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Theory and applications of Manin matrices

[Yu. Manin 1987, 1988]: quadratic algebras: ”matrix Z”.

[Yu. Manin 1989]: multi-parametric super-case.

[S. Garoufalidis, Thang TQ. Le, D. Zeilberger 2003]: a q-analogue of
the MacMahon Master Theorem.

[A. Chervov, G. Falqui 2007]: application of Manin matrices to some
integrable models.

[A. Chervov, A. Molev 2008]: higher Sugawara operators.

[V. Rubtsov, D. Talalaev, A. S. 2009]: elliptic Gaudin models.

[A. Molev, E. Ragoucy 2009]: MacMahon Master Theorem and
higher Sugawara operators for the super-case.

[A. Chervov, G. Falqui, V. Rubtsov 2009]: generalisation of the
classical matrix theory for Manin matrices.

[A. Chervov, G. Falqui, V. Rubtsov, A. S. 2012]: the same for q-case.

[A. Isaev, O. Ogievetsky 2013]: Cayley–Hamilton–Newton identities.

[A. Molev 2018]: Manin matrices of types B, C , D and higher
Sugawara operators.
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Quantum (non-commutative) spaces

Let K be a filed, e.g. K = C or K = R.

(Affine) algebraic set is a subset X ⊂ Kn given by a system of
polynomial equations Fα(x1, . . . , xn) = 0, α = 1, . . . , r .

A map X → Y between two algebraic sets X ⊂ Kn and Y ⊂ Km is
called regular iff it has the form (x1, . . . , xn) 7→

(
P1(x), . . . ,Pm(x)

)
for some polynomials Pi (x) = Pi (x

1, . . . , xn).

The set of regular functions f : X → K is a commutative algebra
denoted by A(X ). Any algebraic set X is uniquely given by its algebra
of functions A(X ) up to isomorphism.

The regular maps X → Y are in one-to-one correspondence with the
algebra homomorphisms A(Y )→ A(X ).

Quantum (non-commutative) space is given by an arbitrary
(non-commutative) algebra of functions.
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Quantum groups

Affine algebraic group is an algebraic set G with structure of group
such that the multiplication

G × G → G , (g , h) 7→ gh (1)

and the map G → G , g 7→ g−1 are regular.

Note that A(G × G ) = A(G )⊗ A(G ). Define the homomorphisms
∆: A(G )→ A(G )⊗ A(G ), ε : A(G )→ K as

∆(f )(g , h) = f (gh), ε(f ) = f (e), f ∈ A(G ). (2)

They satisfy

(∆⊗ id)∆ = (id⊗∆)∆, (ε⊗ id)∆ = (id⊗ε)∆ = id . (3)

Hopf algebra is an algebra H with homomorphisms ∆: H → H ⊗ H
and ε : H → K satisfying conditions (3) and the existence of
antipode.

[Drinfeld]: Quantum group is given by an arbitrary Hopf algebra.
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Actions of quantum groups on quantum spaces

Let G be an affine algebraic group and X be an algebraic set. Action
of G on X is a regular map

a : G × X → X , a(g , x) = g .x , (4)

such that g .(h.y) = (g · h).x , e.x = x .

Let H be a quantum group (Hopf algebra) and R be a quantum
space (algebra). The quantum analogue of action is a homomorphism
δ : R → H ⊗ R such that

(id⊗δ)δ = (∆⊗ id)δ, (ε⊗ id)δ = id . (5)

The algebra R equipped with such δ is called H-comodule algebra.
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Linear representations of groups

Let V be (super-)vector space over K. A representation of a group G
on V is a homomorphism

ρ : G → End(V ), ρ(gh) = ρ(g)ρ(h), ρ(e) = idV . (6)

Let V be finite-dimensional with a basis e1, . . . , en, then

ρ(g)ej =
n∑

i=1

ρij(g)ei (7)

for some functions ρij : G → K. If G has a structure of affine

algebraic group, then we suppose that ρij are regular: ρij ∈ A(G ).

