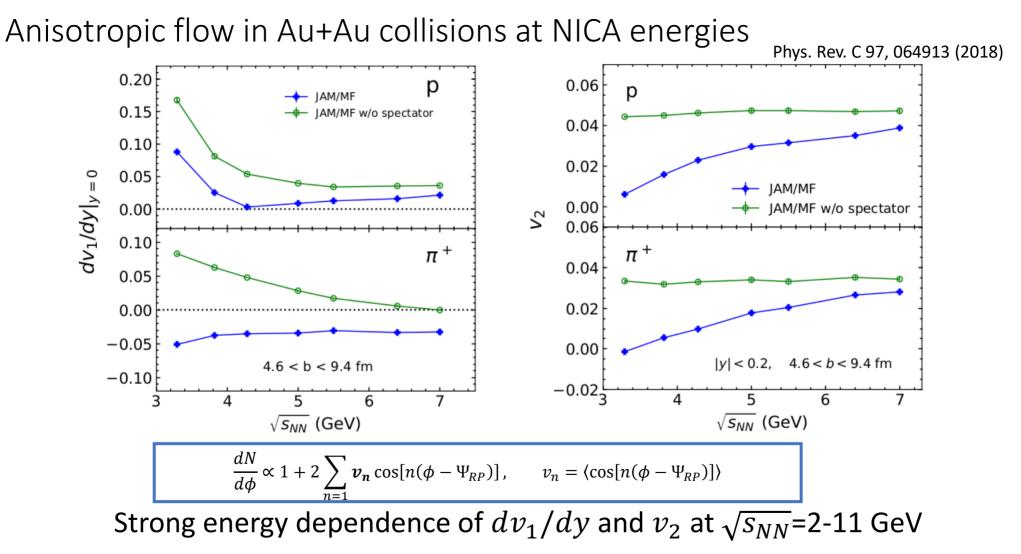
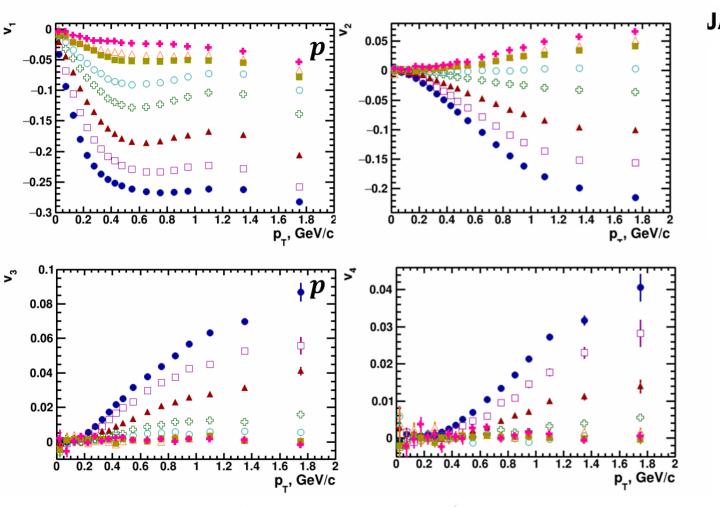
Anisotropic collective flow and development of the corresponding measurement techniques for the MPD experiment

Alexander Demanov¹, Dim Idrisov¹, Vinh Ba Luong^{1,2}, Nikolay Geraksiev^{2,3}, Petr Parfenov¹, Viktor Kireyeu², Evgeny Volodihin¹, Anton Truttse¹, Mikhail Mamaev¹, Dmitri Blau⁴, Oleg Golosov¹, Evgeni Kashirin¹, Jovan Milošević⁶, Laslo Nađđerđ⁶, Vladimir Reković⁶, Dragan Toprek⁶, Ilya Segal¹, Dragan Manić⁶, Valery Troshin¹, Arkadiy Taranenko¹


With big help from Andrey Moshkin (JINR)

¹National Research Nuclear University MEPhl ²VBLHEP JINR ³FPT, Plovdiv University "Paisii Hilendarski" ⁴Kurchatov Institute, Moscow, ⁶Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia


For the MPD Collaboration

9th MPD Collaboration Meeting, JINR, Dubna, 25-27 April 2022

This work is supported by: the RFBR according to the research project No. 18-02-40086 and Special Purpose Funding Programme within the NICA Megascience Project in 2022

 $v_{1,2,3,4}(p_T)$ Au+Au $\sqrt{s_{NN}}$ =2.4-4.5 GeV: JAM

JAM MD3, Au+Au, 20-30% $\sqrt{s_{NN}} = 2.4 \text{ GeV}$ $\sqrt{s_{NN}} = 2.5 \text{ GeV}$ $\sqrt{s_{NN}} = 2.7 \text{ GeV}$ $\sqrt{s_{NN}} = 3 \text{ GeV}$ $\sqrt{s_{NN}} = 3.3 \text{ GeV}$ $\sqrt{s_{NN}} = 3.8 \text{ GeV}$ $\sqrt{s_{NN}} = 4 \text{ GeV}$ $\sqrt{s_{NN}} = 4.5 \text{ GeV}$

Protons:

V_{1,3}(p_T): -0.5 < y < -0.15 V_{1,3}(y): 1.0 < pT < 1.5 GeV/c

 $egin{aligned} & \left| v_{1,3} \{ \Psi_1 \}
ight| ext{ decreases with increasing collision energy} \ & v_3 &pprox 0 ext{ at } \sqrt{s_{NN}} \geq 4 ext{ GeV} \end{aligned}$

See Peter Parfenov talk for other models (UrQMD, HSD, PHQMD, DCM-QGSM,..., EOS and details

Anisotropic Flow at Nuclotron-NICA energies: Data vs Models - Plans

0.06

Anisotropic flow at NICA energies Models:

(1) String/Hadronic Cascade Models: UrQMD, HSD, SMASH, JAM, DCM-QGSM

(2) Hybrid Models: viscous hydro+cascade (vHLLE+UrQMD, MUSIC+UrQMD, vHLLE+SMASH) и parton/string models (AMPT, PHSD и PHQMD) Goals:

