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Quantum Gravity Challenge

QG effects should matter at ultrahigh energies of Planck scale

m2
P =

hc

G
mP ∼ 1019GeV

To proceed conjecture that the regime of ultra high (transPlanckian)

energies exhibits some high symmetries.

Starting point: spin s free Fronsdal HS gauge fields δφn1...ns = ∂(n1εn2...ns)

In 60th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a non-trivial local field theory

in Minkowski space For a review: Bekaert, Boulanger, Sundell (2010)

Green light: (A)dS background with Λ ̸= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ → 0 is singular

Non-analiticity in Λ via dimensionless combination Λ−1
2 ∂
∂x Fradkin, MV 1987

Background HS gauge fields contribute to higher-derivative terms in

the evolution equations: no geodesic motion in presence of HS fields
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Space-Time and Spin

Space-time M is where symmetry G = O(d− 1,2) acts

Spin s: different G-modules Vs where fields ϕA(x) are valued.

Vs contain ground (primary) fields ϕA(x) along with their derivatives

∂n1 . . . ∂nkϕ
A(x) (descendants)

HS vertices contain higher derivatives Bengtsson, Bengtsson, Brink (1983),

Berends, Burgers and H. Van Dam (1984), (1985), Fradkin, MV; Metsaev,...

HS symmetries Fradkin, MV 1986 are infinite dimensional extesions of G

Infinite towers of spins ⇒ infinite towers of derivatives.

How (non)local is HS gauge theory?
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Locality and Non-Locality

Equations of motion in perturbatively local field theory EA0,s0(∂, ϕ) = 0

EA0,s0(∂, ϕ) =
∞∑

k=0,l=1

a
n1...nk
A0A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

have a finite # of non-zero coefficients a
n1...nk
A0...Al

at any order l.

s0 is the spin of the field on which the linearized equation is imposed

HS theory involves infinite towers of Fronsdal fields of all spins.

a
n1...nk
A0...Al

may take an infinite # of values.

It makes sense to distinguish between Gelfond, MV 2018

local: finite number of derivatives at any order

a
n1...nk
A0...Al

(s0, s1, . . . sl) = 0 at k > kmax(l)

spin-local: finite number of derivatives for any finite subset of fields

a
n1...nk
A0...Al

(s0, s1, s2, . . . sl) = 0 at k > kmax(s0, s1, s2, . . . sl)

non-local: infinite number of derivatives for a finite subset of fields at

some order.
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Compact Spin-Locality

The simplest option: replacement of the class of local field theories

with the finite # of fields by spin-local models with infinite # of fields.

Spin-local-compact vertices in addition obey

a
n1...nk
A0A1...Al

(s0, s1, . . . , sk + tk , . . . , sl) = 0 tk > t0k ∀k

non-compact otherwise.

Compactness is in the space of spins, not in space-time

Both types of vertices in HS theory:

Cubic HS vertices ω ∗ ω built from HS gauge potentials are spin-local-

compact: spins s0, s1, s2 obey the triangle inequalities s0 ≤ s1 + s2 etc.

Vertices associated with the conserved currents built from gauge invari-

ant field strength are spin-local non-compact. These include conserved

currents of any integer s0 built from two spin-zero fields (s1 = s2 = 0).
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Field Redefinitions

A local theory remains local under perturbatively local field redefinitions

ϕBs0 → ϕBs0 + δϕBs0 , δϕBs0 =
∞∑

k=0,l=1

bB
n1...nk
A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

with a finite # of non-zero coefficients at any order.

Which field redefinitions leave vertices spin-local?

General spin-local field redefinitions do not work since contributions of

all spin sp redefined fields may develop non-locality

δEA0,s0(∂, ϕ) =
∞∑

sp=0

∞∑
p,k,k′=0,l,l′=1

a
n1...nk
A0A1...Al

(s0, s1, s2, . . . , sp, . . . , sl)

∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Ap−1
sp−1 ϕ

Ap+1
sp+1 . . . ϕ

Al
sl b

Apm1...mk′
B1...Bl′

(sp, t1, . . . , tl′)∂m1 . . . ∂mkϕ
B1
t1

. . . ϕ
Bl′
tl′

Spin-local-compact field redefinitions in spin-local theories:

proper substitute since summation over sp is finite.

