

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions at the Nuclotron

M.Kapishin, L.Kovachev, <u>V.Plotnikov</u>, Yu.Petukhov, I.Rufanov, M.Zavertyaev, A.Zinchenko

VBLHEP, JINR, Dubna, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER BM@N collaboration meeting 14.09.2022

Outline

- 1. Run with argon beam (March 2018)
 - BM@N detector set-up
- 2. Data analysis (*Ar+C*, *Ar+Al*, *Ar+Cu*, *Ar+Sn*, *Ar+Pb* at 3.2A GeV)
 - Selection criteria
 - ✓ Reconstructed signal of π^+/K^+ (d*N*/d*Y* & d*N*/*p*_{*T*} spectra)
 - Data MC agreement: multiplicity, momentum spectra
 - Decomposition of π^+/K^+ reconstruction efficiency
 - Trigger, luminosity and mean impact parameters
 - Cross section and yields of π^+/K^+
 - ✓ Reconstructed p_T spectra of π^+/K^+ and extracted inverse slope parameter
 - ✓ Systematic uncertainty and extrapolation factors
- 3. Summary and plans

BM@N set-up in carbon run

Central tracker in argon run.

Schematic view of the beam counters, barrel detector, forward silicon detector and target.

✓ Beam halo, pile-up suppression within the readout time window, number of signals in the start detector: BC1=1, number of signals in the beam counter: BC2=1, number of signals in the veto counter around the beam: Veto=0;

Trigger condition in the multiplicity and barrel detectors: number of signals FD \ge n, n \in [2;4], BD \ge m, m \in [2;4] and combinations of FD and BD triggers (run dependent).

Table 1. Number of triggered events, beam fluxes and integrated luminosities collected for the argon beam of 3.2A GeV (*ToF-400* (*ToF-700*)).

Interactions (target thickness)	Number of triggers / 10 ⁶	Integrated beam flux / 10 ⁷	Integrated luminosity / 10 ³⁰ cm ⁻²
Ar+C (2mm)	11.7 (11.3)	10.9 (8.7)	2.06 (1.97)
Ar+Al (3.33mm)	30.6 (29.2)	15.4 (10.2)	2.30 (2.05)
<i>Ar+Cu</i> (1.67mm)	30.9 (28.7)	15.9 (11.3)	1.79 (1.60)
<i>Ar+Sn</i> (2.57mm)	30.0 (25.9)	15.1 (9.5)	1.11 (0.91)
<i>Ar+Pb</i> (2.5mm)	13.7 (13.7)	7.0 (4.9)	0.50 (0.40)

$\pi^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$ selection criteria

Abbreviation:

PV – primary vertex

- ✓ Number of hits in 6 GEM per track > 3
- ✓ Tracks from PV: -3.4 < $Z_{PV} Z_0 < 1.7$ cm
- Momentum range of tracks for ToF-400 (ToF-700): *p* < 0.5 (0.7) GeV/c
- ✓ Distance from a track to PV in the X-Y plane: *dca*< 1 cm ✓ χ^2/ndf for tracks from the PV < 3.5²
- Distance of extrapolated tracks to *CSC* (*DCH*) and *ToF*-400 (*ToF*-700): $|\text{resid}_{X,Y}| < 2.5 \sigma$ of hit-track residual distribution

Particle, Detector	Target									
	С	Al	Си	Sn	Pb					
π ⁺ , ToF-400	4020±66	21130±152	28010±175	32060±186	22420±156					
π ⁺ , ToF-700	1070±34	5640±80	8090±95	9450±104	6830±86					
K ⁺ , ToF-400	45±10	278±25	538±31	729±36	570±32					
K ⁺ , ToF-700	31±6	117±16	193±21	346±23	221±20					

Table2. Reconstructed signals of π^+ and K^+ for *ToF-400* and *ToF-700*.

Signal of π^+ in *Ar*+*Sn* interaction

Fig. 10e. Spectrum of mass squared in bins of *y* of π^+ identified in *ToF-400* in *Ar+Sn* interactions at 3.2 AGeV argon beam energy: left) experimental events, right) simulated events. Background (blue histogram) subtraction by mixed events.