Database of published vn results for comparison

Experimental Data:

yields vs. centrality & beam

charge correlations & BFs

density correlations

π/K/P spectra

elliptic flow

HBT

Hybrid model constructor

Model Parameter:

thermalization time

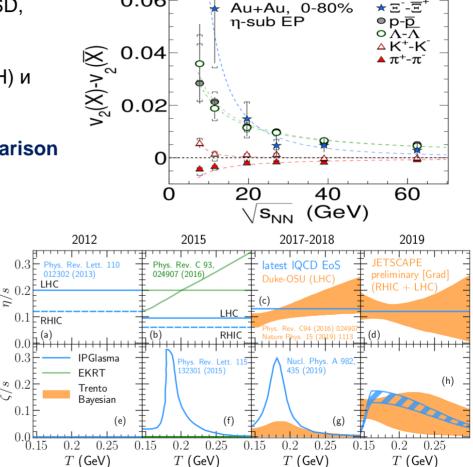
pre-equilibrium dynamics

quark/hadron chemistry

particlization/freeze-out

equation of state

shear viscosity


initial state

Tools for a Bayesian analysis of Heavy Ion **Collisions**

Physical Model

Emulators

Statistical Analysis

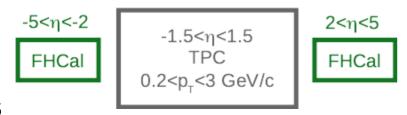
T (GeV)

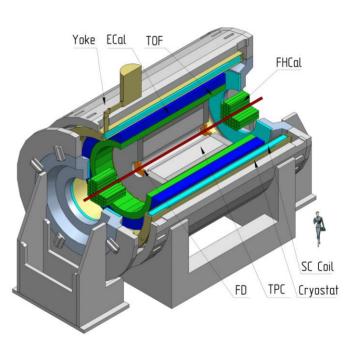
STAR Collaboration, Phys. Rev. C 88 (2013) 14902

T (GeV)

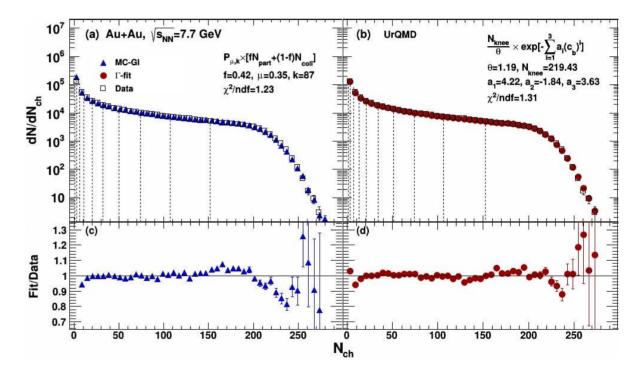
4

T (GeV)


MPD Experiment at NICA



- Au+Au: 20M at $\sqrt{s_{_{NN}}}$ = 7.7 GeV, 10M at $\sqrt{s_{_{NN}}}$ = 11.5 GeV, Bi+Bi: 5M at $\sqrt{s_{_{NN}}}$ = 9.2, 7.7, 4.5 GeV Ag+Ag 5M at $\sqrt{s_{_{NN}}}$ = 9.2, 4.5 GeV
- Centrality determination: Bayesian inversion method
 and MC-Glauber
- Event plane determination: TPC, FHCal
- Track selection:
 - Primary tracks
 - ► $N_{TPC hits} \ge 16$
 - $0.2 < p_T < 3.0 \text{ GeV/c}$
 - ▶ |η| < 1.5</p>
 - PID ToF + dE/dx



Multi-Purpose Detector (MPD) Stage 1

Centrality determination based on charged particle multiplicity: MC-Glauber and Bayesian inversion method

1). Centrality Determination in Heavy-ion Collisions with MPD Detector at NICA, Acta Physica Polonica B Proceedings Supplement 14 (2021) 3, 503-506

2) Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies, Particles 4 (2021) 2, 275-287

Implementation in MPD: <u>https://github.com/FlowNICA/CentralityFramework</u> <u>https://github.com/Dim23/GammaFit</u>

Event plane method using FHCal

$$Q_{1} = \frac{\sum_{j} E_{i} e^{i\phi_{j}}}{\sum_{j} E_{j}}, \ \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right)$$

Y, cm

40

20

0

-20

-**40**

-40

-20

E – energy deposited in FHCal modules (2 < $|\eta| < 5$)

