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Introduction

• The concept of neural networks is not new – the idea first appeared in 1943, in a work "A Logical 
Calculus of Ideas Immanent in Nervous Activity“, by Warren S. McCulloch and Walter Pitts.

• In modernity, due to increase of calculating power and accessibility, neural networks are used for 
a wide variety of applications. 

• Most neural networks are digital but can also be made in analogue form.

• One particular use case is signal processing, but neural networks are also used for simulations, 
physical cuts, track reconstruction, etc.

• Neural networks have the potential to approximate any function with any degree of precision.1

• However, traditional neural networks require “training”, which requires a set of “solved” 
problems.

• For example, for classifying handwritten digits, a set of labelled digits is necessary.

• One particular application is found in experimental positron-emission tomographs



Artificial neural networks basics

• Artificial Neural network consists of nodes 
called “neurons”, which are divided into layers

• Each neuron has an “activation function”, 
usually a sigma function 𝜎 =

1

1+𝑒−𝑧

• Each node of a layer is connected to each 
node of a previous layer. Each connection has 
a specific weight w factor to it. The input of a 
neuron is the sum of the incoming signals 
multiplied by their weights. 

• Each neuron also has a bias b.

• The output of a neurons function a is called 
activation a = 𝜎 𝑤𝑗𝑘

𝑙 𝑥 + 𝑏𝑗
𝑙 , 

• Such a network, given a large enough amount 
of neurons, can approximate any function of 
any number of variables 1

Neurons

Input

Output

X Y

𝑤11
1

𝑤21
1

𝑤31
1

𝑤11
2

𝑤12
2

𝑤13
2

𝑏1
1

𝑏2
1

𝑏3
1

l = 1

l = 2



“Deep” neural networks

• Neural networks can consist of multiple layers

• In such cases, the output of the first layer 
becomes the input of the second, and etc.

• In such networks, the formulas change 
accordingly

• 𝑎𝑗
𝑙 = 𝜎 σ𝑘𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙 , or in vector form

• 𝒂𝑙 = 𝜎 𝒘𝑙𝒂𝑙−1 + 𝒃𝑙

• The value 𝒘𝑙𝒂𝑙−1 + 𝒃𝑙 is defined as z

• Generally, instead of feeding every (weighted) 
value of the input vector X to every neuron of 
the input layer, individual components are 
used as individual inputs
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Training the neural network

• For the network to work properly, we need to 
find the correct coefficients for matrices w
and vectors b.

• To train the network, we need a set of input 
vectors x with respective solution vectors y.

• We can evaluate the work of our network 
with a loss function, for example a mean 
squared error:

• 𝐶 𝑤, 𝑏 ≡
1

2𝑛
σ𝒙 𝒚 𝒙 − 𝒂 2

• Where n – number of training events, 𝒂 –
vector of solutions provided by the neural 
network for a particular input vector x, and y 
is the corresponding vector of correct values.

• The simple approach for finding the 
coefficients is plain MC. The coefficients are 
randomized, multiple attempts to analyze the 
data are made and the variable arrays that 
perform the best (i.e. the C function is 
minimal) are kept. Then the process is 
repeated using the best performing 
coefficients with some random additions.

• The more complex method is called “error 
backpropagation”, popularized by a paper 
“Learning representations by back-
propagating errors” by David E. Rumelhart
et.al.2 The errors of each training event are 
used to make small corrections to the 
coefficients to “push” the function closer to a 
local minimum.



Practical application

• A crystal gamma-ray detector with an array of 
SiPMs or PMTs produce a matrix of signals, 
essentially an image.

• The 2d distribution shape will be dependent 
on the exact point of particle interaction.

• The X and Y coordinates are relatively easy to 
reconstruct analytically. Z is more complex.

• Compton-effect events will be harder to 
reconstruct than photo effect, as there will be 
more than one interaction per event and the 
distribution will be distorted.



MC model setup

• 2 models were made, both consisted of  
LSO(Y) crystals of with SiPM arrays

• 1st model consisted of a 19.25 x 19.25 x 12 
mm crystal with a 16 x 16 channel SiPM

• 2nd model consisted of a 57.6 x 57.6 x 12 mm 
crystal with a 8 x 8 channel SiPM

• 1000000 events of incident 511 keV gamma 
rays were generated for each model. The 
events were then separated into 2 parts, 
500000 for training, and 500000 for testing.

• The events are separated to ensure that the 
network is applicable beyond the set it is 
familiar with.