14.09.2022

Signal of K^+ in Ar + Sn interaction

Fig. 10f. Spectrum of mass squared in bins of *y* of K^+ identified in *ToF-400* in *Ar+Sn* interactions at 3.2 AGeV argon beam energy: left) experimental events, right) simulated events. Background (blue histogram) is taken from mixed events and normalized to the **red** signal histogram in the mass squared range below and above the K^+ peak.

Signal of π^+ in Ar+Cu interaction

Fig. 10c. Spectrum of mass squared in bins of *y* of π^+ identified in *ToF-400* in *Ar+Cu* interactions: background subtraction by the linear fit.

14.09.2022

Signal of K^+ in Ar+Cu interaction

Fig. 10d. Spectrum of mass squared in bins of *y* of K^+ identified in *ToF-400* in *Ar+Cu* interactions: background subtraction by the linear fit.

Comparison of experimental data and MC

Fig. 3a. Ar + A interactions at 3.2 AGeV argon beam energy: comparison of experimental distributions (red lines) and Monte Carlo GEANT distributions of events generated with the DCM-SMM model (blue lines): Distribution of the distance of the closest approach DCA between tracks and the vertex in the plane perpendicular to the beam direction; χ^2 of reconstructed tracks; number of tracks reconstructed in the primary vertex; number of hits per track reconstructed in 3 Si + 6 GEM detectors.

Comparison of experimental data and MC

Fig. 3b. Ar+A interactions at 3.2 AGeV argon beam energy: comparison of *ToF-400* experimental data (red curves) and DCM-SMM + GEANT Monte Carlo simulation (blue curves): total momentum of identified π^+ and K^+ (upper plots); transverse momentum of π^+ and K^+ (lower plots).

14.09.2022

Comparison of experimental data and MC

Fig. 3c. Ar+A interactions at 3.2 AGeV argon beam energy: comparison of *ToF-700* experimental data (red curves) and DCM-SMM + GEANT Monte Carlo simulation (blue curves): total momentum of identified π^+ and K^+ (upper plots); transverse momentum of π^+ and K^+ (lower plots).

Decomposition of efficiency

Table 4. Decomposition of π^+/K^+ reconstruction efficiency.

Reconstruction efficiency	$\varepsilon_{rec} = \varepsilon_{acc} \cdot \varepsilon_{cuts}$
π^+/K^+ geometrical acceptance in detectors	$\varepsilon_{acc} = N_{acc} (y, p_T) / N_{gen} (y, p_T)$
Efficiency of reconstruction of π^+/K^+ within the detector geometrical acceptance after applying kinematic and spatial cuts	$\varepsilon_{cuts} = N_{rec}(y,p_T) / N_{acc}(y,p_T)$

After the event simulation and reconstruction the successfully reconstructed π^+/K^+ were counted in the numerator N_{acc} . The detector acceptance was taken as N_{acc}/N_{gen} , where N_{gen} is the total number of generated MC events. The number of π^+/K^+ after applying kinematic and spatial cuts (N_{cuts}) gave the "selection cuts" efficiency with respect to the number of accepted ones from above.

Efficiency in Ar+Cu interactions for π^+ BN

Fig.12a. π^+ geometrical acceptance (left plots); efficiency of reconstruction of accepted π^+ after applying kinematic and spatial cuts (middle plots) and full reconstruction efficiency (right plots) shown in bins of rapidity y lab in the laboratory system, transverse momentum p_T . Results are shown for Ar+Cu interactions at 3.2 AGeV argon beam energy.

14.09.2022

Efficiency in Ar + Cu interactions for $K^+ \square$

Fig.12b. K^+ geometrical acceptance (left plots); efficiency of reconstruction of accepted K^+ after applying kinematic and spatial cuts (middle plots) and full reconstruction efficiency (right plots) shown in bins of rapidity y lab in the laboratory system, transverse momentum p_T . Results are shown for Ar+Cu interactions at 3.2 AGeV argon beam energy.

Table 5a. Mean BD trigger efficiency evaluated for events with reconstructed π^+/K^+ in interactions of the argon beam with the whole set of *C*, *Al*, *Cu*, *Sn*, *Pb* targets.

