmetric C, and
antisymmetric C_ projections of dd:

. 1 .
C = 5(1£P)Cus, (3.15)

which satisfy: o R R
CiC: =0, PCL ==+C,.
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Split Casimir operator of osp(M|N) in the adjoint
representation

Proposition 1

The antisymmetric C_ and symmetric 6+ parts of the split Casimir operator of
the osp(M|N) Lie superalgebra for M — N = w # 0,1, 2, 4,8 satisfies:

N 1~ o1
2 —_— e — —
C’ = 2C_ = C_(C_+2)

& +) (8- o55) (G + o 25) (Gt i) =0 ()

The split Casimir operator @d Ny (.A'Jr forw #0,1,2,4,6, 8 satisfies:

=0, (3.16)

Wot 0. (3.18)

Ca( ad+ )( ad+1)( ad_ﬁ)(ead+ﬁ)(€ad+m

o
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Tensor product of two adjoint representations of osp(M|N)

The projectors onto invariant subspaces of osp(M|N) in the adjoint representation
are given by
2K
(w—1Dw’
2 ~, w ~ w—4)(+P 2w —4)K
Pa=3w-2)C43C+ ( 3(w)(— 2) - 3(w(— 2)(w)— )’
2w—-22 2 (W=2)(w-6)~  (w—8(1N+P) 2K

1 . "
Pr=>(1-P)+2C_, P,=—2C_, Ps =

P =308 3w-9) G+ 6(w — 8) 3(w-8)’
A w—2) 4 41+ P) 8(w —4)K
o= =8 ST oY o w-8) ww-2w_8)"
(3.19)
strPy — éw(w D)Wt Dw-3),  strPa= %w(w 1w+ 2)(w-3),
strPy = %w(w -1), strPs = %w(w —1)(w—-2)(w—-3),
strP3 =1, strPﬁzé(w—l)(w+2)
(3.20)
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Definition of s/(M|N) Lie superalgebra

The s¢(M|N) Lie superalgebra (where M # N) is defined as the algebra of
operators A : Viyn) — Vimn) that satisfy:

strA=(—1)lA2, = 0. (4.21)

In terms of the previously introduced operators 1 and P : \/(%N) — V(@,\’fw) the
split Casimir operator in the defining representation reads

~ 1 1

CG=—(P--1 4.22
2w (P w ) ( )

and satisfies the following characteristic equation

~ w-1 ~ w1
2 DGt 5

1) =o. (4.23)

Here, w = M — N. The invariant projectors are

~ 14w 1
P, = i(wcf - ) = >1£7P). (4.24)
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Solution of YBE in terms of 6,‘

The solution Ril,izlkZ(u) of the graded Yang-Baxter equation

Rij’fJQ(U)(—l)Ulluzl lelﬁh(u + V)(_l)[kl]U2] Rjzl{ikz(v) =

iy e o (4.25)
= R ((-DBIBIRM, (4 v)(- IR ()

which is invariant under the action of s/(M|N) in the defining representation, can
be written in terms of Cs:

Pty wC Bty

Pr—u wG+le—u

R(u) (4.26)
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Tensor product of two adjoint representations of s/(M|N)

As in the osp(M|N) case, we will use the three operators I, P and K which, this
time, satisfy the identities

PZ=1, PK=K=KP, K?’=(u"-1)K (4.27)

with w? — 1 = sdim(M|N) being the superdimension of s/(M|N). The symmetric
and antisymmetric parts of C,q are

~ 1 ~
€ = 5(1:P)Ca, (4.28)

and satisfy o R R
CiC: =0, PCL =+C,.
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Tensor product of two adjoint representations of s/(M|N)

The antisymmetric C_ and symmetric 6+ parts of the split Casimir operator of
the s¢(M|N) Lie superalgebra for w # 0,1, 2 satisfy

~ 1~ ~ o~ 1
c? =—5C <= C(C+3h=0 (4.29)
PPN ~ 1., -~ 1.~ 1
C+(C++I)(C+—;I)(C++;I)(C++§I):O. (4.30)
The split Casimir operator a,,d =C_+ CA'+ for w # 0, 1, 2 satisfies

Coa(Goa + 1(Caa = (G + (G + 51 =0 (431)

v

Isaev, Provorov Split Casimir operator and Vogel universality



Tensor product of two adjoint representations of s/(M|N)

Since P(jfd) are invariant operators, the projectors onto symmetric and
antisymmetric invariant spaces can be constructed separately. The explicit
expressions are

P{) =2C + PP, Py =2,

P = ﬁK,

Pgﬂ_72(<;J+16;(w+2)K+ +2C2 2C++2( 12)P(jd)’ (4.32)
Py = 2(w—1a)}(wf2)K_ FEr i o 2( : 2)P(+ad)’

4
P = 5 (@ —PUY —K).
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Tensor product of two adjoint representations of s/(M|N)

Calculating the traces and supertraces of these projectors, we get the dimensions
and superdimensions of the invariant subspaces:

_ 1
str P(l ) = §(w2 — 1)(cu2 —4), str P§+) =1,
_ 1
str Pg J—w? -1, str Pgﬂ = W (w —1)(w+3),

4 (4.33)
strP{*) — %w2(w +1)(w—3),

str Pgﬂ =w?-1

Isaev, Provorov Split Casimir operator and Vogel universality



y note on Vogel parameters

The Vogel parameters are defined as three numbers («, 3,7) modulo a common
multiplier and an arbitrary permutation from the symmetric group S3 (or, equivalently,
as a point in the space P?/S;). Certain values of the Vogel parameters correspond to all
simple Lie algebras and some simple Lie superalgebras.

