# Off-line Data Analysis: <sup>136</sup>Ba

Zheng Wei, Ng (UTM)

15 Feb 2022

### $^{136}$ Ba( $\mu^{-}, v$ ) $^{136}$ Cs

| <i>E</i><br>(keV) | A <sub>0</sub> (X')<br>(10 <sup>6</sup> h⁻¹) | N <sub>0</sub> (X')<br>(10 <sup>8</sup> ) | T <sub>1/2</sub><br>(d) | T <sub>1/2</sub> (ref.)<br>(d) |
|-------------------|----------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 66.9              | 0.77                                         | 3.51                                      | 13.1                    |                                |
| 86.4              | 0.72                                         | 3.30                                      | 13.3                    |                                |
| 109.7             | 1.18                                         | 4.94                                      | 12.1                    |                                |
| 153.2             | 1.49                                         | 6.72                                      | 13.0                    | 12 01                          |
| 163.9             | 1.48                                         | 6.60                                      | 12.9                    | 13.01                          |
| 166.6             | 1.20                                         | 5.34                                      | 12.8                    |                                |
| 176.6             | 2.24                                         | 9.86                                      | 12.7                    |                                |
| 187.3             | 1.19                                         | 4.85                                      | 11.8                    |                                |

*E*: energy of the peak

 $A_0$ : initial activity when the muon irradiation stopped  $N_0$ : initial number of isotopes when the muon irradiation stopped  $T_{1/2}$ : half-life

| <i>E</i><br>(keV) | A <sub>0</sub> (X')<br>(10 <sup>6</sup> h⁻¹) | N <sub>0</sub> (X')<br>(10 <sup>8</sup> ) | T <sub>1/2</sub><br>(d) | T <sub>1/2</sub> (ref.)<br>(d) |
|-------------------|----------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 273.6             | 1.35                                         | 6.04                                      | 12.9                    |                                |
| 319.9             | 1.58                                         | 7.03                                      | 12.9                    |                                |
| 340.5             | 1.45                                         | 6.48                                      | 12.9                    |                                |
| 507.2             | 1.46                                         | 8.86                                      | 17.5                    | 12 01                          |
| 818.5             | 1.47                                         | 6.51                                      | 12.8                    | 13.01                          |
| 1048.1            | 1.43                                         | 6.35                                      | 12.8                    |                                |
| 1235.4            | 1.39                                         | 6.15                                      | 12.8                    |                                |
| 1321.6            | 90.2                                         | 392                                       | 12.5                    |                                |

For **low energy** region (< 120 keV),  $A_0(X')$  is relatively lower.

- There's a fluctuation of  $A_0(X')$  around 166-187 keV (possibly due to efficiency).
- A relatively long T<sub>1/2</sub> was calculated for 507.2 keV (the fitting error is expected to be large since the peak overlapped with another peak of <sup>132</sup>Cs at 505.8 keV).
- The A<sub>0</sub>(X') and its uncertainty for 1321.6 keV is unusually high hence it is excluded from averaging.

### $^{136}Ba(\mu^{-},v2n)^{134}Cs$

| <i>E</i><br>(keV) | A <sub>0</sub> (X')<br>(10 <sup>4</sup> h <sup>-1</sup> ) | N <sub>0</sub> (X')<br>(10 <sup>8</sup> ) | T <sub>1/2</sub><br>(y) | T <sub>1/2</sub> (ref.)<br>(y) |
|-------------------|-----------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 563.2             | 4.79                                                      | 142                                       | 23.4                    |                                |
| 569.3             | **negative decay constant**                               |                                           |                         |                                |
| 604.7             | 6.10                                                      | 52.1                                      | 6.75                    | 2 0452                         |
| 795.9             | 6.35                                                      | 2.87                                      | 0.36                    | 2.0052                         |
| 802.0             | **negative decay constant**                               |                                           |                         |                                |
| 1365.2            | **negative decay constant**                               |                                           |                         |                                |

- None of the peak has a  $T_{1/2}$  that close to reference value (some peaks even "grow" instead of decay).
- The decay curve is too flat to overcome the fluctuation caused by uncertainty of N(X').
- However, the  $A_0(X')$  of all peaks are at the same magnitude of 10<sup>4</sup>.

