IX-th Collaboration Meeting of the MPD Experiment at the NICA Facility April 25-28, 2022

The progress of Ecal production in China

Reporter: Chendi Shen

Yi Wang for China ECAL group

Department of Engineering Physics, Tsinghua University

- Contents

MPD-Ecal requirement

- Energy resolution: $<5\%/\sqrt{E}$
- ➤The particle occupancy should not exceed 5%
- ➤Calorimeter must be able to operate in the magnetic field up to 0.5T
- ➤Time resolution should be at least below 1ns
- High segmentation, adequate space resolution
- Dense active medium with the small Moli'ere radius;

Distribution of $\theta_{\gamma\gamma}$ as a function of P_t .

About MPD-ECAL

Shashlyk Ecal structure

Parameters of main module							
Transverse size, mm ²	40 x 40	Scintillator thickness, mm	1.5				
WLS fibers	16	Moliere radius, mm	62				
Number of layers	220	Radiation length, X_0	11.8				
Lead absorber thickness, mm	0.3	Effective radiation length, mm	32.4				

2022/4/25

1 China MOST MPD ECal project

- > Hardware:
 - 1) Construction of 8 sectors ECal prototype. 768 modules in total.
 - 2) Production of FEE PCB (1800 FEEs)
 - 3) R&D on fast readout electronics, time resolution is less than 150ps
- Software and simulation
- Schedule: 2020.6-2024.5
- Institutes: Tsinghua University 60%
 - Shandong University 20%
 - Fudan University 10%
 - **University of South China 10%**
 - Huzhou University

• In the first stage (2020.6-2022.5), 8 sectors will be produced in China

8 sectors = 16 half sectors = 768 modules = 12288 towers

Modules produced in each institutes

	2	3	4	5	6	7	8	Total
19	19		38	96	96	96	96	460
		96	58					154
	77							77
77								77
1	9	9 19 77 7	9 19 96 96 77 7.	9 19 38 96 58 77 77	9 19 38 96 96 58 96 77 7 10 10	9 19 38 96 96 9 96 58 1 1 77 7 1 1 1 1	9 19 38 96 96 96 9 96 58 1 1 1 77 7 1 1 1 1 1	9 19 38 96 96 96 96 10 96 58 1

Material:

JINR: scintillator tiles China: Other material

	Current progress	main target
Tower assembling	7132	7360
Tower milling	7132	7360
Half-module	853	920
Module	310	460
WLSF	101020	117,760

MPD_Ecal production progress (THU)

2 Module production in SDU

Materials Preparation								
	Current progress	main target	%					
Lead plate	563000	563000	100.0%					
WLSF(m)	26000	26000	100.0%					
Stainless steel wire	2464	2464	100.0%					
Aluminum plate	154	154	100.0%					
Scintillator plate	517440	517440	100.0%					
Plastic plate for tower	2800	2800	100.0%					
Epoxy glue	100	100	100.0%					
· · · ·								
	Production Status							
	Current progress	main target	%					
Tower assembling	2549	2464	103.4%					
Tower milling	2549	2464	103.4%					
Half Module	318	308	103.2%					
WLSF cut(piece)	39800	39424	101.0%					
Module	144	154	93.5%					
Painting	144	154	93.5%					
Final fiber cutting	80	154	51.9%					

Production Status

2 Module production in SDU

2 Module production in USC

Materials Preparation								
	Current progress	main target	%					
Lead plate	272272	272272	100%					
WLSF(m)	12000	12000	100%					
Stainless steel wire	1232	1232	100%					
Aluminum plate	77	77	100%					
Scintillator plate	272272	272272	100%					
Plastic plate for tower	2464	2464	100%					
Epoxy glue	10	10	100%					
	Production Status							
	Current progress	main target	%					
Tower assembling	1232	1232	100%					
Tower milling	1050	1232	85.2%					
Half-module	125	154	81.2%					
WLSF cut(piece)	19712	19712	100%					
Module	54	77	70.1%					

Materials Preparation

Current progress main target

Production Status

Painting Area

2 Module production in FDU

Fiber protection and carton

9 modules in one wood box. This design can maximize the space of the container

Moisture proof. This step can prevent rain from affecting the detector during the shipment.