[Manin]: An n × n matrix M over a Hopf algebra H with entries
M i

j ∈ H is called multiplicative iff

∆(M i
j ) =

n∑
k=1

M i
k ⊗Mk

j , ε(M i
j ) = δij . (8)

The conditions (6) are equivalent to the following condition: the
matrix M = (ρij) is multiplicative over A(G ).
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Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quantum linear spaces

Graded algebra is an algebra A with the decomposition

A =
⊕
k>0

Ak , AkAl ⊂ Ak+l . (9)

For example the set of polynomials P(x1, . . . , xn) is a graded algebra
K[x1, . . . , xn] if we set deg x i = 1.

Any n-dimensional vector space is isomorphic to V ∼= Kn.

The vector space Kn can be considered as an algebraic set with
algebra of functions A(Kn) = K[x1, . . . , xn].

A linear map φ : Kn → Km is a particular case of regular map, which
corresponds to a graded homomorphism
K[y1, . . . , ym]→ K[x1, . . . , xn].

[Manin]: Quantum linear space is given by an arbitrary quadratic
algebra.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic algebras

Quadratic algebra is a graded algebra A generated by
x1, . . . , xn ∈ A1 with quadratic commutation relations

n∑
i,j=1

Bαij x
ix j = 0, α = 1, . . . , r , r 6 n2, Bαij ∈ K. (10)

Proposition. For any quadratic algebra the commutation relations
can be written in the form

n∑
i,j=1

Bkl
ij x

ix j = 0, k , l = 1, . . . , n, (11)

where Bkl
ij are entries of some n2 × n2 idempotent matrix B = (Bkl

ij ),
i.e.

B2 = B. (12)

For an idempotent B = (Bkl
ij ) denote by XB(K) the quadratic algebra

with the relations (11).
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Examples of quadratic algebras

The polynomial algebra K[x1, . . . , xn] is a quadratic algebra with the
commutation relations x ix j = x jx i , that is K[x1, . . . , xn] = XAn(K)
for the idempotent An ∈ End(Kn ⊗Kn) defined as

An =
1− Pn

2
, Pn(v ⊗ w) = w ⊗ v . (13)

The Grassmann algebra Λn is an algebra generated by ψ1, . . . , ψn

with the relations ψiψj = −ψjψi . This is a quadratic algebra XSn(K)
for the idempotent Sn = 1+Pn

2 = 1− An.

Let q̂ = (qij) be n × n matrix with non-zero entries qij = q−1ji ∈ K,

qii = 1. The relations x jx i = qijx
ix j define the quadratic algebra

XAq̂
(K) for the idempotent

Aq̂ =
1− Pq̂

2
, Pq̂(ei ⊗ ej) = qijej ⊗ ei , (14)

where e1, . . . , en is the standard basis of Kn.

The quantum linear space XAq̂
(K) is a multi-parametric deformation

of the vector space Kn.
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Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Quadratic super-algebras

The word ”super” means Z2-grading on vector spaces and algebras.

The tensor product of two super-algebras R,S is the super-vector
space R ⊗ S with the multiplication
(r ⊗ s)(r ′ ⊗ s ′) = (−1)[s][r

′]rr ′ ⊗ ss ′,

where [r ] ∈ {0, 1} denotes a parity of an element r ∈ R.

Let e1, . . . , en be a homogeneous basis of a finite-dimensional
super-vector space V . Let [i ] := [ei ] be the parity of ei .

Let B ∈ End(V ⊗ V ) be an idempotent and
B(ei ⊗ ej) =

∑
k,l B

kl
ij (ek ⊗ el), where Bkl

ij ∈ K.

The corresponding quadratic super-algebra XB(K) is defined by the
commutation relations

∑
i,j(−1)[i ][j]Bkl

ij x
ix j = 0.

For example, the algebra of functions on the super-vector space V is
the quadratic super-algebra XAV

(K) for the idempotent AV = 1−PV

2 ,

where PV (v ⊗ w) = (−1)[v ][w ](w ⊗ v). We have
XAV

(K) ∼= K[x1, . . . , xm]⊗ Λn−m.

A. Silantyev Quantum Representation Theory and Manin matrices



Super-Manin matrices

The tensor product of a super-algebra R and a graded super-algebra
A =

⊕
k>0Ak is a graded super-algebra: R ⊗A =

⊕
k>0 R ⊗Ak . In

particular, R ⊗ XB(K) is a graded super-algebra.