Trigger / Target π^+ mesons	C Al Cu		Си	Sn	Pb
ε_{trig} (BD>=2)	0.80±0.03	80±0.03 0.96±0.01 0.98±0.01		0.99 ± 0.01	0.99 ± 0.01
ε_{trig} (BD>=3)	0.66±0.02	0.92±0.01	0.97±0.01	0.98±0.01	0.99±0.01
ε_{trig} (BD>=4)	0.48±0.02	0.88±0.01	0.95±0.01	0.97±0.01	0.98±0.01

Trigger / Target <i>K</i> + mesons	С	Al Cu		Sn	Pb	
ε _{trig} (BD>=2)	0.67±0.15	0.97±0.02	0.98 ± 0.01	0.99±0.01	0.99±0.01	
ε_{trig} (BD>=3)	0.67±0.15	0.96±0.02	0.97±0.01	0.99 ± 0.01	0.99±0.01	
ϵ_{trig} (BD>=4)	0.67±0.15	0.94±0.02	0.95±0.02	0.99 ± 0.01	0.98±0.01	

BM@N

Table 5b. Mean FD trigger efficiency evaluated for events with reconstructed π^+/K^+ in interactions of the argon beam with the whole set of *C*, *Al*, *Cu*, *Sn*, *Pb* targets.

Trigger / Target π^+ mesons	С	C Al Cu		Sn	Pb	
ε_{trig} (FD>=2)	0.28±0.01	$0.40{\pm}0.01$	0.56 ± 0.01	0.65 ± 0.01	0.72±0.01	
ε_{trig} (FD>=3)	0.14±0.01	0.22±0.01	0.37±0.01	$0.49{\pm}0.01$	0.58±0.01	
ε_{trig} (FD>=4)	0.08±0.01	0.11±0.01	0.23±0.01	0.34±0.01	0.46±0.01	

Trigger / Target <i>K</i> + mesons	С	C Al Cu		Sn	Pb
ε _{trig} (FD>=2)	0.30±0.06	0.40±0.03	0.64±0.03	0.74±0.03	0.82±0.03
ε_{trig} (FD>=3)	0.17±0.04	0.23±0.02	0.45±0.03	0.61±0.03	0.73±0.03
ϵ_{trig} (FD>=4)	0.08±0.03	0.12±0.02	0.35±0.03	0.44±0.03	0.58±0.03

Luminosity

Fig.5 (lumi.pdf). Run-7, X-Y of the primary vertices for different trigger conditions. Left: $BD \ge 3$, Right, $Si \ge 3$.

Fig.6 (lumi.pdf). Run-7, X-Y of the primary vertices within 3–olimits around the target.

 \checkmark 13.5% of the beam is missed the target by the edge of the target due to shifted beam position.

- The systematic uncertainty for this measurement do not exceed 2%.
- ✓ The events collected with the Si-trigger near the upper edge of the target were recorded with higher efficiency relative the rest of the beam spot.

Table 1*. Mean impact parameters of min. bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions with π^+ .

MC	<i>b</i> , fm (<i>Ar</i> + <i>C</i>)	b, fm (Ar+Al)	b, fm (Ar+Cu)	b, fm (Ar+Sn)	b, fm (Ar+Pb)
Events with gen. π^+	4.18	4.79	5.59	6.29	7.04
Events with gen. π^+ in the measured range of BM@N	3.75	4.29	5.03	5.70	6.43
Events with rec. π^+	3.51	3.91	4.61	5.29	6.13

Table 2*. Mean impact parameters of min. bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions with K^+ .

MC	<i>b</i> , fm (<i>Ar</i> + <i>C</i>)	b, fm (Ar+Al)	b, fm (Ar+Cu)	b, fm (Ar+Sn)	b, fm (Ar+Pb)
Events with gen. K^+	3.24	3.50	3.98	4.50	5.12
Events with gen. <i>K</i> ⁺ in the measured range of BM@N	3.17	3.42	3.90	4.44	5.13
Events with rec. K^+	3.25	3.55	4.13	4.72	5.46

Cross section and yields of π^+/K^+ mesons \mathfrak{S}

The cross section σ_{π^+} and yield Y_{π^+} of π^+ meson production in Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions are calculated in bins of *y* and p_{τ} according to the formulae:

 $\sigma_{\pi^+}(y,p_T) = N_{rec}^{\pi^+}(y,p_T) / (\varepsilon_{rec}(y,p_T) \cdot \varepsilon_{trig} \cdot L); \qquad Y_{\pi^+}(y,p_T) = \sigma_{\pi^+}(y,p_T) / \sigma_{inel}$ where *L* is the luminosity,

 $N_{rec}^{\pi^+}$ – the number of reconstructed π^+ mesons,

 ε_{rec} – the combined efficiency of the π^+ meson reconstruction,

 ε_{trig} – the trigger efficiency,

 σ_{inel} – the cross section for minimum bias inelastic Ar+A interactions.

