

Status of the BM@N experiment

Baryonic Matter at Nuclotron (BM@N) Collaboration:

3 Countries, 10 Institutions, 184 participants, 8(7) Institutions signed MoU + JINR

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow
- Moscow Engineer and Physics Institute
- Skobeltsin Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow

Suspended participation in BM@N: •Nuclear Physics Institute CAS, Czech Republic

- Tubingen University, Germany
- GSI, Germany
- Warsaw University of Technology, Poland
- University of Wroclaw, Poland

Finished SRC program at BM@N:

- CEA, Saclay, France;
- TU Darmstadt, Germany;
- GSI & FAIR, Germany;
- Tel Aviv University, Israel;
- Massachusetts Institute of Technology, Cambridge, USA.

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions at the

Nuclotron

- Draft of the paper and analysis note circulated
 - T0 talk of V. Plotnikov tomorrow afternoon
 - Only one set of comments received

BM@N

BM@N experiment

Production of Λ hyperons in interactions of the 4 and 4.5 AGeV carbon beam with nucleus

Re-analysis of the preliminary results \rightarrow more precise MC description of Data instead of Data to MC embedding

BM@

- Talk of Yu.Stepanenko tomorrow afternoon

Present status: comparison with the preliminary results

A yield 4.0 GeV (0.1 < p_T < 1.05 GeV/c , 1.2 < y_{lab} < 2.1)

Interactions	C+C	C+AI	C+Cu	C+Pb
Note 2020	0.0164±0.0013	0.0286±0.0025	0.0307±0.0020	0.0366±0.0048
	± 0.0010	±0.0020	±0.0016	±0.0036

- Re-analysis of 4.5 AGeV is going on

Advanced analysis: p, t, He3, d/He4 in ToF-700

He⁴ / d separation by dE/dx in GEM detectors (I.Roufanov)

data

- Ar beam , 3.2 AGeV , Ar + Al,Cu,Sn ightarrow X
- L.Kovachev, Yu.Petukhov, I.Roufanov
- L.Kovachev talk tomorrow afternoon

Parallel analyses of argon-nucleus interactions:

K.Alishina (PhD student): p, d in ToF-400

A.Huhaeva (student): π- in ToF-400 data

K.Mashitsin (student), S.Merts: $\pi \pm$ in ToF-400 and ToF-700 data (independent tracking)

Plan for BM@N Experimental physics run for 800 hours (33 days) in October-December 2022

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity 2.5·10⁵/s, DAQ rate 2.5·10³/s, accelerator duty factor 0.25

 $1.8 \cdot 10^9$ interactions $1.8 \cdot 10^{11}$ beam ions

Particle	E _{thr} NN GeV	M b<10 fm	٤ %	Yield/s b<10fm	Yield / 800 hours borro im	C	DCM-SMM
Λ	1.6	1.5	2	150	5·10 ⁷		x 0.75
[1]	3.7	2.3·10 ⁻²	0.2	0.22	8·10 ⁴		x 0.5
Ω	6.9	2.6·10 ⁻⁵	0.2	2.6·10 ⁻⁴	90		
Anti- Λ	7.1	1.5·10 ⁻⁵	0.5	3.7.10-4	130	/	
					$\overline{}$		•

M.Kapishin

BM@N experiment

BM@N Trigger detectors

Variants of trigger logics

Trigger type	Trigger logic		
Beam Trigger (BT)	$BT = BC1 * VC_{veto} * BC2$		
Min. Bias Trigger (MBT)	MBT = BT * FD _{veto} * FHCal		
Centrality Trigger 1 (CCT1)	CCT1 = MBT * BD(low) * SiD(low)		
Centrality Trigger 2 (CCT2)	CCT2 = MBT * BD(high) * SiD(high)		
No Interaction Trigger (NIT)	$\mathbf{NIT} = \mathbf{BT} * \mathbf{FD}_{\mathrm{Au-ion}} * \mathbf{FHCal}_{\mathrm{veto}}$		

Trigger detectors in target area: BM@N multiplicity SiD and Barrel BD

FHCAL rates

Fragment detector FD

M.Kapishin

BM@N experiment

Centrality selection with trigger detectors

SiD and BD detectors : classes of centrality vs multiplicity

FHCAL: total energy vs collision impact parameter b

Fragment detector FD: Z² vs b

Magnetic field map re-measurement

New map measured in a wider X,Z range at few values of magnet current

Old map measured in a restricted X,Z range at lower magnet current

S.Piyadin, R.Shindin, S.Merts, T.Parphilo, B.Kondratiev, M.Mamaev and a team of shifter