20

0

40

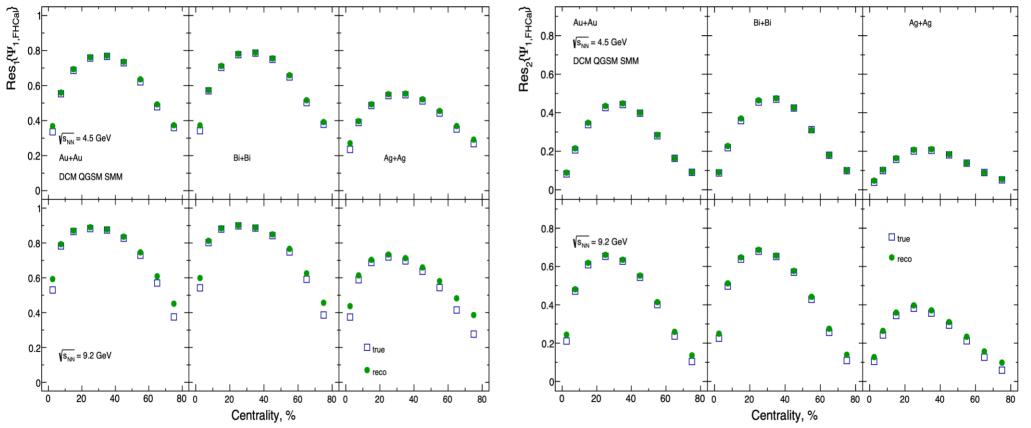
X, cm

40

60

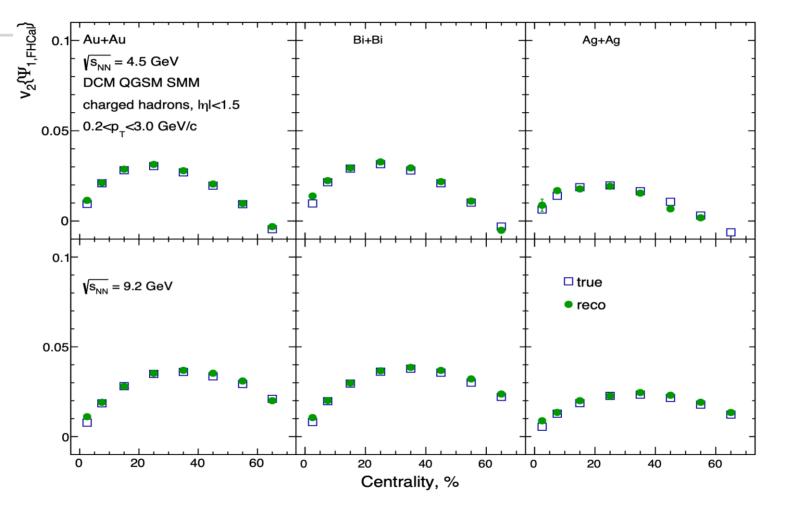
Centrality (%)

20


Recent results of v_n**{Ψ**_{1,FHCal}**}:** Particles **4** (2021), no.2, 146-158, Acta Phys.Polon.Supp. 14 (2021) 3, 515-518, AIP Conf.Proc. 2377 (2021) 1, 030011

1(

- 10

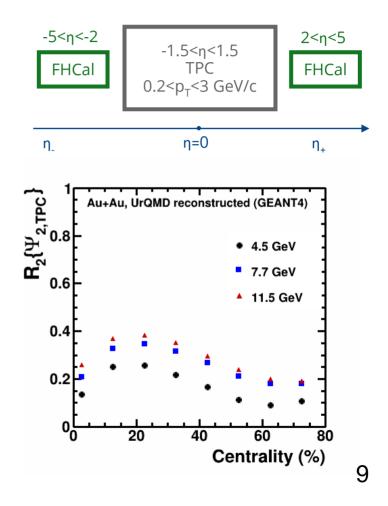

80

Event Plane Resolution of $\Psi_{1,FHCal}$ for V_1 and V_2 measurements (Bi + Bi, Au + Au, Ag + Ag)

8

 $v_2{\{\Psi_{1,FHCal}\}}$

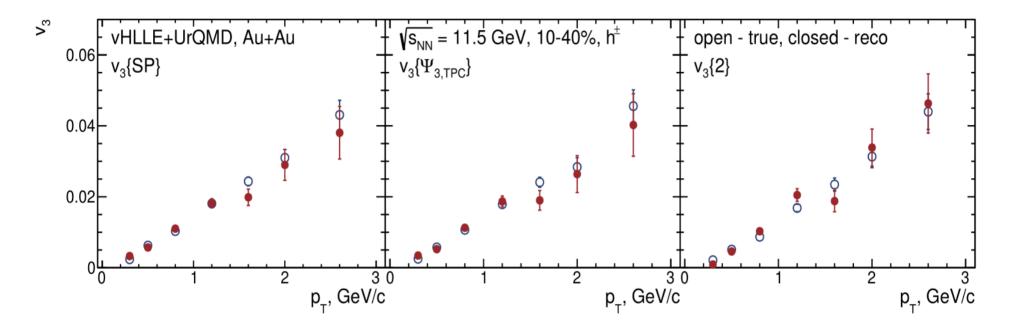
Flow measurements using TPC: Scalar product, Event-plane


$$u_{2} = \cos 2\phi + i \sin 2\phi = e^{2i\phi}$$
$$Q_{2} = \sum_{j=1}^{M} \omega_{j} u_{2,j}, \ \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}}\right)$$

 $v_2^{\text{SP}}\{Q_{2,\text{TPC}}\} = \frac{\langle u_{2,\eta\pm}Q_{2,\eta\mp}^* \rangle}{\sqrt{\langle Q_{2,\eta\pm}Q_{2,\eta\mp} \rangle}}$ • Scalar product:

0:4

• TPC Event-plane:


$$v_{2}^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \frac{\langle \cos\left[2(\phi_{\eta\pm} - \Psi_{2,\eta\mp})\right]\rangle}{\mathbf{R}_{2}^{\text{EP}}\{\Psi_{2,\text{TPC}}\}}$$
$$\mathbf{R}_{2}^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \sqrt{\langle \cos\left[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})\right]\rangle}$$

 $v_2{\{\Psi_{2,\text{TPC}}\}}$

Triangular flow with MPD at NICA

Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase In models, v_3 goes away when the QGP phase disappears???? 15 M of reconstructed vHLLE + UrQMD events for Au+Au at 11.5 GeV

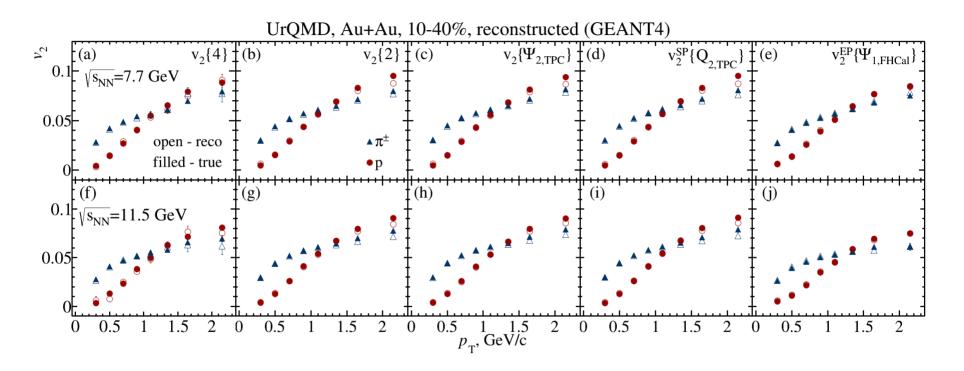
Sensitivity of different methods to flow fluctuations