### $^{136}$ Ba( $\mu^{-}$ ,v4n) $^{132}$ Cs

| <i>E</i><br>(keV) | A <sub>0</sub> (X')<br>(10 <sup>5</sup> h⁻¹) | N <sub>0</sub> (X')<br>(10 <sup>8</sup> ) | T <sub>1/2</sub><br>(d) | T <sub>1/2</sub> (ref.)<br>(d) |
|-------------------|----------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 464.5             | 10.2                                         | 2.11                                      | 6.01                    |                                |
| 505.8             | 8.22                                         | 1.03                                      | 3.62                    |                                |
| 630.2             | 5.78                                         | 1.10                                      | 5.51                    | 6.48                           |
| 667.7             | 9.62                                         | 2.14                                      | 6.41                    |                                |
| 1317.9            | 7.48                                         | 1.43                                      | 5.51                    |                                |

- The  $A_0(X')$  of all peaks are between 5.78-10.2 x 10<sup>5</sup>.
- Except 505.9 keV,  $T_{1/2}$  of all the peaks are close to reference value.
- The 505.8 keV peak has relatively short T<sub>1/2</sub> due to overlapping with <sup>136</sup>Cs at 507.2 keV.

### $^{136}Ba(\mu^{-},v7n)^{129}Cs$

| E<br>(keV) | A <sub>0</sub> (X')<br>(10 <sup>4</sup> h <sup>-1</sup> ) | N <sub>0</sub> (X')<br>(10 <sup>6</sup> ) | T <sub>1/2</sub><br>(h) | T <sub>1/2</sub> (ref.)<br>(h) |
|------------|-----------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 371.9      | 9.09                                                      | 4.32                                      | 33.0                    | 22.04                          |
| 411.5      | 10.7                                                      | 4.07                                      | 26.5                    | 32.00                          |

For <sup>129</sup>Cs, two of the most prominent peaks from this isotope are observed successfully.

 $^{136}Ba(\mu^{-},vp)^{135}Xe$ 

| E     | <i>A</i> <sub>0</sub> (X')         | N <sub>0</sub> (X') | T <sub>1/2</sub> | T <sub>1/2</sub> (ref.) |
|-------|------------------------------------|---------------------|------------------|-------------------------|
| (keV) | (10 <sup>4</sup> h <sup>-1</sup> ) | (10 <sup>5</sup> )  | (h)              | (h)                     |
| 249.8 | 5.13                               | 6.16                | 8.32             | 9.14                    |

#### $^{136}Ba(\mu^{-},vp2n)^{133}Xe$

| E<br>(keV) | <i>A</i> <sub>0</sub> (X')<br>(10 <sup>4</sup> h <sup>-1</sup> ) | N <sub>0</sub> (X')<br>(10 <sup>6</sup> ) | T <sub>1/2</sub><br>(d) | T <sub>1/2</sub> (ref.)<br>(d) |
|------------|------------------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------------|
| 81.0       | 2.72                                                             | 7.22                                      | 7.67                    | 5.2475                         |
| 233.2      | 5.60                                                             | 5.11                                      | 2.63                    | 2.198                          |

- For emission channels with 1 proton, the prominent peaks from <sup>135</sup>Xe and <sup>133</sup>Xe are observed successfully.
- The N<sub>0</sub> of both <sup>135</sup>Xe and <sup>133</sup>Xe are less than <sup>136</sup>Cs and <sup>134</sup>Cs by a magnitude of 2 or 3.