Type | Lie algebra | « 8 ~
Ap Slyt1 -2 2 (n+1)
Bﬂ 502n4+1 -2 4 2n — 3
Ch 5o, 21 1 n+2
D, 509, -2 4 2n—4
Gs g2 —-2110/3 8/3
Fy fa -21 5 6
Eﬁ [ —2 6 8
Fr ¢7 -2 8 12
Fg es —21 12 20
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The Vogel parameters corresponding to simple Lie algebras can be visualized on a
Vogel plane:

Eg (12,20)

sp(2n) = Cn
wol2n 1) = B
so(2n) = Dy Vogel map (1999)
yra)=2p
R-Mkrtchyan, PCvitanovié
s0(2n) = sp(—2n)
12
(o, p,7) = =2(B,a,7)
8
Bt D5
=3 By
i1 o by (44)
Gy
n A A (0 +1) = An
®
s
B = (¢ P

SQS 2022
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Universal characteristic identities

For the osp(M|N) and s¢(M|N) Lie superalgebras (which are denoted by g in this
section) for C. in the adjoint representation can be written in the following
general form:

~ A~ ~ 1~ ~
Ci(Ch +1)(C + §Ci — 11Cy —2p0l) =0, (5.34)

The parameters p1 and py corresponding to the algebras osp(M|N) and s¢(M|N)
are given in Table 1, where w = M — N.
Table: The values of u1 and p for the osp(M|N) and sé(M|N) Lie superalgebras

M1 K2
osp(MIN) | =523 | 537
st(MN) i g
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Universal characteristic identities

The factorized form of the latter equation is

E+(6++|)(6++%|)(c++ )(C, + 2t) 0. (5.35)
The roots
_ _ __a __B .
a; =0, a=-—1, 3 =5 u=-7 s =—5 (5.36)

of the latter polynomial are normalized a parameter t and satisfy

I} 1
2t + 2t + 2t 2 (5.37)

Comparing the two forms of the universal characteristic identity we can see that

ap + ay + «
= B+ By =t by =P (5.38)
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Universal characteristic identities

We choose t = hY where h" is the dual Coxeter number of g. The parameters a,
B and ~ are called the Vogel parameters. Their values for the algebras osp(M|N)
and s¢{(M|N) are given in Table 2.

Table: The Vogel parameters for the osp(M|N) and s¢(M|N) Lie superalgebras

SU(M|N) osp(2m+ 1|N), w >1 osp(2m+1|N), w <1
osp(2m|N), w >0 osp(2m|N), w <0
o -2 -2 1
3 2 4 2
y w w—4 —3(w—4)
t w w—2 —5(w—2)
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Universal characteristic identities

The universal characteristic identity allows us to write down a universal form of

the projectors PE ; onto the invariant subspaces V/(,,) of the symmetric space
®2

Py (Vag'):

Py =P(algy). P =PH(Bla). Py =PD(a,p)
1
P(+) _
(=1 " sdimg

(5.39)

where we denoted

4t ~, 1 By 2a

Pt S o e C 1+ PG = _K)).
(CV|B,’Y) (,8—04)(’}/—04)< ++(2 2) ++8t2(+ o — 2t ))
(5.40)
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Universal characteristic identities

The supertrace of P (a|3,7) is

(Ba —26)(8 —2t)(y —2t)(B + ) (v + 1)t
a?(a = B)(a = 7)Bv '

Thus, we get the superdimensions of the invariant subspaces \/(_1), V(_g), V(_g)

str P(+)(a|ﬂ7'y) =—

(5.41)

and V(_ 1) extracted by the projectors (5.39):

sdim V(fl) = ]_7
cdim Vo, — — B2 =20(B=20)(y = 26)(8 + )y + )t
(—=5) 0‘2(a_5)(04—7)5'y s
dimy, . _BB=2t)(a—2t)(y —2t)(a + t)(y + 1)t (5.42)
(_%)7 B2(ﬁ_a)(ﬁ_’y)a7 ,
wdim v, .. = B3y =2t)(5 —2t)(a —2t)(5 + t)(a + t)t
MV = .

Y2 (v = B) (v — a)Ba
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Eigenvalues of higher Casimir operators in the adjoint

representation

Since fad is an ad-invariant operator, then so is an its arbitrary power de. Taking the
supertrace of its second component yields another ad-invariant operator

ad(Cx) = stra(CY) = g™ ad(X,,) - - - ad(Xa,), (5.43)
where B
g™ = (—1)Elllalgb gt str (ad(Xp, -+ ad(XG, ) (5.44)

Let us ¢k be the eigenvalue of ad(Cx). The for its generating function c(z) we have
c(z)- 1= Z cpzP = strp (Z Afdzp) = strp (Z Aﬁzp + Z Afzp), (5.45)
p=0 p=0 p=0 p=0

where we assume 6i = %(I +P), and a?d = |. Using expressions for (1 and C_ in terms
of invariant projectors and calculating their supertraces str; yields

C(Z) _ (a — 2t)(5a;$t)(7 — 2t) +
296t% 4+ 16813z + 6(14t> + ttr — t3)2% + (13t + 3ttr — 413)2°
6(2t + az)(2t + Bz)(2t +v2)(2 + z)(1 + 2) ’

(5.46)
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Conclusions

@ We have found explicit universal formulas for the projectors onto the
invariant subspaces of the representation ad®? of the osp(M|N) and s/(M|N)
Lie superalgebras.

@ The split Casimir operator has been used for deriving a universal formula for
eigenvalues of higher Casimir operators in the adjoint representation.
To do:
@ Find universal formulas for projectors onto invariant subspaces of the ad®3
and ad®* representations of simple Lie algebras and superalgebras.

@ Find a universal solution of the Yang-Baxter equation in the adjoint
representation.
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Thank you
for your attention
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