- Elliptic flow fluctuations: $\sigma_{v2}^2 = \left< v_2^2 \right> \left< v_2 \right>^2$
- Assuming $\sigma_{v2} \ll \langle v_2 \rangle$ and a Gaussian form for flow fluctuations
- Fluctuations enhance v_2 {2} and suppress high-order **Q-Cumulants** compared to $\langle v_2 \rangle$:
- (S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Landolt-Bornstein 23 (2010), 293)

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle} \qquad \qquad v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\text{LYZ}\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

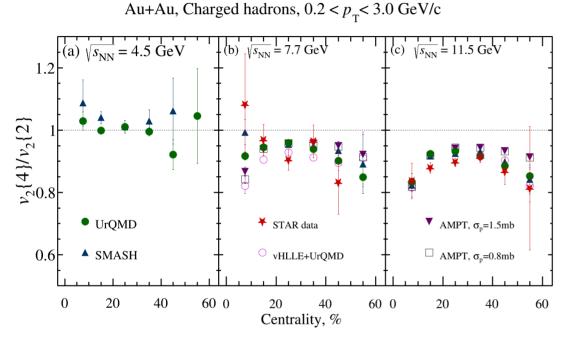
• TPC EP method: (M. Luzum et al., Phys. Rev. C 87 (2013) 4, 044907)

$$\langle v_2 \rangle \le v_2^{\text{EP}} \{ \Psi_{2,\text{TPC}} \} \le \sqrt{\langle v_2^2 \rangle} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

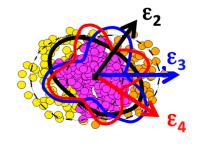

• Scalar product:

$$v_2^{SP}\{Q_{2,\text{TPC}}\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

See Vinh Ba Luong presentation


13

Performance of v₂ of pions and protons in MPD


Reconstructed and generated v2 of pions and protons have a good agreement for all methods

Relative flow fluctuations of charged hadrons

STAR data: Phys.Rev.C **86**, 054908 (2012) After quality cuts, 0-80%: 4M at 7.7 GeV, 11M at 11.5 GeV

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and model with QGP phase (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry
- Are there non-zero v_2 fluctuations at $v_{S_{NN}}$ = 4.5 GeV?

v_n {2k} (k=1,...,5) from JAM model

• For the first time v_n {10}

$$v_n \{10\} = \sqrt[10]{\frac{1}{456}} c_n \{10\}$$

 \mathbf{v}_{n} {2k} (k=1,...,5) cumulant's statistical uncertainties are calculated analytically using the data: Phys. Rev. C 104 (2021) 034906, arXiv:2104.00588 [nucl-th].

- First time introduced a new (second) hydrodynamics probe that includes v₂{10}
- ♦ First hydrodynamics probe:

University of Belgrade Vinča Institute of Nuclear Sciences.

Group members: Jovan Milošević

Laslo Nađđerđ

Vladimir Reković

Dragan Toprek

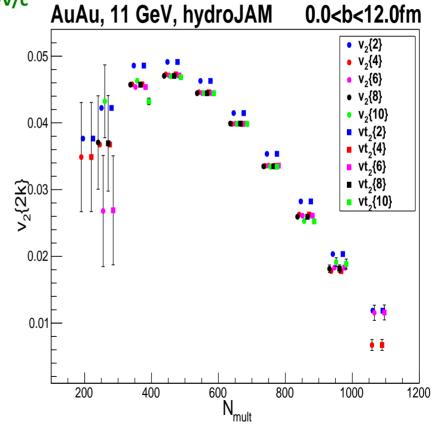
Dragan Manić

Belgrade, Serbia

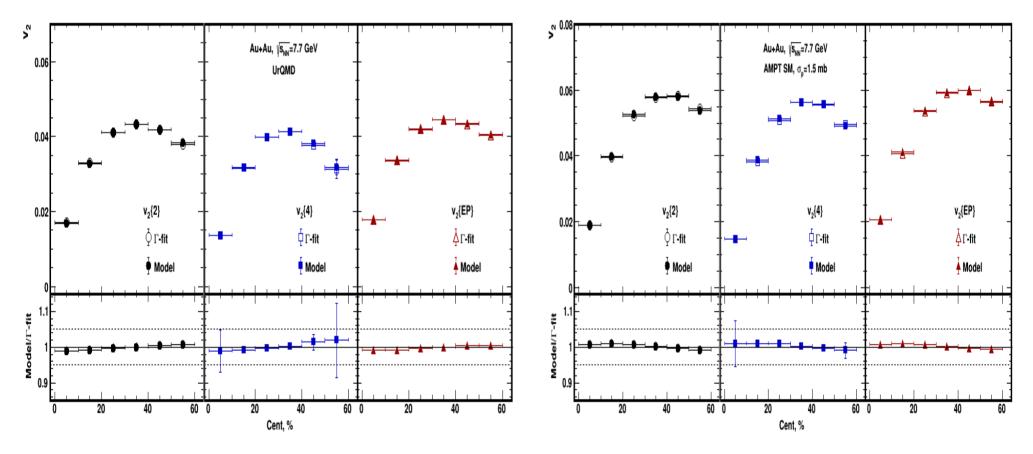
 $\frac{v_2\{6\} - v_2\{8\}}{v_2\{4\} - v_2\{6\}} = \frac{1}{11}$ ♦ Second hydrodynamics probe: $\frac{v_2\{8\} - v_2\{10\}}{v_2\{6\} - v_2\{8\}} = \frac{3}{19}$

Codes for both, with and without efficiency corrections are developed • Q-cumulants technique is applied as it is enable very fast calculations • Difficulties when flow magnitude, or particle multiplicity is too small