### $^{136}$ Ba( $\mu^{-}, v\alpha n$ ) $^{131}$ I

| <i>E</i> | A <sub>0</sub> (X')                | N <sub>0</sub> (X') | T <sub>1/2</sub> | T <sub>1/2</sub> (ref.) |
|----------|------------------------------------|---------------------|------------------|-------------------------|
| (keV)    | (10 <sup>3</sup> h <sup>-1</sup> ) | (10 <sup>6</sup> )  | (d)              | (d)                     |
| 364.5    | 5.90                               | 1.75                | 8.58             | 8.0252                  |

- The most prominent <sup>131</sup>I (1 $\alpha$ 1n) peak at 364.5 keV is observed which confirm the alpha emission from OMC of <sup>136</sup>Ba.
- The  $N_0(^{131}I)$  is less than half of  $^{133}Xe$ , but more than  $^{135}Xe$ .

## Average N<sub>0</sub>(X')

| lsotope                         | <i>N</i> <sub>0</sub> (X') | Ratio to<br><sup>136</sup> Cs |
|---------------------------------|----------------------------|-------------------------------|
| <sup>136</sup> Cs (0 <i>n</i> ) | 6.17 x 10 <sup>8</sup>     | 1                             |
| <sup>135</sup> Cs (1 <i>n</i> ) | -                          | -                             |
| <sup>134</sup> Cs (2 <i>n</i> ) | -                          | -                             |
| <sup>133</sup> Cs (3 <i>n</i> ) | -                          | -                             |
| <sup>132</sup> Cs (4n)          | 1.56 x 10 <sup>8</sup>     | 0.25                          |
| <sup>131</sup> Cs (5 <i>n</i> ) | -                          | -                             |
| <sup>130</sup> Cs (6 <i>n</i> ) | -                          | -                             |
| <sup>129</sup> Cs (7 <i>n</i> ) | 4.20 x 10 <sup>6</sup>     | 0.007                         |

| lsotope                                    | <i>N</i> <sub>0</sub> (X') | Ratio to<br><sup>136</sup> Cs |
|--------------------------------------------|----------------------------|-------------------------------|
| <sup>135</sup> Xe (1 <i>p</i> )            | 6.16 x 10 <sup>5</sup>     | 0.001                         |
| <sup>134</sup> Xe (1 <i>p</i> 1 <i>n</i> ) | -                          | -                             |
| <sup>133</sup> Xe (1 <i>p</i> 2 <i>n</i> ) | 6.17 x 10 <sup>6</sup>     | 0.01                          |
| <sup>132</sup> Xe (1 <i>p</i> 3 <i>n</i> ) | -                          | -                             |
| <sup>131</sup> Xe (1 <i>p</i> 4 <i>n</i> ) | -                          | -                             |

| lsotope                        | <i>N</i> <sub>0</sub> (X') | Ratio to<br><sup>136</sup> Cs |
|--------------------------------|----------------------------|-------------------------------|
| <sup>132</sup> I (1 $\alpha$ ) | -                          | -                             |
| <sup>131</sup> Ι (1α1n)        | 1.75 x 10 <sup>6</sup>     | 0.003                         |
| <sup>130</sup> Ι (1α2n)        | -                          | -                             |

#### Average $N_0(X')$



#### **APPENDIX A:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , v)<sup>136</sup>Cs peaks

















#### **APPENDIX B:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ ,v2n)<sup>134</sup>Cs peaks





604.7 keV



#### 1365.2 keV



#### **APPENDIX C:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , v4n)<sup>132</sup>Cs peaks





#### 1317.9 keV



#### **APPENDIX D:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , v7n)<sup>129</sup>Cs peaks



#### **APPENDIX E:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , vp)<sup>135</sup>Xe peaks

#### 249.8 keV



#### **APPENDIX F:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , vp2n)<sup>133</sup>Xe peaks



#### **APPENDIX G:**

## Spectra and A(X') vs $t_{irr}$ plots of <sup>136</sup>Ba( $\mu^{-}$ , $v\alpha n$ )<sup>131</sup>I peaks

#### 364.5 keV

