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Report outline:

e Classical objects: Poisson brackets on Fun(gl*(/V)) and the Weyl-Heisen-
berg algebra

e Quantum objects: U(gl(N)), Reflection Equation Algebra (REA) and
quantum partial derivatives

e Classical result by Alfredo Capelli (1887) and some its generalizations

e Matrix generalization of Capelli identity for the quantum double of two
REA



Classical objects: Poisson brackets on Fun(gl*(/N)) and the
Weyl-Heisenberg algebra

Let 27, 1 < 4,7 < N be the complex coordinates of gl*(N,C) and
Fun(gl*(N)) be the algebra of polynomial functions on gl*(N).

A. Poisson-Lie structure

{x], 23} pr = 6|25 — &; ], (1)

Matrix notation: X = ||27]|,

X, =11 Xt vp>k>1

is an embedding of N x N matrix X into the space of N? x NP matrices.
In particular for p = 2:

Xi=X®l, X=I®X
Then (1) can be written as matrix equality for N? x N? matrices:
{ X1, Xo}pr = PioXo — Xo P

Here (Plg)filng = 55125521 is the N? x N? permutation matrix.

Theorem. The homogeneous polynomials
pr(X) =TeX" k>0

are Poisson central fumctions: {pp(X), f(X)}pr = 0 for any f €
Fun(gl*(N)).



B. Quadratic STS Poisson structure

The quadratic Poisson structure (Semenov-Tian-Schansky):
{X1, Xo}srs = ran Xi Xo — X1 Xorio + Xorpp Xy — Xyran Xo (2)
Here N? x N? matrix rqs is a classical R-matrix:

[T127 TlS] + [T127 T23] + [7“13, 7“23] = 0.

Theorem. For the GL(N )-type R-matrix 15 the homogeneous poly-

nomials

pr(X) =TrX" k>0
are Poisson central fumctions: {py(X), f(X)}srs = 0 for any f €
Fun(gl*(N)).

Example. Drinfeld-Jimbo classical R-matrix for N = 2:

1000
0000 a b
"= 10200 X'(c d)
0001
Then the STS-brackets read:
{a,b} = —2ab {a,c} = 2ac {a,d} =0
{b,c} =2a(d — a) {b,d} = —2ab {c,d} = 2ac

Theorem. For a GL(N)-type classical R-matrix the brackets {, }pr,
and {, } s7s are compatible, that is

{, buo = ud, frr +v{, }srs

is a Poisson bracket for any complex numbers u and v.



Heisenberg-Weyl algebra

The algebra is generated by the coordinates x‘g and the partial deriva-

tives 0! = 0/0x;:
X1 X9 = X9 Xy, D1Dy= Dy

D1X2 = X2D1 -+ Plg.

The group GL(N) acts on Fun(gl*(N)) by right multiplications: VQ €
GL(N):

X—XQ = D~Q'D, D=]d|

Theorem. The subalgebra of the right-invariant operators is gener-
ated by

. N )
El =3 x}0,
a=1
and it is isomorphic to U(gl(N)):
E\Ey — FyEy = PisEy — FyPyy, E=|E!|=XD. (3)



Quantum objects: U(gl(N)), Reflection Equation Algebra
(REA) and quantum partial derivatives

Quantization of the Poisson structures {, } p; and {, }pz, gives rise to
examples of quantum matrix algebras.

o {, trr: Fun(gl*(N)) = U(gl(N))

o {,}srs: Fun(gl*(N)) — REA M(R).
X1Xo=X0Xy — MRM iRy = RpoM{RiusM,, M = Hmf”
Here R is a GL(N)-type R-matrix:

i) RipRo3Rip = RogRiaRo3

i) (R—gI®)(R+q'I®I)=0, geC
iii) AMD(R) =0, rank AW = 1

AW =

1
A(k) _ 714(1{;—1) (Q(k:—l) ]®/€ . (]C . 1)q Rk—l) A(k_l).

q
iv) R is a skew-invertible matrix = Trp.
The connection of R and 7:
qgq=¢ = PR=1+¢er+o(e
Example. Drinfeld-Jimbo U,(sl(N)) R-matrix. For N = 2:
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Quantum deformation of the Heisenberg-Weyl algebra

X1 Xy = X0 X1 — RippMiRioMy = MiRisMi Ry M(R)
DDy = DyD, — Ry DRy Dy = DRy DRy DR
D1 Xy = XoDy + Py — DiRisMiR1s = RisMiRy; Dy + Ry
The action of quantum “derivatives” D = ||(9f | are defined by

0{ > 1 = 0.
Example. For N = 2:

0,b

b0, > Oyb=bd,— - )



Classical result by Alfredo Capelli (1887) and some its
generalizations

A toy example: powers of a differential operator x0,.
(x0,)" = 20, 0y ... x0y = "0 + ...

but
20, (20, — 1)(x0; —2) ... (20, —n+ 1) = 2"9Y.

Let us turn to the matrix £ = XD: E! = 2997, The following
identitity takes place (A.Capelli):

EY B2 E3 ... EN
E; Ei+1 Ej ... EBY

det, E} E2 E34+2 ... EY = det X det D.
B, E% EY ... EY+N-1

An equivalent form (A.Okunkov, 1996)
Trio NAN(P)E(Ey+1)(Ey42I) ... (Exy+(N—1)1) = det X det D.

Here AMN)(P) is an idempotent of the symmeric group Sy correspond-
ing to partition (1%) (one-column Young diagram) in the matrix rep-
resentation of Sy in VY, dimV = N.

e Instead of A" we can put any idempotent of Si, k < N (the right
hand side is also changed)

e M.Nazarov: superalgebras
e A Molev et al.: other series of Lie algebras

e Noumi M., Umeda T., Wakayama M. (1994): generralization to
quantum group Fun,(sly)(RTT algebra).



Matrix generalization of Capelli identity for the quantum
double of two REA

Introduce the matrix L = M D. One can show
LiRi2L1Ri9 — Rio L1 RioLy = L1Rys — Ri2Ly.

This is a quantum deformation of U(gl(N)) relation (3) on matrix
E=XD.
The following matrix identities take place: for Vk > 1:
AL (Ls+ql) ... (Lp+ ¢ (k= 1),0) AW
qk(k_l)A(k)MT .. ME DE . DT
Here Ly = Ly, Ly = Rp Lz Ry,

For k = N and GL(N) type R-matrix we get a quantum version of
the Capelli identity:

Tl“R(L..N)A(N)LT (Ly +qI) ... (Ly +¢" (N —=1)])
= ¢ VdetgM detp-1D.