Results 1

∆𝑥 = 0.75 mm

∆𝑧 = 1.13 mm

57.6 mm plate

19.25 mm plate

∆𝑥 = 0.88 mm

∆𝑧 = 1.22 mm



Results 2

∆𝑥 = 0.74 mm

∆𝑧 = 1.01 mm

57.6 mm plate

19.25 mm plate

∆𝑥 = 0.80 mm

∆𝑧 = 0.98 mm



Results 3

∆𝑥 = 1.52 mm

∆𝑧 = 2. 68mm

57.6 mm plate

19.25 mm plate

∆𝑥 = 0.88 mm

∆𝑧 = 1.22 mm



Results 4

Neurons

Layers

256 neurons 512 neurons 1024 neurons

dX dZ dX dZ dX dZ

1 layer 0.98 1.78 0.99 1.75 0.99 1.7
2 layers 0.91 1.36 0.94 1.36 0.92 1.3
3 layers 0.91 1.29 0.96 1.3 0.88 1.22

Neurons

Layers

256 neurons 512 neurons 1024 neurons

dX dZ dX dZ dX dZ

1 layer 0.82 1.3 0.77 1.33 0.78 1.22
2 layers 0.79 1.17 0.75 1.13 0.78 1.15
3 layers 0.8 1.19 0.79 1.17 0.78 1.17

256 channel matrix

64 channel matrix



Conclusions

• Neural networks can and are used for event 
reconstruction in detectors.

• Neural networks have the potential to achieve 
a degree of precision limited only by 
experimental constraints.

• Preparing the database of training events is 
the most challenging part.

• Добавить мотивацию кристаллы пэт, 
удешевление

• An example of an experimental work can be 
found in “Gradient Tree Boosting-Based 
Positioning Method for Monolithic Scintillator 
Crystals in Positron Emission Tomography” by 
F. Muller et.al. 

• DOI: 10.1109/TRPMS.2018.2837738

• A good example of neural network application 
with training based on grid-like scattering of 
event can be found in “Artificial neural 
networks for positioning of gamma 
interactions in monolithic PET detectors” by 
M. Decuyper et.al.

• DOI: 10.1088/1361-6560/abebfc

https://doi.org/10.1109/TRPMS.2018.2837738
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Backups



Backpropagation equations

• For the backpropagation algorithm to work, 
we need to calculate the partial derivatives 
𝜕𝐶𝑥/𝜕𝑤𝑗𝑘

𝑙 and 𝜕𝐶𝑥/𝜕𝑏𝑗
𝑙.

• For this we need to introduce the value 𝛿𝑗
𝑙, 

that represents the error of the j neuron of 

the l layer, 𝛿𝑗
𝑙=

𝜕𝐶𝑥

𝜕𝑧𝑗
𝑙 .

• For the output layer L, 𝛿𝑗
𝐿=

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎′(𝑧𝑗

𝐿), where 

𝜕𝐶

𝜕𝑎𝑗
𝐿 = (𝑎𝑗

𝐿 − 𝑦𝑗).

• 𝛿𝐿 = ∇𝑎𝐶⨀𝜎
′ 𝒛𝐿 = (𝑎𝐿 − 𝒚)⨀𝜎′ 𝑧𝐿

• 𝛿𝑙 = ((𝒘𝑙+1)𝑇𝜹𝑙+1)⨀𝜎′ 𝒛𝑙

•
𝜕𝐶𝑥

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

•
𝜕𝐶𝑥

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑗

𝑙−1𝛿𝑗
𝑙



Training details

• The error back-propagation method was used

• The 2d distribution shape will be dependent 
on the exact point of particle interaction.

• The X and Y coordinates are relatively easy to 
reconstruct analytically. Z is more complex.

• Compton-effect events will be harder to 
reconstruct than photo effect, as there will be 
more than one interaction per event and the 
distribution will be distorted.

• The results demonstrated are achieved with a 
network that has all 3 coordinates as outputs, 
at the same time, separate networks with 
individual outputs produce similar results.



Approximation visual

• When 𝑤11
1 is large, a =

1

1+𝑒−(𝑤11
1 𝑥+𝑏1

1)
, behaves 

like a “step” function, 

• 𝑠1 = −
𝑤21
1

𝑏2
1 defines the step position.

• 𝑤11
2 defines the height of the step.

• If 𝑤11
2 = −𝑤12

2 and 𝑠1 and 𝑠2 = −
𝑤21
1

𝑏2
1 are offset, 

we get a rectangular function.
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