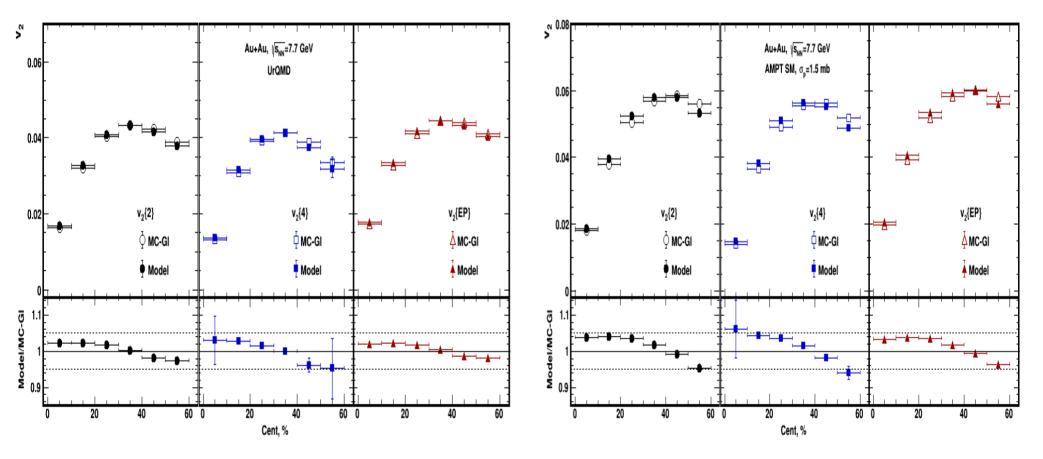




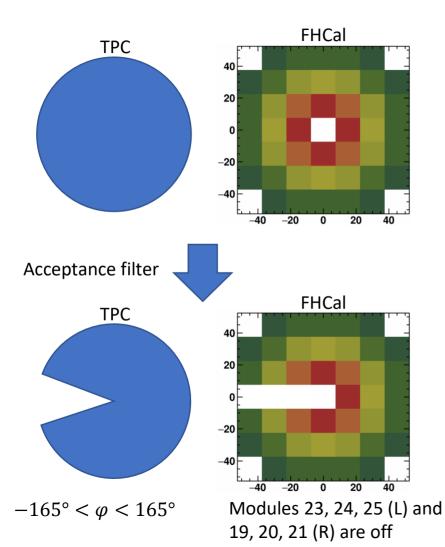
v₂ from cumulants of different orders - NICA


- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV
- In 10 multiplicity classes from 100 up to 1200
- PID: p, π^+ , π^- , $|\eta| < 1.5$, $p_T > 200$ MeV/c
- v₂{2k} are well measured in semicentral collisions
- v₂{2k} are not well enough ordered. It could be a problem with JAM itself.
- We developed codes for calculations with and without efficiency corrections both.
- closed circles (squares): results without (with) efficiency corrections (efficiency randomly distributed between 95 and 100%)
- With real data and efficiencies the two results will differ.

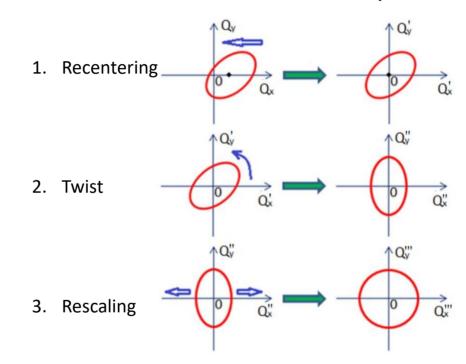
• stat.: 1.068 B events



The effect of the bias in centrality determination in flow measurements for UrQMD and AMPT models (Γ-fit)


The effect of the bias caused by different centrality determination methods is within 1-2%. 18

The effect of bias in centrality determination in flow measurements for UrQMD and AMPT models (MC-Glauber)



The effect of the bias caused by different centrality determination methods is within 3-5%. 19

Non-uniform acceptance corrections

Correction for non-uniform azimuthal acceptance

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

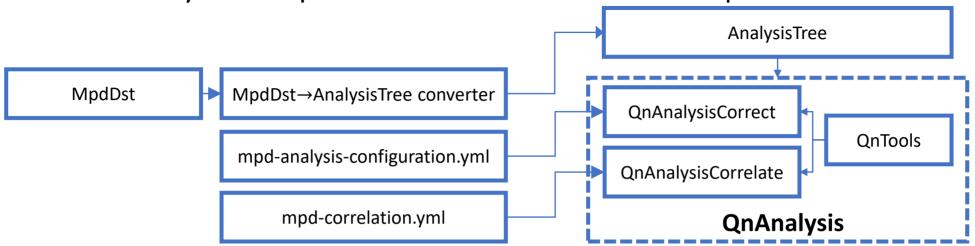
The QnAnalysis package

P. Parfenov MPD Cross-PWG Meeting 12/04/2022

Motivation:

- Decoupling configuration from implementation
- Persistency of analysis setup
- Co-existence of different setups (easy systematics study)
- Unification of analysis methods
- Self-descriptiveness of the analysis results

QnAnalysis requirements:


- ROOT ver. \geq 6.20 (with MathMore library)
- C++17 compatible compiler
- CMake ver. \geq 3.13

Can be easily installed on NICA cluster using ROOT and CMake modules

Git repository: https://github.com/HeavyIonAnalysis/QnAnalysis

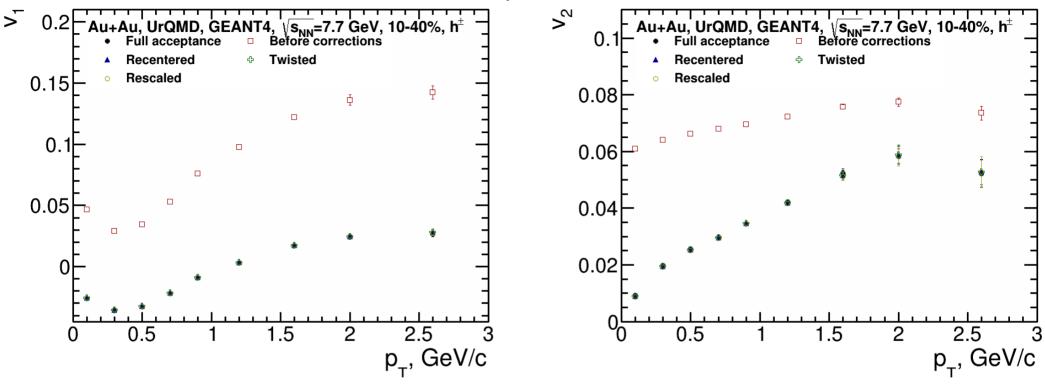
<u>QnAnalysis</u>
QnTools configuration
Mapping <u>AnalysisTree</u> to internal objects of QnTool
<u>QnTools</u> library
FlowVectorCorrections library
Q-vectors corrections
Q-vectors correlations
Building observables (resolution, flow, etc.)

