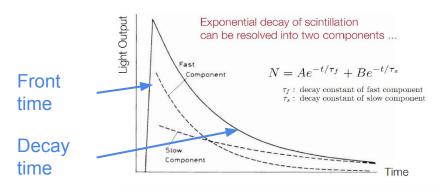
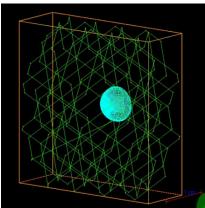
Optimization of the neutron detector prototype cell

Dmitriy Sakulin 9th Collaboration Meeting of the BM@N Experiment at the NICA Facility

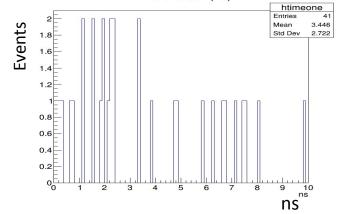
September 13-16, 2022

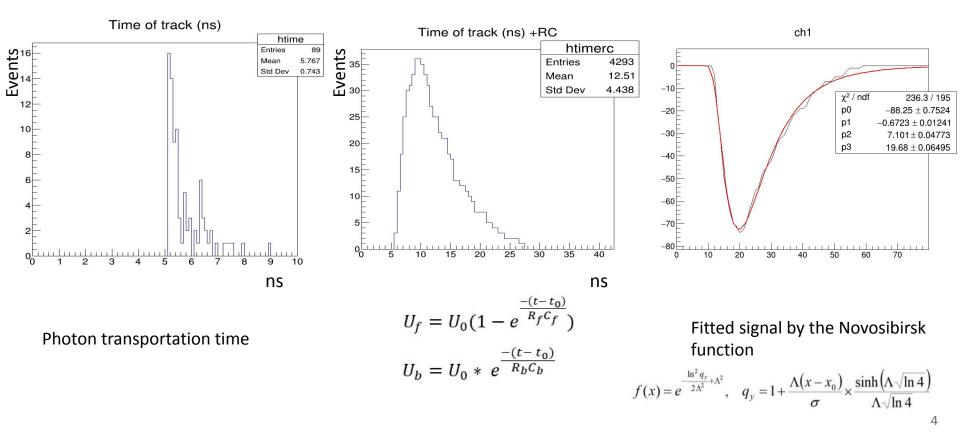


• Optimal ratio of detector acceptance unit price and time resolution


Parameters affecting the time resolution of the detector:

- Time properties of the scintillator
- Time properties of SiPM
- Reflective surface of the scintillator
- Method of light transmission to SiPM


Factors determining time propertiesFlashing timeLight transportation time


Photons creation time (ns) hesttime 6 Entries Events 41 2.1 Mean Std Dev 1.746 з 2 0 1 2 3 4 5 6 7 8 9 10 ns ns

Time of track (ns)

Signal generation

Characteristics of the scintillator and SiPM

Scintillators

Scintillators based on polyvinyltoluene EJ-200 and EJ-228 with the following characteristics

	EJ-200	EJ-228
Scintillator efficiency (photons/1 MeV e⁻)	10000	10200
Front Time (ns)	0.9	0.5
Decay Time (ns)	2.1	1.4
Light attenuation length (cm)	380	380

SiPM

Sensi MICROFJ-30035 3x3 mm² and 60035 6x6 mm² **Hamamatsu** S12572-015P 3x3mm² and S13360-6050PE 6x6 mm²

	Hamar	matsu	Sensl		
Size, mm ²	3x3	6x6	3x3	6x6	
Front Time (ns)	3.5	6.5	3	5	
Decay Time (ns)	150	300	120	400	
Quantum efficiency, %	25	40	30	50	

Type of scintillator and SIPM

The number of photons from the MIP was generated in proportion to the thickness of the scintillator

Thickness,		MPV (p.e.)		Time resolution, ns		
FIXED	Scintillator			Hamamatsu FIXED		
		3x3	6x6	3x3	6x6	
30	EJ-200	234	1350	0,535	0,2	
30	EJ-228	236	1346	0,429	0,174	

The EJ-228 better than EJ-200 by **21%**

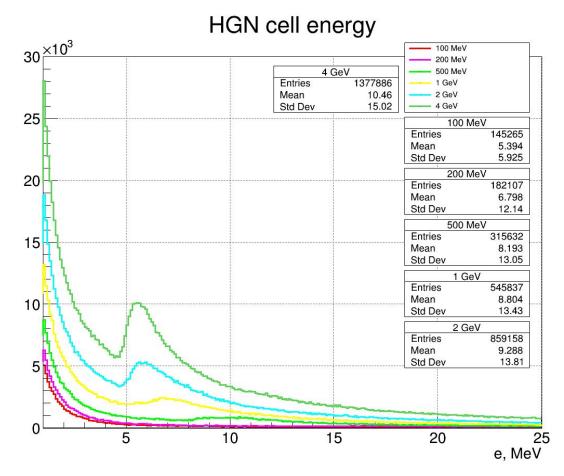
Type of scintillator and SIPM

The number of photons from the MIP was generated in proportion to the thickness of the scintillator