One of the central problems in HS theory is to find a field frame making

it (spin-)local. Given non-locally looking field theory, the essential

question is whether or not it is spin-local in some other variables.
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HS Multiplets

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

ωα1...αn ,β̇1...β̇m
and Cα1...αn ,β̇1...β̇m

with all n ≥ 0 and m ≥ 0.

Generating functions ω(Y |x) and C(Y |x): unrestricted functions of com-

muting spinor variables Y = (yα, ȳα̇)

A(Y |x) =
∞∑

n,m=0

1

2n!m!
Aα1...αn ,α̇1...α̇my

α1 . . . yαnȳα̇1 . . . ȳα̇m

Gauge one-forms ωα1...αn ,β̇1...β̇m
, n+m = 2(s− 1)

s = 1 : ω(x) = dxnωn(x)

s = 2 : ωαβ̇(x) , ωαβ(x) , ω̄α̇β̇(x)

s = 3/2 : ωα(x) , ω̄α̇(x)

Frame-like fields: |n−m| = 0 (bosons) or |n−m| = 1 fermions

Auxiliary Lorentz-like fields: |n−m| = 2 (bosons)

Extra fields: |n−m| > 2 and zero-forms C(Y |x): higher derivatives
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Free Field Unfolded Massless Equations

The full unfolded system for free massless bosonic fields is 1989

⋆ R1(y, y | x) =
i

4

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0 | x)

)
⋆⋆ D̃0C(y, y | x) = 0

R1(y, ȳ | x) := Dad
0 ω(y, ȳ | x) Dad

0 := DL − eαβ̇
(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)

D̃0 = DL + eαβ̇
(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
DL := dx −

(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)

Hαβ := eαα̇e
βα̇ , H

α̇β̇ := eα
α̇eαβ̇

⋆⋆ implies that higher-order terms in y and ȳ describe higher-derivative

descendants of the primary HS fields
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Zero-Form Sector

Equations on the gauge invariant zero-forms C

C(Y ;K|x) =
∞∑

n,m=0

1

2n!m!
Cα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

decompose into independent subsystems associated with different spins

Spin-s zero-forms are Cα1...αn ,α̇1...α̇m(x) with

n−m = ±2s

Perturbative unfolded equations

dxC = σ−C + lower-derivative and nonlinear terms

σ− := eαβ̇
∂2

∂yα∂ȳβ̇
, σ2− = 0

imply that higher-order terms in y and ȳ in C(y, ȳ|x) describe higher-

derivative descendants of the primaries C(y,0|x) and C(0, ȳ|x). Generally,

Cα1...αn ,α̇1...α̇m(x) contain n+m
2 − {s} space-time derivatives of the spin-s

dynamical fields. Presence of zero-forms C in the HS vertices may

induce infinite towers of derivatives and, hence, non-locality.
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HS Vertices

The problem: consistent non-linear corrections 1988 in the local frame

dxω = −ω ∗ ω +Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . . ,

dxC = −[ω,C]∗ +Υ(ω,C,C) + . . .

The vertices can be put into the form

Υ(Φ,Φ, . . .) = F (Qi, Pnm; Q̄j, P̄ kl)Φ(Y1) . . .Φ(Yn)|Yi=0

with Φ = ω, C and some non-polynomial functions F (Qi, Pnm; Q̄j, P̄ kl) of

the Lorentz-covariant combinations

Qi := yα
∂

∂yiα
, P ij :=

∂

∂yαi

∂

∂yjα
, Q̄i := ȳα̇

∂

∂ȳiα̇
, P̄ ij :=

∂

∂ȳiα̇
∂

∂ȳjα̇

The fundamental problem: find a proper class of functions F (Qi, Pnm; Q̄j, P̄ kl)

guaranteeing spin-locality (minimal non-locality) of the HS theory
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Spinor Spin-Locality

Polynomiality of F (Qi, P ij, Q̄j, P̄ kl) in either P ij or P̄ ij ∀i, j associated with

C

Restriction to the fixed spin relates the degrees in P ij and P̄ kl since

n−m = ±2s

Non-linear corrections can affect the relation between spinor and space-

time spin-locality making obscure the space-time interpretation of the

locality analysis in the spinor space.