QnAnalysis implementation in MPD experiment

MPD-specific interface:

- **MpdDst→AnalysisTree converter:** converter from MpdDst to AnalysisTree format
- YAML configuration files for QnAnalysis:
 - **mpd-analysis-configuration.yml**: sets up Q_n , u_n vectors to collect (cuts, correction steps, ...)
 - **mpd-correlation.yml:** sets up correlations between previously collected Q_n , u_n vectors

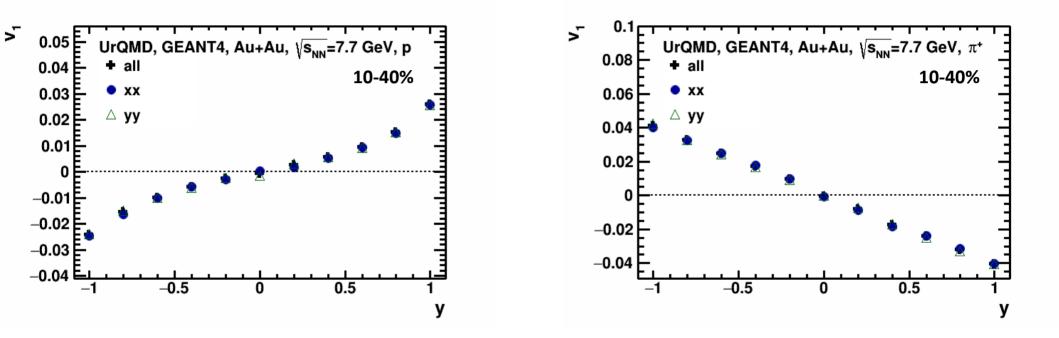
General interface:


- **AnalysisTree:** A framework-independent, lightweight and flexible data format
- **QnTools:** set of tools for multidimentional Q-vector-based corrections and correlations:
 - **QnAnalysisCorrect**: collects *Q_n*, *u_n* vectors
 - **QnAnalysisCorrelate**: make correction between collected Q_n , u_n vectors

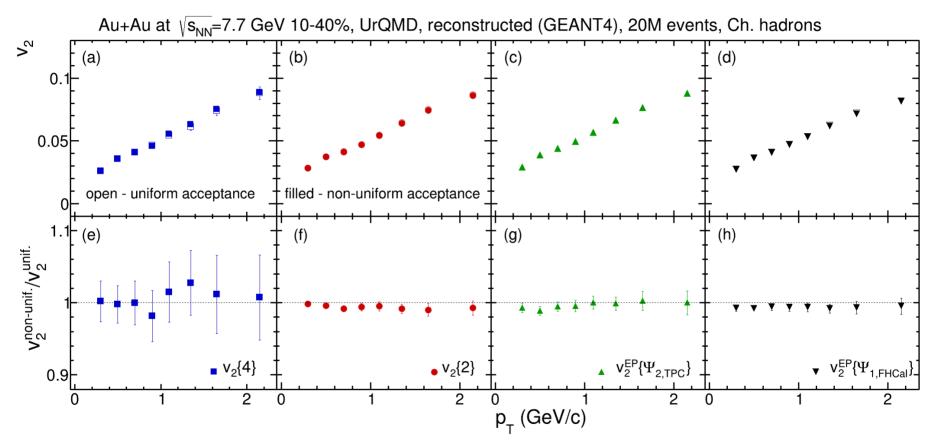
Joint development with FAIR (CBM for NICA)

QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments – now available for MPD

QnAnalysis git link: <u>https://github.com/HeavyIonAnalysis/QnAnalysis</u> AnalysisTree git link: <u>https://github.com/HeavyIonAnalysis/AnalysisTree</u>


Effects of non-uniformity corrections

Q-vector	${\it Q}_n$ weight	Correction axes	Correction steps	Error calculation	${\it Q}_n$ normalization
Spectators (FHCal)	Module energy	b [0,12], 8 bins	Recentering Twist Rescaling	Bootstrapping, 50 samples	Sum of weights
Charged hadrons (TPC)	1	pT [0,3], 9 bins b [0,12], 8 bins			


Good agreement between v_n with acceptance non-uniformity corrections and full acceptance z_3

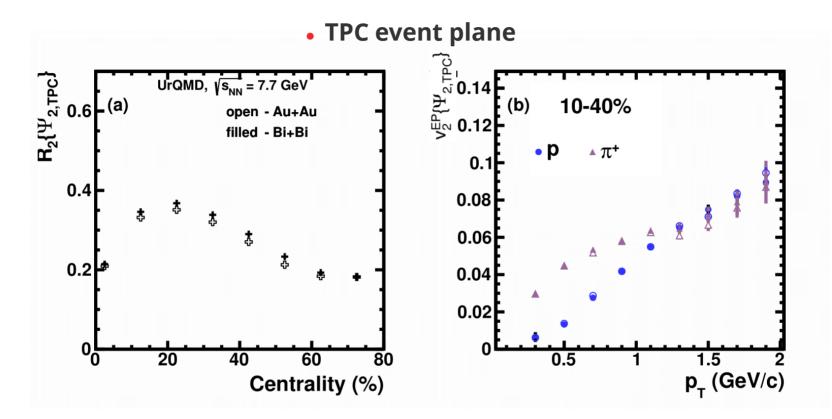
Components comparison: v_1

 $v_{1,XX}$, $v_{1,YY}$ and $v_{1,all}$ are consistent with each other

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance 26

Summary and outlook


- v_n at NICA energies shows strong energy dependence:
 - > At $\sqrt{s_{NN}}$ =4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
 - > At $\sqrt{s_{NN}} \ge 7.7$ GeV UrQMD, SMASH underestimate v_2 need hybrid models with QGP phase
 - > Detailed JAM model calculations for differential measurements of v_n at $\sqrt{s_{NN}}$ = 2.4-4.5 GeV
 - v₂ from cumulants of different orders
- Comparison of methods for elliptic flow measurements using UrQMD and AMPT models:
 - > The differences between methods are well understood and could be attributed to non-flow and fluctuations
- Feasibility study for anisotropic flow in MPD:
 - v_n of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
- Small differences in $v_{\rm n}$ for 2 colliding systems (Au+Au, Bi+Bi) were observed as expected
- Programs for flow analysis are available for MPD collaboration:
 - Github repository: <u>https://github.com/FlowNICA/CumulantFlow</u>
 - QnAnalysis git link: https://github.com/HeavyIonAnalysis/QnAnalysis
 - AnalysisTree git link: <u>https://github.com/HeavyIonAnalysis/AnalysisTree</u>

