ToF-700 π^+ and π^- analysis

K.Mashitsin, S.Merts, S.Nemnyugin

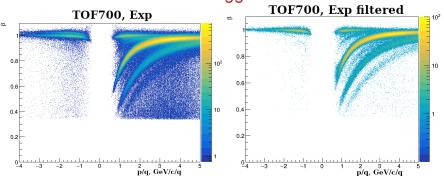
SPbU & JINR

14/09/2022

The main goal of the analysis

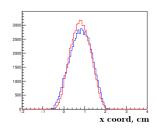
- ullet Identifying π^\pm
- ullet Estimation of the π meson production cross section

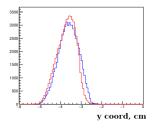
Outline

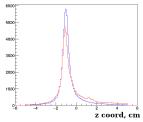

- Previous results
- Track selection algorithm
- Filtering experimental data
- Momentum dependence matching parameters
- Efficiency corrections for TOF700 and DCH
- Evaluation of trigger efficiency
- Summary

Previous results

Algorithms for filtering experimental data have been implemented


Statistics were collected for the argon beam on all targets and triggers.

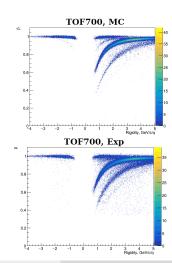




Previous results

- Realistic effects have been added to the modeling process
 - Angle of beam
 - Gaussian smearing vertex
 - Lorentz shifts
 - Dead strips, hits

Input data

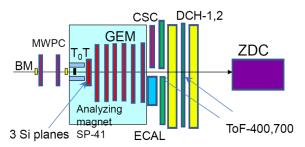

Run: 7 and Tracking: CellAuto

Monte Carlo

- Generator: DCM-SMM
- System: Ar + Cu
- Energy: 3.2 AGeV
- Smearing Vertex
- Lorentz Shifts
- Dead strips, hits

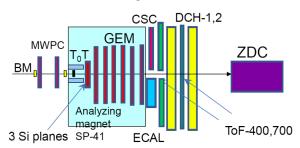
Exp data

- System: Ar + Cu
- Energy: 3.2 AGeV

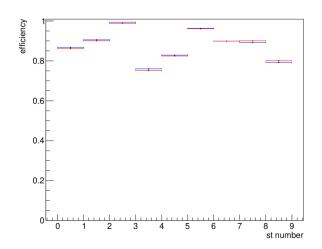


Filtering experimental data

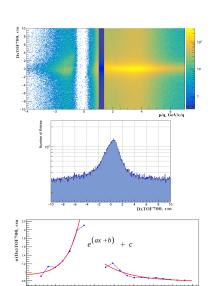
Selection criteria for reliable experimental tracks:

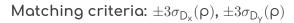

- Vertex in range $V_x \in (-2,4)$ cm; $V_y \in (-6,-1)$ cm; $V_z \in (-5,5)$ cm.
- Minimum 2 hit in silicon stations and min 4 hits in GEM.
- The track is confirmed in the first drift chamber
 For the TOF700 detector, we associate the track with the hit,
 and for the DCH1 with the track segment

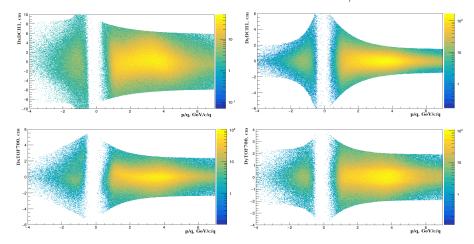
The Station Skip Algorithm


- Let station i is station where we want to calculate efficiency
- Propagate SIL -> GEM -> DCH1 -> TOF700 -> DCH1 -> GEM
 -> SIL -> Vertex by KF with parameters update (skip station i)
- Propagate Vertex -> SIL -> GEM by KF with getting residuals and calculating efficiencies

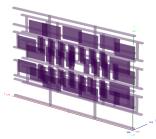
Stations efficiency inside the magnet

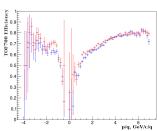

Station skip + hits disable + station acceptance


Alignment algorithm: momentum corrections


- Propagate each track to the detector plane
- Create histograms with all track-to-hit(track) connections from momentum
- Every 350 MeV, project the residuals onto the Y plane
- Fit distibutions by gaus + pol2 to get $\mu_{D_x}(\rho/q)$ and $\sigma_{D_x}(\rho/q)$
- ullet Fit all $\mu_{\mathsf{D_{X}}}$ and $\sigma_{\mathsf{D_{X}}}$ by exponential function

Selected tracks after momentum correction

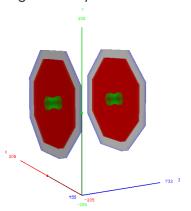


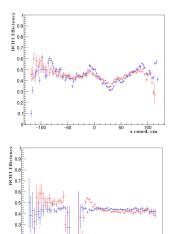


TOF700 Efficiency correction

TOF700 eff constants: by modules

- From the exp data get the efficiency of each module: Mod_{eff}
- At the stage of creating hits, choose a random uniformly distributed number (Mod_{rnd})
- If Mod_{rnd} > Mod_{eff}, then the hit for the given module is not recorded