The same formulas are used to calculate the K^+ inclusive production cross section and yield in bins of $y(p_T)$. The cross sections in (y, p_T) bins are calculated as weighted averaged of the results obtained with *ToF-400* and *ToF-700* data taking into account the statistical uncertainties $(w \sim 1/6^2)$.

Interaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
Inelastic cross section, mb	1470±50	1860±50	2480±50	3140±50	3970±50

The cross sections for inelastic Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions are taken from the predictions of the DCM-SMM model which are consistent with the results calculated by the formula: $\sigma_{inel} = \pi R_0^2 (A_p^{1/3} + A_T^{1/3})^2$, where $R_0 = 1.2$ fm is an effective nucleon radius, A_p and A_T are atomic numbers of the beam and target nucleus.

14.09.2022

Number of reconstructed π^+ mesons

Fig. 11a. Number of reconstructed π^+ in *ToF-400* in interactions of 3.2 AGeV argon beam with *C*, *Al*, *Cu*, *Sn*, *Pb* targets in bins of *y* (5 left plots) and in bins of p_T (5 right plots).

Number of reconstructed *K*⁺ mesons

Fig. 11b. Number of reconstructed K^+ in *ToF-400* in interactions of 3.2 AGeV argon beam with *C*, *Al*, *Cu*, *Sn*, *Pb* targets in bins of *y* (5 left plots) and in bins of p_T (5 right plots).

Reconstructed *y* spectra of π^+ mesons

Fig. 15a. Reconstructed rapidity *y* spectra of π^+ measured in bins of p_T in minimum bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions at 3.2 AGeV argon beam energy (blue symbols). The error bars represent the statistical errors, the boxes show the systematic errors. Predictions of the DCM-SMM, UrQMD and PHSD models are shown as rose, green and magenta lines.

14.09.2022

Reconstructed *y* spectra of K^+ mesons

Fig. 15b. Reconstructed rapidity *y* spectra of K^+ measured in bins of p_T in minimum bias Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions at 3.2 AGeV argon beam energy (blue symbols). Predictions of the DCM-SMM, UrQMD and PHSD models are shown as rose, green and magenta lines.

Reconstructed p_{τ} spectra of π^+ mesons

 $1/p_T \cdot d^2 N/dp_T dy = N \cdot exp(-(m_T - m_{\pi^+})/T)$

where $m_T = \sqrt{(m_{\pi^+}^2 + p_T^2)}$ is the transverse mass, N – normalization (free parameter), T – inverse slope (free parameter), dy corresponds to the measured y_{lab} range.

Reconstructed p_T spectra of K⁺ mesons

Fig. 16b. Reconstructed invariant transverse momentum p_T spectra of K^+ in minimum bias Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions at 3.2 AGeV argon beam energy (symbols). The error bars represent the statistical errors, the boxes show the systematic errors. Results of the fit are shown as **red** curves.

Reconstructed p_T spectra of K⁺ mesons

Fig. 16c. Reconstructed invariant transverse momentum p_T spectra of K^+ in the measured rapidity range in minimum bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions at 3.2 AGeV argon beam energy (symbols). Results of the fit are shown as red curves.

Inverse slope parameter T_o of π^+ mesons **BAGO**

Fig. 17a. The *y* dependences of the inverse slope parameter T0 of the π^+ invariant p_T spectra in Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb minimum bias interactions (blue symbols). The error bars represent the statistical errors, the boxes show the systematic errors. Predictions of the DCM-SMM, UrQMD and PHSD models are shown as rose, green and magenta lines.

Inverse slope parameter T_o of π^+ mesons **BAGE**

Fig. 17b. The *y* dependences of the inverse slope parameter T0 of the K^+ invariant p_T spectra in Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb minimum bias interactions (blue symbols). Predictions of the DCM-SMM, UrQMD and PHSD models are shown as **rose**, green and **magenta** lines.