Results for 2019-2022

3 Workshops on physics performance studies at FAIR and NICA, http://indico.oris.mephi.ru/event/221

23 presentations at conferences and workshops, 17 publications and 3 master diploma works

Au+Au vs. Bi+Bi collisions for MPD reconstructed data

Expected small difference between two colliding systems

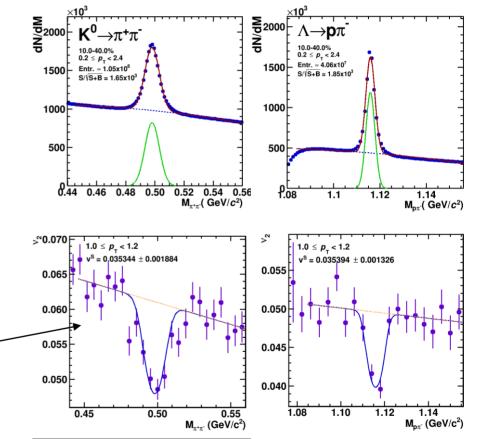
v_n of V0 particles: invariant mass fit method (Nikolay Geraksiev)

Data set:

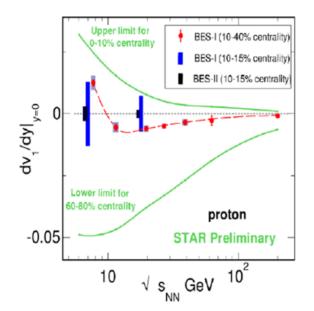
• 25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

Geant4 simulation, full reconstruction with:

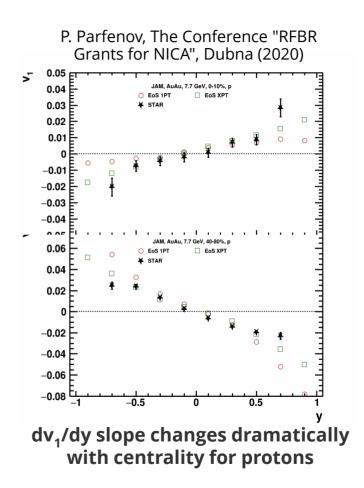
• TPCv7, TOFv7, FHCal

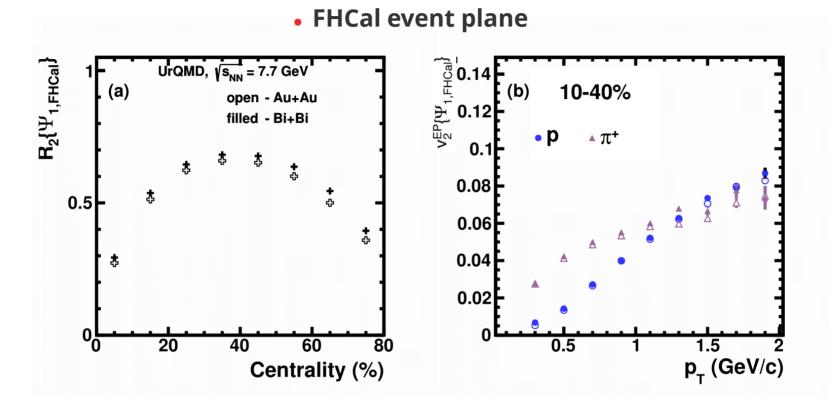

Centrality by TPC multiplicity, Event-plane method with FHCal Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum (or rapidity) with a simultaneous fit

$$v_2^{SB}(\mathbf{m}_{inv}, \mathbf{p}_T) = v_2^{S}(\mathbf{p}_T) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv}, \mathbf{p}_T)}{\mathbf{N}^{SB}(\mathbf{m}_{inv}, \mathbf{p}_T)} + v_2^{B}(\mathbf{m}_{inv}, \mathbf{p}_T) \frac{\mathbf{N}^{B}(\mathbf{m}_{inv}, \mathbf{p}_T)}{\mathbf{N}^{SB}(\mathbf{m}_{inv}, \mathbf{p}_T)}$$

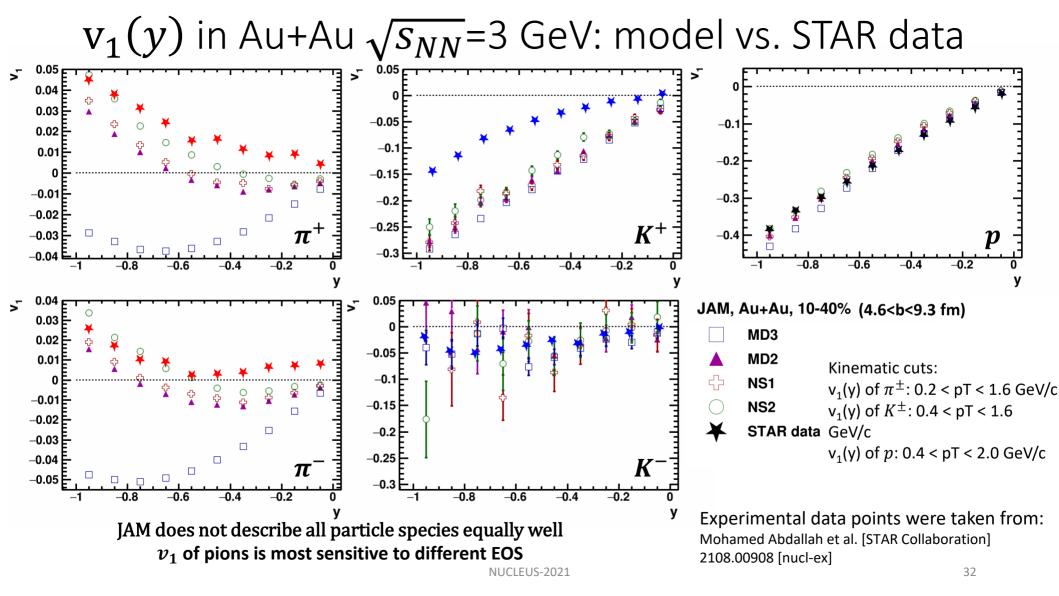

Outlook:

* Larger statistics with vHLLE (hydrodynamic evolution)

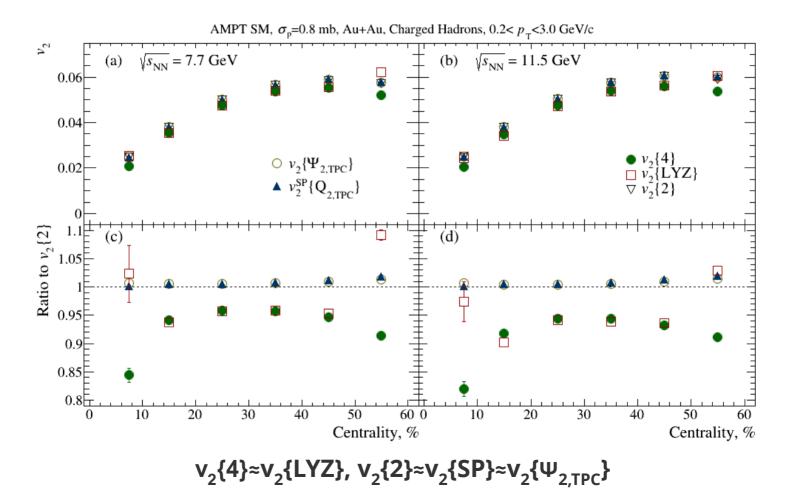

- * Larger signal magnitude due to hydro (realistic input)
- * Latest versions of detector geometry
- Multi-variate analysis for reconstructed particle selection (TMVA)
- KFParticle


v_1 study at NICA energies

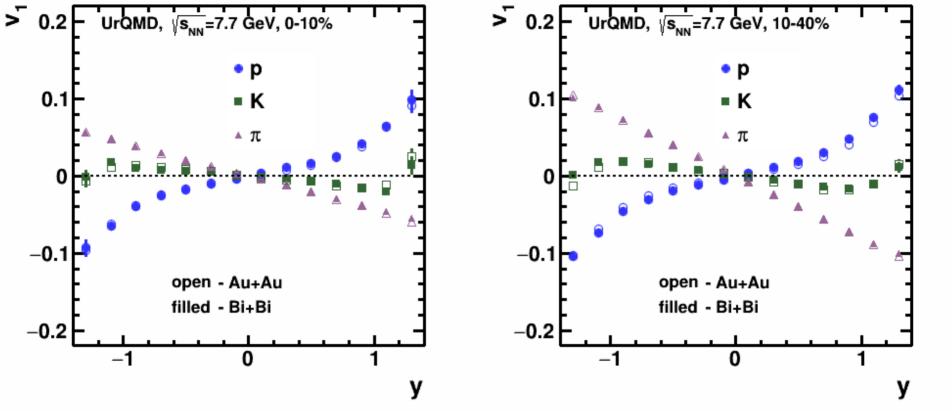
Slope dv₁/dy has non-monotonic behavior and strong centrality dependence



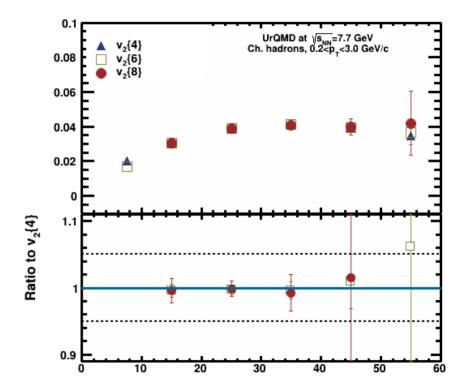
Au+Au vs. Bi+Bi collisions for MPD reconstructed data

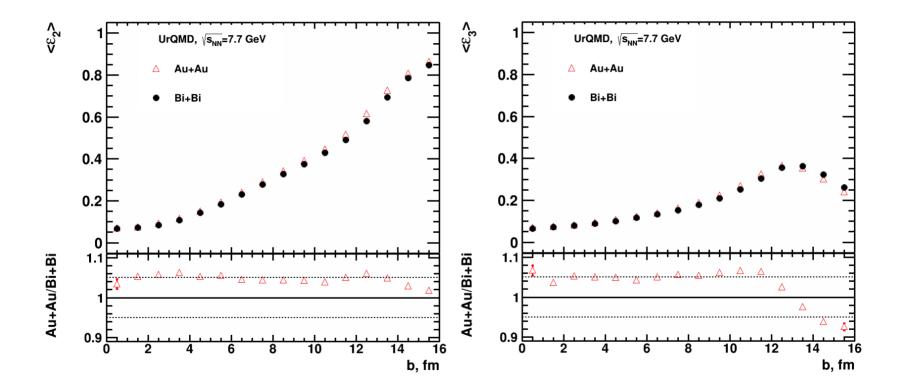


Expected small difference between two colliding systems


Back-up slides

Centrality dependence of v₂{methods}


v₁(y): Bi+Bi vs Au+Au


Expected small difference for v1 (y) for particles produced in Au+Au and Bi+Bi collisions.

Description of high-order Q-Cumulants

- Higher order Q-Cumulants v₂{m} (m=6,8):
- (A. Bilandzic et al., Phys. Rev. C 89 (2014), 064904)
 - number of terms in "standalone" analytical expressions increases quickly with order of correlators
 - using recursive algorithms: calculate analytically higher-order correlators in terms of lower ones

Eccentricity: Bi+Bi vs. Au+Au

UrQMD model predicts small difference between ε_n of Au+Au and Bi+Bi