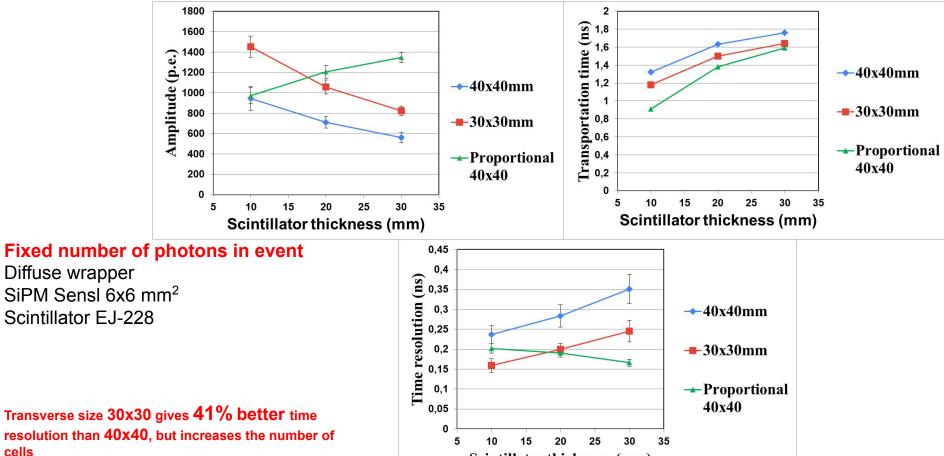
Thickness,				Time resolution, ns			
mm	Scintillator	MPV	(p.e.)	Hamai	matsu	Se	ensl
FIXED	FIXED			Hamamatsu		Selisi	
		3x3	6x6	3x3	6x6	3x3	6x6
30	EJ-228	236	1346	0,429	0,174	0,443	0,166

Sensl is better than Hamamatsu by 5%

6x6 mm is better than 3x3 mm by about 3 times

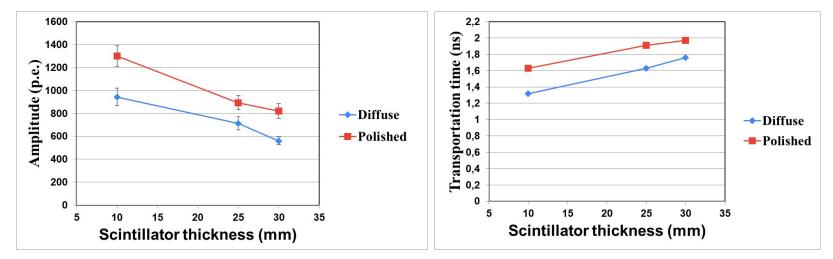

Type of scintillator and SIPM

The number of photons from the MIP was generated in proportion to the thickness of the scintillator


				Time resolution, ns			
Thickness, mm	Scintillator	MPV	(p.e.) Hamamatsu		Sensl		
		3x3	6x6	3x3	6x6	3x3	6x6
30	EJ-200	234	1350	0,535	0,2	0,521	0,21
20	EJ-200	157	1198	0,663	0,216	0,579	0,219
10	EJ-200	150	973	0,615	0,226	0,74	0,221
30	EJ-228	236	1346	0,429	0,174	0,443	0,166
20	EJ-228	213	1205	0,461	0,189	0,449	0,19
10	EJ-228	189	973	0,425	0,216	0,379	0,202

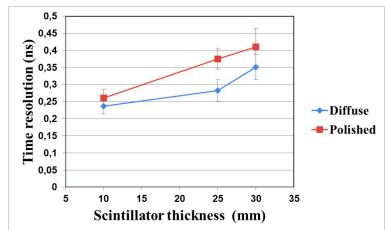
For EJ -228 scintillator and SiPM Sensl 6x6 mm² the time resolution is 0.166 ns

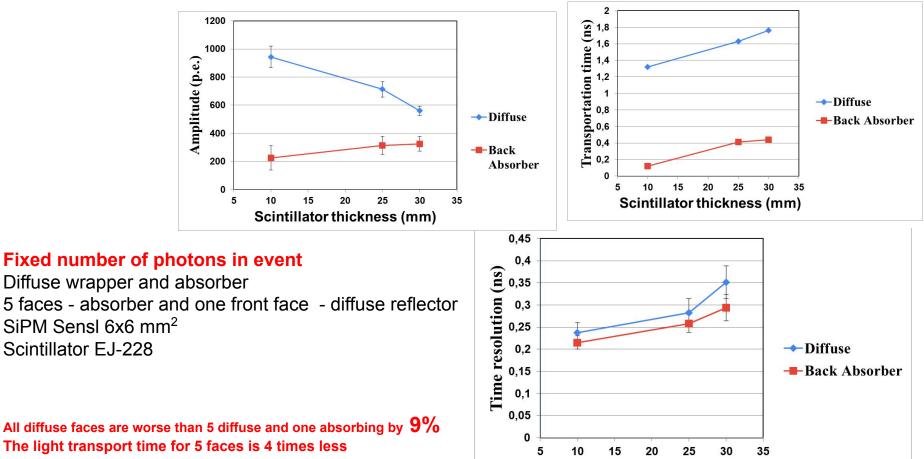
Model of the response to passing neutron in the HGN design



Thickness of the scintillator

Scintillator thickness (mm)


Reflective surface of the scintillator


Fixed number of photons in event

Diffuse and polished wrapper SiPM Sensl 6x6 mm² Scintillator EJ-228

Diffuse reflector is better than specular one by 24%

Combinations of reflective surfaces of the scintillator

Scintillator thickness (mm)

All diffuse faces are worse than 5 diffuse and one absorbing by 9%The light transport time for 5 faces is 4 times less

Conclusions

Use photodiode with larger area to increase the light collection from plastic and reduce time fluctuations

- Use faster Sensl MICROFJ photomultiplier 6x6 mm²
- Use fast scintillator EJ-228
- Optimal is diffuse reflective wrapper for five faces and one absorbing face with SiPM

With other optimal conditions time resolution for 40x40x25 mm is 176 ps for 30x30x25 mm is 155 ps