14.09.2022

Systematic uncertainties

The systematic uncertainty of the π^+/K^+ yields in every p_T and y bin is calculated as a quadratic sum of uncertainties coming from the following sources:

Sys1: Systematic uncertainty of the trigger efficiency evaluated as a function of the number of tracks from the primary vertex and the primary vertex position.

Sys2: Systematic uncertainties of the reconstruction efficiency due to the remaining difference in the X/Y primary vertex distribution in the simulation relative to the experimental data.

Sys3: Systematic uncertainties of the background subtraction under the π^+ and K^+ signals in the mass squared spectra of identified particles.

Table 10. Total systematic uncertainty of the π^+ and K^+ yields measured argon-nucleus interactions.

Target π^+			Target	$K^{\scriptscriptstyle +}$							
Systematics	<i>C</i> , sys%	Al, sys%	Cu , sys%	Al, sys%	Al , sys%	Systematics	C , sys%	Al , sys%	Cu , sys%	Sn , sys%	Pb , sys%
Sys1-Sys3	14	11	12	9	9	Sys1-Sys3	28	26	14	12	16
Norm	7.8	6.3	6.2	6.2	6.2	Norm	29	10	8.4	7.6	7.4

The π^+/K^+ yield normalization uncertainty calculated as a quadratic sum of uncertainties of the trigger efficiency, luminosity and inelastic nucleus-nucleus cross section. The normalization uncertainty is valid for the whole measured kinematical range.

Table 12a. Extrapolation factors to the full kinematic range and π^+ yields for 3.2 AGeV argon-nucleus data in the measured and full kinematical ranges. The first errors given are statistical, the second errors are systematic.

3.2 AGeV, π ⁺	С	Al	Си	Sn	Pb
DCM-SMM extrap. factor	3.43	3.86 4.51 4.98		5.64	
Yield in $0.1 < p_T < 0.6$	0.275±0.006	1.00±0.01	1.14±0.01	1.28±0.01	1.25±0.01
GeV/c, $1.5 < y_{lab} < 3.2$	±0.027	±0.07	±0.08	±0.09	±0.085
Yield in the full kin.	0.943±0.019	3.86±0.04	5.15±0.05	6.35±0.05	7.03±0.07
range	±0.092	±0.27	±0.35	±0.44	±0.48

The K⁺ yields (BM@N)

Table 12b. Extrapolation factors to the full kinematic range, K^+ yields and K^+ to π^+ yield ratios for 3.2 AGeV data in the measured and full kinematical ranges. The first errors given are statistical, the second errors are systematic. Also the inverse slope parameters *T* of the invariant p_{τ} spectra are given.

3.2 AGeV, K ⁺	С	Al	Си	Sn	Pb
DCM-SMM extrap. factor	2.33	2.51	2.84	3.21	3.67
Yield in 0.1< <i>p</i> _T <0.5	0.0094±0.0018	0.0390±0.0028	0.0417±0.0021	0.0560±0.0022	0.0510±0.0022
GeV/c, 1.0< <i>y</i> _{lab} <2.0	±0.0035	±0.0061	±0.0066	±0.0075	±0.0092
Yield in the full kin.	0.0219±0.0042	0.0980±0.0070	0.1190±0.0060	0.180±0.007	0.188±0.008
range	±0.0081	±0.015	±0.019	±0.024	±0.034
K^+/π^+ ratio in the measured range	0.0343±0.0066	0.0390±0.0028	0.0366±0.0019	0.0439±0.0018	0.0411±0.0018
	±0.0125	±0.0055	±0.0053	±0.0051	±0.0068
K^+/π^+ ratio in the full kin. range	0.0233±0.0045	0.0253±0.0018	0.0230±0.0012	0.0283±0.0012	0.0268±0.0012
	±0.0085	±0.0035	±0.0033	±0.033	±0.0044
<i>K</i> + inverse slope <i>T</i> , MeV measured range	73±14±13	80±7±5	81±5±5	81±5±4	78±5±4

Table 13. Yields of K^+ , π^+ production and effective inverse slopes of invariant m_T spectra measured in interactions of light and medium nucleus.