This does not happen for projectively-compact spin-local vertices with

F (Qi, P ij, Q̄j, P̄ kl) = QωG(Qi, P ij, Q̄j, P̄ kl) + Q̄ωḠ(Qi, P ij, Q̄j, P̄ kl)

Qω and Q̄ω being associated with the one-forms ω among Φ.
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Projectiely-Compact Spin-Local Vertices

Using background frame eαβ̇ HS equations can be represented as

DLC(y, ȳ) = eαα̇
(
∂α∂̄α̇F

++(y, ȳ)+yα∂̄α̇F
−+(y, ȳ)+ȳα̇∂αF

+−(y, ȳ)+yαȳα̇F
−−(y, ȳ)

)
.

Generally, nonlinear corrections can contribute to any of F νµ.

The contribution to F++ can be singled out by the projector

Πdes := N−1
y N̄−1

ȳ yαȳα̇
∂

∂eαα̇
, Ny := yα∂α , Nȳ := ȳα̇∂̄α̇

A spin-local vertex Υ is called projectively compact if ΠdesΥ is spin-

local-compact. In particular, if ΠdesΥ = 0.

The contribution of the projectively-compact spin-local vertices can

affect the expressions of the descendants in terms of derivatives of the

ground fields only by spin-local-compact terms that preserve space-time

locality of the vertex associated with the spin-local spinor vertex.
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Projectiely-Compact Spin-Local Vertices in dxC

The dxC vertex is 2017

Υ = Υη(e, C) +Υη̄(e, C)

Υη(e, C) =
1

2
η exp (iP̄1,2)

∫ 1

0
dτe(y, (1−τ)∂̄1−τ ∂̄2)C(τy, ȳ;K)C(−(1−τ)y, ȳ;K) ,

Υη̄(e, C) =
1

2
η̄ exp i(P1,2)

∫ 1

0
dτe((1−τ)p1−τp2, ȳ)C(y, τ ȳ;K)C(y,−(1−τ)ȳ;K) ,

where e(a, ā) := eαα̇aαāα̇ .

Being non-polynomial either in P12 or in P̄12, Υ is spin-local

Since Υ contains either eαα̇yα or eαα̇ȳα̇,

ΠdesΥ = 0 ⇒ Υ is projectively-compact spin-local

PCSL vertices contain the minimal possible number of derivatives.
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One-Form Sector

In the sector of one-forms

ω(Y |x) =
∞∑

n,m=0

1

2n!m!
ωA
α1...αn ,α̇1...α̇m

(x)yα1 . . . yαnȳα̇1 . . . ȳα̇m

spin-s fields are the degree s− 1 homogeneous monomials in Y :

ωα1...αn ,α̇1...α̇m(x) with n+m = 2(s− 1).

Dynamical HS fields, that contain Fronsdal fields, are those with n = m

for bosons and |n−m| = 1 for fermions. Other components contain

#(∂x) =
1

2
(|n−m| − 2{s}) (1)

Important consequence: spin-s components of ω(Y ) contain at most

s− 1 derivatives of the spin-s Fronsdal field.
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Decendants

Interpretation of the components ωα1...αn ,α̇1...α̇m depends on whether

n > m or n < m. At n > m every next component with n > m is expressed

via the space-time derivatives of the previous one

DLω(y, ȳ)− eαβ̇∂αȳβ̇ω(y, ȳ) + . . . = 0 , n ≥ m

Ellipses denotes the lower-derivative terms as well as the lhs of the

Fronsdal equations or Bianchi identities. Analogously, at m ≥ n

DLω(y, ȳ)− eαβ̇yα∂̄β̇ω(y, ȳ) + . . . = 0 , m ≥ n

These equations can be put into the form

DLω(y, ȳ)− eαβ̇
(
P+∂αȳβ̇ + P−yα∂̄β̇

)
ω(y, ȳ) + . . . = 0

with projectors

P+ω(y, ȳ) = ω(y, ȳ) n ≥ m, P+ω(y, ȳ) = 0 n < m

P−ω(y, ȳ) = ω(y, ȳ) m ≥ n , P−ω(y, ȳ) = 0 m < n
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Equation Decomposition