DCH Efficiency correction

Alignment by x coordinate

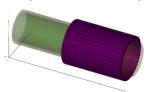
p/q, GeV/c/q

Cross section of π^{\pm} mesons

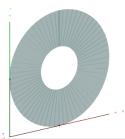
$$\sigma_{\pi^{\pm}}(y, \rho_t) = \frac{N_{rec}^{\pi^{\pm}}(y, \rho_t)}{\varepsilon_{rec}(y, \rho_t)\varepsilon_{trig}L}$$

where

- y is the rapidity
- \circ ρ_t is the transverse momentum
- \bullet N^{π^{\pm}} is the number of reconstructed π^{\pm}
- $\varepsilon_{\rm rec}$ is the efficiency of the π^{\pm} reconstruction
- \bullet $\varepsilon_{\text{trig}}$ is the trigger efficiency
- L is the luminosity


Estimation of trigger efficiency

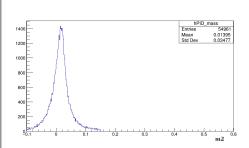
$$\varepsilon(BD>k) = \frac{N_{\pi}(BD>k,FD>N,N_{tr})}{N_{\pi}(FD>N,N_{tr})},$$

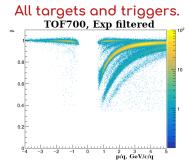

where

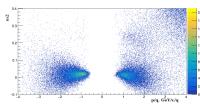
- k = 1,2,3 reading from digits
- N_{tr} is the number of tracks in primary vertex
- FD > N is the trigger condition for writing data
- \circ N_{π} is the number of pions

BD (barrel detector)

FD (forward silicon detector)

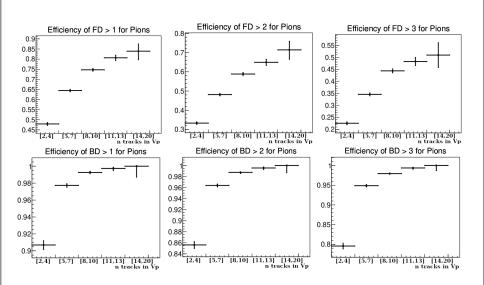



Momentum and mass range selection


- Calculate the efficiency without dividing by targets
- Momentum:

$$-2.6 < \rho/q < 2.4$$

• Mass squared: $-0.1 < m^2 < 0.15$



Trigger efficiency for pions

General efficiency table

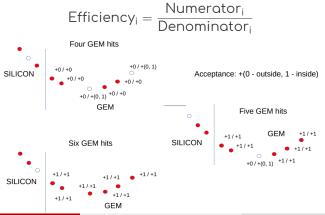
N Tracks in V _p	FD>1	FD>2	FD>3	BD>1	BD>2	BD>3
[2, 4]	48	33	23	91	86	80
[5,7]	64	48	35	98	96	95
[8,10]	75	59	44	99	99	98
[11,13]	81	65	48	100	100	99
[14,20]	84	71	51	100	100	100

BD FD Beam ions Target

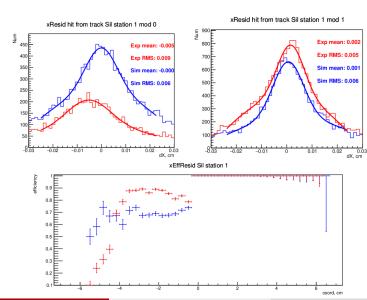
Summary

- The efficiency inside the magnet are in good agreement.
- Accounting for dynamic matching ranges and hit corrections.
- Efficiency corrections for TOF700 and DCH have been added.
- The efficiency of triggers was evaluated.

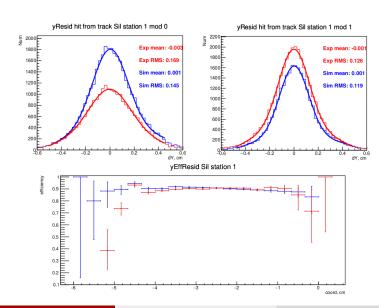
Thank you for the attention!


Backup

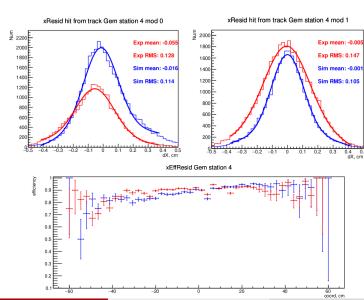
Efficiency calculation scheme


Silicon Tracks (Min 2 hit)

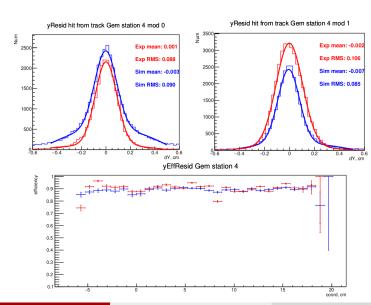
GEM Tracks (Min 4 hits)



Silicon residuals: x coordinate



Silicon residuals: y coordinate



GEM residuals: x coordinate

GEM residuals: y coordinate