Interacting nucleus / Beam kinetic energy / Experiment	π ⁺ , <i>K</i> ⁺ yields	<i>K</i> ⁺ / π ⁺ yield ratio, •10 ⁻²	T_{eff} at y^* = 0, MeV, K^+ / π^+
<i>Ar+KCl</i> , 1.76 AGeV, HADES	$3.9\pm0.1\pm0.1~(\pi)$ (2.8±0.2)·10 ⁻² (K ⁺)		82.4±0.1 ^{+9.1} _{-4.6} (π) 89±1±2 (K ⁺)
Ni+Ni, 1.93 AGeV, FOPI	$3.6 \cdot 10^{-2} (K^+, A_{part} = 46.5)$ $8.25 \cdot 10^{-2} (K^+, A_{part} = 75)$	$(7.59\pm0.49)\cdot10^{-3}$ (A _{part} = 46.5)	110.9±1.0 (A _{part} = 75)
Ni+Ni, 1.93 AGeV, KaoS	$3.10^{-2} (K^{+})$		97±7 (non-central) (<i>K</i> ⁺) 107±10 (central)(<i>K</i> ⁺)

Summary

- 1. Production of π^+ and K^+ mesons in interactions of the 3.2A GeV kinetic energy argon beam with *C*, *Al*, *Cu*, *Sn*, *Pb* targets was studied with the BM@N detector at the Nuclotron.
- 2. The analysis procedure has been presented and described.
- 3. Results on π^+ and K^+ meson yields and inverse slope parameters have been obtained and compared with model predictions and data available.
- 4. Draft article released 21.08.2022. Waiting for comments. Deadline 30 September 23:59.
- 5. Request for publication.

Thank you for attention!

Efficiency distributions in Si/GEMs

Fig. 4. 2-dimentional efficiency distributions in Si and GEM stations measured with experimental tracks and implemented into Monte Carlo simulation

Residual distributions of *GEM* hits

Fig. 5a. Residual distributions of hits in X projection with respect to reconstructed tracks in *Si* and *GEM* detectors: experimental data (red histograms), simulated tracks (blue histograms).

Fig. 5b. Residual distributions of hits in Y projection with respect to reconstructed tracks in *Si* and *GEM* detectors: experimental data (red histograms), simulated tracks (blue histograms).

Mean values of residuals of *CSC* hits

Fig. 6a. *ToF-400* data and simulation: Mean values of residuals of *CSC* hits in X projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Fig. 6b. *ToF-400* data and simulation: Mean values of residuals of *CSC* hits in Y projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Sigma of residuals of *CSC* hits

Fig. 6c. *ToF-400* data and simulation: Sigma of residuals of *CSC* hits in X projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Fig. 6d. *ToF-400* data and simulation: Sigma of residuals of *CSC* hits in Y projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot experimental data, right plot – simulated tracks.

Mean values of residuals of *ToF-400* hit

Fig. 7a. Mean values of residuals of *ToF-400* hits in the X projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Fig. 7b. Mean values of residuals of *ToF-400* hits in the Y projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Sigma of residuals of *ToF-400* hits

Fig. 7c. Sigma of residuals of *ToF-400* hits in the X projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Fig. 7d. Sigma of residuals of *ToF-400* hits in the Y projection with respect to reconstructed positive tracks in dependence on the particle momentum: left plot – experimental data, right plot – simulated tracks.

Mean values of residuals of *DCH* hits

Fig. 8a. *ToF-700* data and simulation: Mean values of residuals of *DCH* hits in X and Y projections with respect to reconstructed positive tracks in dependence on the particle momentum: upper plots experimental data, lower plots – simulated tracks.

Sigma of residuals of *DCH* hits

Fig. 8b. *ToF-700* data and simulation: Sigma of residuals of *DCH* hits in X and Y projections with respect to reconstructed positive tracks in dependence on the particle momentum: upper plots experimental data, lower plots – simulated tracks.

Mean values of residuals of *ToF-700* hit

Fig. 9a. Mean values of residuals of *ToF-700* hits in the X and Y projections with respect to reconstructed positive tracks in dependence on the particle momentum: upper plots - experimental data, lower plots - simulated tracks.

Sigma of residuals of *ToF-700* hits

Fig. 9b. Sigma of residuals of *ToF-700* hits in the X and Y projections with respect to reconstructed positive tracks in dependence on the particle momentum: upper plots - experimental data, lower plots - simulated tracks.

Fig. NNN. Pion multiplicity n_{π} per mean number of participating nucleon A_{part} as a function of the kinetic beam energy E_{beam} .