Possibilities of Measuring $\eta_C \rightarrow p\bar{p}$ at SPD

Amaresh Datta (amaresh@jinr.ru)

> DLNP Dubna, Russia

Feb 16, 2022

Amaresh Datta (amaresh@jinr.ru) (JINR) Possibilities of Measuring $\eta_C \rightarrow p\bar{p}$ at SPD

Feb 16, 2022 1/19

- $m_{\eta_C}=2.984~{
 m GeV}/c^2$, BR $(\eta_C
 ightarrow par p)$: $1.45 imes 10^{-3}$
- PYTHIA does not hadronize η_c . J/Ψ used instead for study
- 1 Million signal and 10 Billions MB events were produced
- Signal events normalized to 600K (expected events : SPD CDR) for one year of data at design luminosity
- Normalized to 39800 B MinBias events (39.8 mb cross-section at $\sqrt{s} = 27$ GeV, 1 fb^{-1} integrated luminosity)
- Momentum resolution used : $\frac{\delta p}{p} = 0.02 + 0.002p$
- This an update with some cross-checks and higher statistics background study

Invariant Mass Distributions

Figure 1: Overall invariant mass distribution of signal

Figure 2: Overall invariant mass distribution of background

- Transverse momentum of daughter particles : plays the most prominent role in reducing background as distributions from signal are wider while the ones from random background are steeper and narrower
- Polar angles of daughter candidates : signal distributions are mostly flat whereas background distributions are heavily peaked at very forward and backward directions
- Opening angles between daughter candidates : signal tend to have acute angles whereas background have obtuse angles

Illustrating the Largest Difference

Figure 3: Transverse momentum of p (left) and \bar{p} (right) : signal, background

- To clear multiple/other decays, events with single anti-protons are considered only
- Different daughter candidate p_T cuts used with fixed polar and opening angle cuts
- set 1 : $p_T > 0.2 \text{ GeV}$, -3. < y < 3., $45^0 < \theta_{p,\bar{p}} < 135^0$, $cos(\alpha) > 0$.
- set 2 : $p_T > 0.5$ GeV, -3. < y < 3., $45^0 < \theta_{p,\bar{p}} < 135^0$, $cos(\alpha) > 0$.
- set 3 : $p_T > 1.0$ GeV, -3. < y < 3., $45^0 < \theta_{p,\bar{p}} < 135^0$, $cos(\alpha) > 0$.
- set 4 : $p_T > 2.0$ GeV, -3. < y < 3., $45^0 < \theta_{p,\bar{p}} < 135^0$, $cos(\alpha) > 0$.

Signal and Background : One Year of Data

Figure 4: Invariant mass (within 3σ window of signal peak) for four different cut sets : signal, background

Amaresh Datta (amaresh@jinr.ru) (JINR)

Feb 16, 2022 7 / 19

Nikita used different combinations of the following cuts :

- invariant particle p_T
- invariant particle polar angle $cos(\theta)$
- opening angle of daughter candidates $cos(\alpha_o)$

• relative momentum asymmetry between daughter candidates $\alpha = \frac{P_{\rho} - P_{\bar{\rho}}}{P_{\rho} + P_{\bar{\rho}}}$ Cross-checked cut sets :

•
$$p_T > 2 \text{ GeV}, \alpha < 0.6$$
: sig/bkg = 1.14 * 10⁻⁴

(a) $p_T > 3$ GeV, $\alpha < 0.6$: sig/bkg = 2.76 * 10⁻⁴

Crosscheck with Previous Study

Figure 5: Invariant mass (within 3σ window of signal peak) for Nikita's cut sets : signal, background. Similar S/B ratios

Amaresh Datta (amaresh@jinr.ru) (JINR)

	p_T^{min}	Signal	Background	Sig/Bkg	Stat. Sig.
	(GeV/c)	(S)	(B)	S/B	(S/\sqrt{B})
cut 1	0.2	61224	$1.07 imes10^8$	$5.73 imes10^{-4}$	5.92
cut 2	0.5	59301	$1.03 imes10^8$	$5.75 imes10^{-4}$	5.84
cut 3	1.0	46008	$7.36 imes 10^{7}$	$6.25 imes10^{-4}$	5.36
cut 4	2.0	2311	$7.08 imes10^5$	$3.26 imes10^{-3}$	2.75

Table 1: For one year of $\eta_c \rightarrow p\bar{p}$ data at design luminosity : signal and background counts, ratios and statistical significances

Signal η_C Transverse Momentum Distributions

Figure 6: Transverse momentum distributions. Last plot ($p_T > 3$ GeV) added to illustrate impact of further daughter p_T cut on sigal counts

Amaresh Datta (amaresh@jinr.ru) (JINR)

Possibilities of Measuring $\eta_C \rightarrow p\bar{p}$ at SPD

Feb 16, 2022 11 / 19

Outlook

- Daughter candidate p_T provides major tool to suppress background, best S/B $\sim 3*10^{-3}$
- Beyond $p_T = 2 \text{ GeV/c}$, drastically reduces signal too, making measurement untenable
- Expect to detect a few thousand $\eta_{\rm C}$ candidates (depending on cuts) in a year's data at design luminosity
- Particle identification capability will affect the measurements (p, \bar{p} candidates)
- High $p_T \eta_C$ candidates could in fact be better for interpretation (firmly in the perturbative QCD regime)
- Cross-section measurements (combined different channels, multiple years of data) seems posisble at this stage
- Shall write an internal analysis note on the study

Thank You

Backup

Polar Angle : Protons

Polar Angle : Antirotons

Figure 8: Polar angle (θ) of \bar{p} in degrees : signal, background

Opening Angle

Figure 9: Cosine of opening angle : signal, background

Feb 16, 2022 17 / 19

pT of Ec-det 1 pT of Ec-det 2 pT of Ec-det 3 متىسىلىسىلىسىكە كېسىلىسىلىسىلىس ما المالين المالية الم 5 6 8 9 10 p_ (GeV/c) 8 9 10 p, (GeV/c) 8 9 10 p (GeV(c) pT of Ec-det 4 pT of Ec-det 5 pT of Ec-det 6 3.5 البيليسيا يتسابيسا يتسابينا 8 9 10 p. (GeV/c) 8 9 10 p, (GeV/c) 8 9 10 p. (GeV/c)

Figure 10: Invariant transverse momentum of signal particle

xF of Ec-det 0

Figure 11: Feynman x of signal particle