TOF neutron spectrometer with compact neutron detectors

V. Yurevich

LHEP / JINR

Meeting of BM@N Collaboration 13 – 16 Sept. 2022

Aim of neutron measurements

- ✓ Neutron production double differential cross sections
- ✓ Neutron multiplicity
- ✓ Centrality dependence of neutron emission
- ✓ Dependence of neutron emission on size of colliding nuclei
- ✓ Contribution of different sources and stages of nuclear system decay
- ✓ Estimation of temperature and velocity of neutron sources

Main features of the spectrometer

- ✓ Small flight path
- ✓ High time resolution ($\sigma_t \simeq 100 150 \text{ ps}$)
- ✓ Suppression of gamma-ray background using stilbene and PSD method

Sources of neutron emission

Status of neutron data

- Mainly the data were obtained with proton beam
- Neutron spectra measurements without selection on centrality
- No data above 1 GeV/nucleon for collisions of heavy nuclei

A scheme of neutron measurements with BM@N setup

Study of neutron emission in AA- collisions

System decayed (neutron sources)	Stages of decay	Energy & Angular range	Measured value	Detectors	
Target spectator decay Lab. frame	Multifragmentation Evaporation	E _n < 100 MeV Large angle emission	d²σ/dE _n dΩ	TOF	
Participant region decay Moving frame	Hadron cascade Fireball decay	50 MeV < E _n < 4000 MeV Forward hemisphere	d²σ/dE _n dΩ	spectrometer	
Projectile spectator decay Beam frame	Multifragmentation Evaporation	Beam-energy neutrons in narrow cone around 0°	M _n Neutron distribution over NZDC modules	nZDC	

Neutron Detector

A scheme of Veto counter and Neutron Detector with 2 stilbene crystals

Scintillation photons are detected with SiPMs 6 x 6 mm², J ser. SensL :

4 SiPMs – coupled with stilbene crystal 2 SiPMs – coupled with Veto-scintillator

Neutron Detector

Characteristics of Stilbene

	Density gm/cm ³	Wavelength nm	Refractive index	Decay time ns	Light Photor N	yield ns/MeV γ	
Stilbene	1.25	390	1.626	3.5-4.5	10,700	14,000	

Photon detection efficiency of SensL SiPM

Decay time components of stilbene

Particle specie	Fast [ns]	Intermediate [ns]	Slow[ns]
gamma	5.21 (95 %)	21.33 (3 %)	134.77 (2 %)
neutron	5.01 (95 %)	27.70 (4 %)	253.19 (1 %)

H.D. Kim et al. "Characteristics of a stilbene scintillation crystal in a neutron spectrometer". In: Radiation Measurements 58 (Nov. 2013), pp. 133–137. Pulse shape for different particles

Christian Wysotzki (2018)

PSD

Suppression of gamma-ray background with pulse shape discrimination (PSD)

Examples of TOF neutron spectra with PSD background suppression

²⁵²Cf time of flight (TOF) spectra

Neutron energy spectra Au + Au , 4.2 *A* GeV

DCM-QGSM simulation N. Lashmanov

6000

Neutron Zero-Degree Calorimeter (nZDC)

Neutron multiplicity from beam spectator decay

Status of ND spectrometer

Test measurements with cosmic rays (in progress)

Detectors

- ND1 ND4 detectors have been produced and currently they are in test measurements with cosmic rays
- ND5 will be produced in October
- Veto counters in production
- Mechanical support in production

Electronics

- SiPM power supply produced and tested
- Fast amplifiers (CAEN module) available
- TQDC (2 modules) available
- Cables are ready for use

The spectrometer will be ready to run in the end of October

Thank You for Attention !