Matrix Capelli identities related to Reflection Equation Algebra

(joint results with D.Gurevich and V.Petrova)

P.A. Saponov

National Research University Higher School of Economics (Moscow) and Institute for High Energy Physics, NRC "Kurchatov Institute" (Protvino, Russia)

Report outline:

- Classical objects: Poisson brackets on $\operatorname{Fun}(gl^*(N))$ and the Weyl-Heisenberg algebra
- Quantum objects: U(gl(N)), Reflection Equation Algebra (REA) and quantum partial derivatives
- Classical result by Alfredo Capelli (1887) and some its generalizations
- Matrix generalization of Capelli identity for the quantum double of two REA

Classical objects: Poisson brackets on $\operatorname{Fun}(gl^*(N))$ and the Weyl-Heisenberg algebra

Let x_i^j , $1 \leq i, j \leq N$ be the complex coordinates of $gl^*(N, C)$ and $\operatorname{Fun}(gl^*(N))$ be the algebra of polynomial functions on $gl^*(N)$.

A. Poisson-Lie structure

$$\{x_i^j, x_k^s\}_{PL} = \delta_k^j x_i^s - \delta_i^s x_k^j \tag{1}$$

Matrix notation: $X = ||x_i^j||$,

$$X_k = I^{\otimes k-1} \otimes X \otimes I^{\otimes (p-k)}, \quad \forall \, p \ge k \ge 1$$

is an embedding of $N \times N$ matrix X into the space of $N^p \times N^p$ matrices. In particular for p=2:

$$X_1 = X \otimes I, \qquad X_2 = I \otimes X.$$

Then (1) can be written as matrix equality for $N^2 \times N^2$ matrices:

$${X_1, X_2}_{PL} = P_{12}X_2 - X_2P_{12}$$

Here $(P_{12})_{i_1i_2}^{j_1j_2} = \delta_{i_1}^{j_2}\delta_{i_2}^{j_1}$ is the $N^2 \times N^2$ permutation matrix.

Theorem. The homogeneous polynomials

$$p_k(X) = \operatorname{Tr} X^k, \quad k \ge 0$$

are Poisson central functions: $\{p_k(X), f(X)\}_{PL} = 0$ for any $f \in \text{Fun}(gl^*(N))$.

B. Quadratic STS Poisson structure

The quadratic Poisson structure (Semenov-Tian-Schansky):

$$\{X_1, X_2\}_{STS} = r_{21}X_1X_2 - X_1X_2r_{12} + X_2r_{12}X_1 - X_1r_{21}X_2$$
 (2)

Here $N^2 \times N^2$ matrix r_{12} is a classical R-matrix:

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0.$$

Theorem. For the GL(N)-type R-matrix r_{12} the homogeneous polynomials

$$p_k(X) = \operatorname{Tr} X^k, \quad k \ge 0$$

are Poisson central functions: $\{p_k(X), f(X)\}_{STS} = 0$ for any $f \in \text{Fun}(gl^*(N))$.

Example. Drinfeld-Jimbo classical R-matrix for N=2:

$$r_{12} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad X := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Then the STS-brackets read:

$$\{a,b\} = -2ab$$
 $\{a,c\} = 2ac$ $\{a,d\} = 0$ $\{b,c\} = 2a(d-a)$ $\{b,d\} = -2ab$ $\{c,d\} = 2ac$

Theorem. For a GL(N)-type classical R-matrix the brackets $\{,\}_{PL}$ and $\{,\}_{STS}$ are compatible, that is

$$\{,\}_{u,v} = u\{,\}_{PL} + v\{,\}_{STS}$$

is a Poisson bracket for any complex numbers u and v.

Heisenberg-Weyl algebra

The algebra is generated by the coordinates x_i^j and the partial derivatives $\partial_i^j = \partial/\partial x_j^i$:

$$X_1X_2 = X_2X_1$$
, $D_1D_2 = D_2D_1$
 $D_1X_2 = X_2D_1 + P_{12}$.

The group GL(N) acts on $\operatorname{Fun}(gl^*(N))$ by right multiplications: $\forall\,Q\in GL(N)$:

$$X \mapsto XQ, \quad \Rightarrow \quad D \mapsto Q^{-1}D, \quad D = \|\partial_i^j\|.$$

Theorem. The subalgebra of the right-invariant operators is generated by

$$E_i^j = \sum_{a=1}^N x_i^a \partial_a^j$$

and it is isomorphic to U(gl(N)):

$$E_1 E_2 - E_2 E_1 = P_{12} E_2 - E_2 P_{12}, \quad E = ||E_i^j|| = XD.$$
 (3)

Quantum objects: U(gl(N)), Reflection Equation Algebra (REA) and quantum partial derivatives

Quantization of the Poisson structures $\{,\}_{PL}$ and $\{,\}_{PL}$ gives rise to examples of quantum matrix algebras.

- $\{,\}_{PL}$: Fun $(gl^*(N)) \to U(gl(N))$
- $\{,\}_{STS}$: Fun $(gl^*(N)) \to \text{REA } \mathcal{M}(R)$.

 $X_1X_2 = X_2X_1 \rightarrow M_1R_{12}M_1R_{12} = R_{12}M_1R_{12}M_1, \quad M = ||m_i^j||.$ Here R is a GL(N)-type R-matrix:

- i) $R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$
- ii) $(R qI \otimes I)(R + q^{-1}I \otimes I) = 0, \quad q \in C$
- iii) $A^{(N+1)}(R) \equiv 0$, rank $A^{(N)} = 1$ $A^{(1)} = I$ $A^{(k)} = \frac{1}{k_a} A^{(k-1)} \left(q^{(k-1)} I^{\otimes k} (k-1)_q R_{k-1} \right) A^{(k-1)}.$
- iv) R is a skew-invertible matrix $\Rightarrow \operatorname{Tr}_R$.