Representing ω(y, ȳ) in the form

ω(y, ȳ) = eαα̇
(
∂α∂̄α̇Ω

++(y, ȳ)+yα∂̄α̇Ω
−+(y, ȳ)+∂αȳα̇Ω

+−(y, ȳ)+yαȳα̇Ω
−−(y, ȳ)

)
one can check that

eαβ̇∂̄β̇yαω(y, ȳ) =
1

2

(
(Nȳ+2)Hαβyα

(
∂βΩ

−+(y, ȳ)+yβΩ
−−(y, ȳ)

)
−NyH̄

α̇β̇∂̄α̇∂̄β̇Ω
++(y, ȳ)

)
,

eαβ̇∂αȳβ̇ω(y, ȳ) =
1

2

(
(Ny+2)H̄α̇β̇ȳα̇

(
∂̄β̇Ω̄

+−(y, ȳ)+ȳβ̇Ω̄
−−(y, ȳ)

)
−NȳH

αβ∂α∂βΩ̄
++(y, ȳ)

)
.

Suppose that the vertex is PCSL i.e., restriction of the non-linear

corrections to the HS equations to the projected terms

eαβ̇
(
P+∂αȳβ̇+P−yα∂̄β̇

)
ω(y, ȳ) is spin-local-compact. Then expressions for

the components of ω(y, ȳ) associated with higher space-time derivatives

of the Fronsdal fields will differ from those in the free theory by spin-

local-compact terms that do not spoil space-time spin-locality.
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Projectively-Compact Spin-Local Vertices in dxω

The vertices of the form

P+

(
(N̄ +2)Hαβ(yα∂βΩ

+−(y, ȳ) + yαyβΩ
++(y, ȳ))−NH̄α̇β̇∂̄α̇∂̄β̇Ω

−−(y, ȳ)
)

P−
(
(N +2)H̄α̇β̇(ȳα̇∂̄β̇Ω̄

−+(y, ȳ) + ȳα̇ȳβ̇Ω̄
++(y, ȳ))− N̄Hαβ∂α∂βΩ̄

−−(y, ȳ)
)

do not affect the expressions for the one-form descendant fields via

derivatives of the primaries hence being projectively-compact. In that

case, spinor spin-locality of the next-order vertex implies its space-time

spin-locality.

Remarkably, the cubic vertices found in Gelfond, MV 2017 do indeed have

such a form. Moreover, they only contain the y, ȳ-independent terms

with non-zero Ω−− or Ω̄−−.

This implies that they have the minimal number of derivatives.
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Holographic Higher Spins

Klebanov-Polyakov conjecture: HS theory in AdS4 is holographically

dual to 3d vector model of scalar fields ϕi (i = 1 . . . N).

Sleight and Taronna argued 2017 that a HS theory resulting from holo-

graphic analysis based on the is essentially non-local

Since HS holography is a weak-weak duality, it should be possible to

test it.

No locality analysis of the full HS theory in AdS4 has been done except

for that of the Lebedev group Didenko, Gelfond, Korybut, MV 2017-2022

What has been shown so far indicates that HS theory is spin-local?!

Suggests gauged version of the KP conjecture with conformal HS

boundary theory MV 2012
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Conclusion

Concepts of compact and projectively compact vertices are introduced.

These apply to various versions of HS theories.

For projectively-compact vertices spin-locality in the spinor space and

space-time are equivalent.

PCSL vertices are conjectured to form a proper class of solutions of the

non-linear HS equations that guarantee spin-locality of the HS theory

at higher orders.

The new approach is designed to figure out the actual level of

(potential) non-locality of the HS theory.

The analysis of HS gauge theory has a potential to affect the paradigm

of the holographic corresondence replacing the gauge-gravity corre-

spondence by the conformal gravity - gravity correspondence.
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