Wood boxes

container loading

shipment

3

NICA/MPD电磁量能器交付发车仪式 Delivery and Departure Ceremony of Electromagnetic Calorimeter for NICA/MPD Project.

2022/4/25

4 Cosmic test of module

Photos of Shashlyk ECal module

trigger	Sampling rate
Ch0 & Ch7	2.5GHz
Ch1 & Ch6	5GHz
Ch8 & Ch15	
2 Small Scin.	

Muon

SiPM Calibration_setup

. o x

0

10

500

setup						
XY plateform (precision is 0.03mm)	LED 420nm (from JINR)					
Optical Attenuator, 20X	1.5*1.5m dark box					

Time	12/06 20:00pm	12/06 20:05pm	12/06 22:00pm	12/06 23:00pm	12/07 08:00am	12/07 09:00am	12/07 12:00am	12/07 14:00pm
Mean	83.1mv	83.2mv	84.2mv	83.5mv	77.5mv	77.3mv	81.5mv	83.2mv
Time	12/08 08:00am	12/08 09:00am	12/08 09:30am	12/08 10:00am	12/08 10:30am	12/08 11:00am	12/08 12:55pm	12/08 13:30pm
Temp	25.0°C	25.1℃	25.3℃	25.6°C	25.9℃	25.9℃	26.3°C	26.1°C
Mean	77mv	77mv	77.5mv	80.5mv	82.5mv	82mv	84mv	83mv

The results show that there is a positive correlation $\frac{85}{84}$ between temperature and SiPM performance in the range ³²₈₁ of 25°C-28°C.

	SiPM1	SiPM2	SiPM3	SiPM4	SiPM5	SiPM6	SiPM7	SiPM8
Mean[V]	0.1218	0.1063	0.1123	0.1128	0.1067	0.113	0.115	0.09109
X0	378	328	278	228	178	122	66	0
	SiPM9	SiPM10	SiPM11	SiPM12	SiPM13	SiPM14	SiPM15	SiPM16
Mean[V]	0.1213	0.1118	0.1041	0.0959	0.1031	0.1108	0.1078	0.1123
X0	378	328	278	228	178	122	66	0

Position scan of SiPM8:

- X: step length 1mm; from (-12,0) to (7,0)
- Y: step length 1mm; from (0,-11) to (0,3)

After bringing the SiPM calibration results into the energy deposition results of the cosmic ray test, it can be seen that the energy deposition of the tower has a good consistency

Cosmic test of module

Time resolution

т	before slewing correction (ps)	After slewing correction (ps)	Events	Threshold (ps)
Ch3-Ch4	830	382.5	198	30
Tower-Ch43	2204	642.7	198	30
Ch7531-Ch6420	505.8	252.5	198	30
Tower-Ch76543210	1767	549.1	198	30

The time resolution of a single horizontal ECal tower is

 $\frac{T_{ch3-ch4}}{\sqrt{2}} = 270 \text{ps}$

The time resolution of a vertical ECal tower is 487.7ps

$$\delta(T_{tower-0}) = \delta(T_{tower}) - \delta(T_0) = \delta(T_{tower} - \frac{(T_1 + T_3 + T_5 + T_7 + T_0 + T_2 + T_4 + T_6)}{8})$$

Summary

- The China Group has established a complete QA& QC system. QA & QC
 of Material, Tower and Module have reached the requirements.
- ✓ The cosmic test results show that the lightlyield of different tower is very consistent. Time resolution is 270ps.
- More than 500 module have been completed in China. 768 modules will be ready by 2022.7
- 279 modules produced in THU have been shipped to JINR, now is on the way.

Thanks for your attention