Proposition. Any graded homomorphism φ : XB(K)→ R ⊗ XB(K)
has the form φ(x i ) =

∑n
j=1 M

i
j ⊗ x j , where M i

j ∈ R have the parity

[M i
j ] = [i ] + [j ] mod 2 and satisfy∑

i,j,a,b

(−1)([i ]+[a])[j]Bst
ij M

i
aM

j
b(δacδ

b
d − Bab

cd ) = 0. (15)

Any such matrix M = (M i
j ) over the super-algebra R define a

homomorphism φ(x i ) =
∑n

j=1 M
i
j ⊗ x j .

Definition. The matrix M = (M i
j ) satisfying [M i

j ] = [i ] + [j ] mod 2
and the condition (15) is called B-Manin matrix.

Thus we have a one-to-one correspondence between the B-Manin
matrices over R and the graded homomorphisms
φ : XB(K)→ R ⊗ XB(K).
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Quantum representations of quantum super-groups

A quantum representation of a quantum super-group (Hopf
super-algebra) H on a quantum linear space (quadratic
super-algebra) B = XB(K) is defined by a graded homomorphism

δ : B → H ⊗ B, δk : Bk → H ⊗ Bk (16)

satisfying (id⊗δ)δ = (∆⊗ id)δ, (ε⊗ id)δ = id.

Any graded homomorphism (16) has the form

δ(x i ) =
n∑

j=1

M i
j ⊗ x j , M i

j ∈ H. (17)

Proposition. Any quantum representation of H on B = XB(K) is
given by the formula (17). We have one-to-one correspondence
between quantum representations of H on B = XB(K) and
multiplicative B-Manin matrices M = (M i

j ) over H:∑
i,j,a,b

(−1)([i ]+[a])[j]Bst
ij M

i
aM

j
b(δacδ

b
d − Bab

cd ) = 0, [M i
j ] = [i ] + [j ] mod 2,
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Example: super-Yangian

Let V = V0 ⊕ V1 be a super-vector space over C,
m = dimV0, p = dimV1.

Consider the rational R-matrix R(z) = z − PV , where
PV : V ⊗ V → V ⊗ V is the super-permutation operator.

Super-Yangian Y (glm|p) is the algebra over C generated by trij ,
i , j = 1, . . . , n, r ∈ Z>1, of the parity [trij ] = [i ] + [j ] mod 2 with the
commutation relations

R(z − w)T (1)(z)T (2)(w) = T (2)(w)T (1)(z)R(z − w), (18)

where T (z) is the n × n matrix over Y (glm|p)[[z−1]] with the entries

T (z)ij = δij +
∑
r>1

trijz
−r . We use the notations

(
T (1)(z)

)ij
ab

= (−1)([i ]+[a])[j]T (z)iaδ
j
b,

(
T (2)(w)

)ij
ab

= δiaT (w)jb.

The super-Yangian Y (glm|p) is a Hopf super-algebra:

∆
(
T (z)ij

)
=

n∑
l=1

T (z)il ⊗ T (z)lj , ε
(
T (z)ij

)
= δij .
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Quantum representation of an extended super-Yangian

Extend the super-Yangian Y (glm|p) by a new invertible generator τ as

τ · T (z) = T (z − 1) · τ, ∆(τ) = τ ⊗ τ, ε(τ) = 1. (19)

We obtain the cocentral extension Y (glm|p)[τ±1].

Let K = C((z−1)) =

{
N∑

k=−∞
αkz

k | N ∈ Z, αk ∈ C

}
.

The field extension gives the Hopf super-algebra
H = Y (glm|p)[τ±1]((z−1)) over the field K.

The product M = T (z) · τ is a multiplicative AV -Manin matrix over
the Hopf super-algebra H, where AV = 1−PV

2 .

It gives a quantum representation

δ : B → H ⊗K B. (20)

of the quantum super-group H on
B = XAV

(K) ∼= K[x1, . . . , xm]⊗ Λp:
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Thank you very much
for your attention
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