Align X,Z coordinate system

Beam tracking with 3 Si detectors

Beam

3 x 203,9 = 611,7

BCI

203,9

Si prof

Magnetic Optics in BM@N area: angular beam spread of ~2 mrad

Beam envelopes at the BM@N area

Measured beam spot at target C¹² 2017 Ar 2018 Kr 2018 5.3 mm $\sigma_x = 6 \text{ mm}$ 5 mm $\sigma_v = 4.9 \text{ mm}$ 5 mm 3.2 mm

Vertex and beam angular resolution from simulation of 3 Si detectors (S.Merts)

13 slots in total 5 occupied slots

⁵⁰⁰ sigma = 0.19 mrad

-0.0005

200

100

-0.001

ResTx, 260rot60-160rot30-60, fixed P

hdtx

Mean 2.828e-05 ± 1.922e-06

0.0005

Std Dev

p?/nd

3.045e-05

0.00019

272.9/82

0.001 dTx, rad

410.4±5.7

ResTy, 260rot60-160rot30-60, fixed P

Forward Silicon Tracker for heavy ion run

Setup for FST tests with cosmic rays

FST modules in SRC setup

FST group of N.Zamiatin

Assembled FST half station of 7 detectors

Cosmic ray X/Y profile of FST half station

► All 48 modules and 4 FST stations with 6, 10,14,18 modules are assembled, tested and installed

BM@N detector preparation for heavy ion run

3 Silicon beam tracking detectors

Outer tracker: Cathode Strip Chambers \rightarrow 4 CSC of 106x106 cm2

Outer tracker group

Big CSC 220x145 cm2

BM@N experiment

Beam profile meter with Si detector and positioning mechanics

FST group of N.Zamiatin

Silicon beam tracking detector in SRC setup

INR RAS group

Forward hodoscope in front of FHCAL

BM@N tracking detector installation for heavy ion run

Semen Piyadin, S.Novozhilov, E.Martovitsky, FST , GEM tracker groups

GEM detectors on positioning mechanics in magnet

Carbon vacuum beam pipe

Forward Si tracker detectors in front of GEM detectors /

Vacuum boxes for beam detectors

Vacuum ion beam pipe from Nuclotron to BM@N

Status of BM@N detector upgrade

Forward Si tracking FST detectors: ► Proven technology and FEE readout electronics → used in C, Ar, Kr runs

► 4 stations, 48 modules assembled, tested and installed Beam Si tracking detectors and beam profile meters:

Tracking detectors ready and tested

Profile meters and electronics are ready

GEM tracking detectors:

► All 2 x 7 detectors produced at CERN, tested in C, Ar, Kr runs and with cosmic rays, installed Trigger and T0 detectors:

▶ BD, SiD, FD trigger detectors, beam and T0 counters are ready, performance to be tested in first heavy ion run CSC chambers for Outer tracker:

► 4 chambers are tested and installed

BM@N

► 1st big CSC chamber is still under tests, not ready for 2022 run

Time of Flight identification system: ► ToF-400 and ToF-700 detectors and readout electronics are in operation since 2018

Carbon fibre beam pipe inside BM@N:

► Vacuum beam pipe and target station are installed, beam pipe elements and detector boxes are installed

FHCAL, fragment and neutron detectors:
► FHCAL, Forward quartz hodoscope and Fragment Wall installed into BM@N setup

Prototype of granular ToF neutron detector to be tested in the run large aperture STS tracker:

Large aperture STS tracker: ▶ joint project with GSI and Polish

institutions on FEE and readout electronics is frozen

► need our own FEE chip and readout chain BM@N experiment

Beam tracing through BMN beam pipe and profile monitoring

First task of the next run \rightarrow trace beam and monitor its profile in the end of the setup (try to find optimal trajectory to reduce background)

Plans for Xe+CsI experimental run

 Need few days for technical run before physics run to prove beam quality and detector response, in case of problems → postpose physics run

Plans for physics run :

- requested 800 hours of physics data taking to collect up to 1.8.10⁹ Xe + Csl interactions
- ► detect and measure yields of Λ , Ξ^{-} hyperons and ${}_{\Lambda}{}^{3}H$ hyper-nuclei in dependence on kinematical variables: transverse momentum, rapidity and event centrality. Expect to detect statistics of Λ (40-50M), Ξ^{-} (40-80K), ${}_{\Lambda}{}^{3}H$ (10K) ► measure yields and azimuthal flows of charged π , K-mesons, protons and light nuclear fragments in dependence on transverse momentum, rapidity and event centrality

► Few scenarios:

collect bulk of data at maximal energy (3.5 – 3.9 AGeV) to get higher yields of cascade hyperons and hyper-nuclei;

or collect data at 2.9 AGeV to compare results with STAR fixed target run (but Au+Au interactions);

+ collect a fraction of data at reduced energy (~2 AGeV) to measure larger azimuthal fluxes of mesons, protons, fragments and energy dependence of hyperon yields

Thank you for attention!