The connection of R and r:

$$q = e^{\epsilon} \implies PR = I + \epsilon r + o(\epsilon)$$

Example. Drinfeld-Jimbo $U_q(sl(N))$ R-matrix. For N=2:

$$r = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \Rightarrow \qquad R = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & \nu & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & q \end{pmatrix} \quad \nu \equiv q - q^{-1}.$$

Quantum deformation of the Heisenberg-Weyl algebra

$$X_1X_2 = X_2X_1 \rightarrow R_{12}M_1R_{12}M_1 = M_1R_{12}M_1R_{12} \quad \mathcal{M}(R)$$

$$D_1D_2 = D_2D_1 \rightarrow R_{12}^{-1}D_1R_{12}^{-1}D_1 = D_1R_{12}^{-1}D_1R_{12}^{-1} \quad \mathcal{D}(R^{-1})$$

$$D_1X_2 = X_2D_1 + P_{12} \rightarrow D_1R_{12}M_1R_{12} = R_{12}M_1R_{12}^{-1}D_1 + R_{12}$$
The action of quantum "derivatives" $D = \|\partial_i^j\|$ are defined by
$$\partial_i^j \triangleright 1_{\mathcal{M}} = 0.$$

Example. For N = 2:

$$X := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow M := \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{c} & \hat{d} \end{pmatrix}$$

$$\partial_a a = a \,\partial_a + 1 \quad \mapsto \quad \hat{\partial}_a \,\hat{a} = q^{-2} \hat{a} \,\hat{\partial}_a + q^{-1} - \frac{\nu}{q} \,\hat{b} \,\hat{\partial}_b$$

$$\partial_a b = b \,\partial_a \quad \mapsto \quad \hat{\partial}_a \,\hat{b} = \hat{b} \,\hat{\partial}_a - \frac{\nu}{q} \,\hat{a} \,\hat{\partial}_c + \nu^2 \,\hat{b} \,\hat{\partial}_d$$

Classical result by Alfredo Capelli (1887) and some its generalizations

A toy example: powers of a differential operator $x\partial_x$.

$$(x\partial_x)^n = x\partial_x \, x\partial_x \, \dots x\partial_x = x^n\partial_x^n + \dots$$

but

$$x\partial_x(x\partial_x-1)(x\partial_x-2)\dots(x\partial_x-n+1)\equiv x^n\partial_x^n.$$

Let us turn to the matrix E = XD: $E_i^j = x_i^a \partial_a^j$. The following identitity takes place (A.Capelli):

$$\det_r \begin{vmatrix} E_1^1 & E_1^2 & E_1^3 & \dots & E_1^N \\ E_2^1 & E_2^2 + 1 & E_2^3 & \dots & E_2^N \\ E_3^1 & E_3^2 & E_3^3 + 2 & \dots & E_3^N \\ & & & \dots & \\ E_N^1 & E_N^2 & E_N^3 & \dots & E_N^N + N - 1 \end{vmatrix} = \det X \det D.$$

An equivalent form (A.Okunkov, 1996)

$$\operatorname{Tr}_{12...N} A^{N}(P) E_{1}(E_{2}+I)(E_{2}+2I) \dots (E_{N}+(N-1)I) = \det X \det D.$$

Here $A^{(N)}(P)$ is an idempotent of the symmetric group S_N corresponding to partition (1^N) (one-column Young diagram) in the matrix representation of S_N in $V^{\otimes N}$, dim V = N.

- Instead of A^N we can put any idempotent of S_k , $k \leq N$ (the right hand side is also changed)
- M.Nazarov: superalgebras
- A.Molev et al.: other series of Lie algebras
- Noumi M., Umeda T., Wakayama M. (1994): generalization to quantum group $\operatorname{Fun}_q(sl_N)(RTT \text{ algebra})$.

Matrix generalization of Capelli identity for the quantum double of two REA

Introduce the matrix L = MD. One can show

$$L_1R_{12}L_1R_{12} - R_{12}L_1R_{12}L_1 = L_1R_{12} - R_{12}L_1.$$

This is a quantum deformation of U(gl(N)) relation (3) on matrix E = XD.

The following matrix identities take place: for $\forall k \geq 1$:

$$A^{(k)}L_{\bar{1}}(L_{\bar{2}}+qI) \dots (L_{\bar{k}}+q^{k-1}(k-1)_{q}I)A^{(k)}$$

$$= q^{k(k-1)}A^{(k)}M_{\bar{1}}\dots M_{\bar{k}}D_{\bar{k}}\dots D_{\bar{1}}$$

Here $L_{\bar{1}} = L_1$, $L_{\bar{k}+1} = R_k L_{\bar{k}} R_k^{-1}$.

For k = N and GL(N) type R-matrix we get a quantum version of the Capelli identity:

$$\operatorname{Tr}_{R(1...N)} A^{(N)} L_{\overline{1}} (L_{\overline{2}} + qI) \dots (L_{\overline{N}} + q^{N-1}(N-1)_q I)$$

= $q^{-N} \operatorname{det}_R M \operatorname{det}_{R^{-1}} D.$