NICA Stochastic Cooling System

I. Gorelyshev on behalf of the team: V.Filimonov, K.Osipov, A.Sidorin

Introduction

Stochastic cooling

Physically: reduction of the beam phase space by feeding to the beam particles their own noisy signal

Technically: broadband feedback system

Bandwidth W Gain
$$g = g(P_{in}, P_{out})$$

Mixing
$$M = M(W, Pu \leftrightarrow Kk)$$
 $U = \frac{noise}{signal}$

$$\frac{1}{\tau_{Cool}} = \frac{W}{N} (2g[1 - \tilde{M}^{-2}] - g^{2}[M + U])$$

Nuclotron as test facility for NICA

Circumference, m	251.52
Ions	p, d, C
Energy, GeV	3.0(d) 2.5(C)
Rev.frequency, MHz	1.15
Vacuum, Torr	10-9
Intensity	$10^{10}(d)-10^{9}(C)$
Ring slip-factor	0.0322
dp/p	10-4

Band 2 – 4 GHz Output power up to 60 W

Goals: Investigation of different cooling methods Equipment tests for the collider

Nuclotron as test facility for NICA

Tasks for NICA

- Beam accumulation(at low intensities)
- Longitudinal emittance reduction during the bunching
- Luminosity preservation (counteration to intrabeam scattering (IBS))

Start-up mode	Project mode			
RMS bunch length σ_s =1,2 m	RMS bunch length σ_s =0,6 m			
RF Voltage U _{RF} = 50-100 kV	RF Voltage U _{RF} < 1000 kV			
Harmonic number h = 22	Harmonic number h = 66			
Ions ¹⁷⁹ Au ₉₇₊				
ε _{⊥rms.max} = 1,1 π mm.mrad.				
$\Delta p/p_{max}=1\%$				
Energy range 3-4,5 GeV/u				
Only longitudinal cooling	3-D cooling			

Start-up mode: Phase Volume

IBS calculations: BETACOOL

Longitudinal cooling only

IBS simulation condition

$$\tau_{IBS}^{x} \cong \tau_{IBS}^{y} \longrightarrow \infty$$

Project Mode: Phase Volume

3-D cooling

IBS simulation condition

$$\tau_{IBS}^{x} = \tau_{IBS}^{y} = \tau_{IBS}^{s}$$

Project Mode: IntraBeam Scattering

$$L_{max} = 10^{27} \text{cm}^{-2} \text{s}^{-1}$$
 $N_{b,max} = 2.75 \times 10^9$

Requirements for the system: cooling times less than 700-2600 s

Design Steps

- Choose cooling method
- Define main parameters
 - Pickup, Kicker locations
 - Bandwidth
 - Sensitivity
 - Thermal noises (Pickup inside cryo?)
 - Preamplifier Noise Figure
 - Pickup/Kicker Impedance
 - Output power

Choice of cooling method

Uncoupled motion

- Momentum cooling
 - Transit Time method $(\eta_{p\leftrightarrow k} \uparrow)$
 - Filter method $(\eta_{p\leftrightarrow k} \rightarrow 0, \eta_{p,k,k} \uparrow)$
- Transverse cooling
 - Betatron method $(\phi_{p\leftrightarrow k} \rightarrow (2k-1)\cdot \pi/4)$

Coupled motion

- Palmer method $(D_p \uparrow, \beta_p \downarrow, D_k \rightarrow 0)$
- Palmer-Hereward method $(D_p \uparrow, \beta \downarrow, D_k \rightarrow 0)$
- ...

Design on the basis of simulation

Fokker-Planck approach

$$\frac{\partial \Psi(E,t)}{\partial t} + \frac{\partial}{\partial E} \left(F(E)\Psi(E,t) - D(E,t) \frac{\partial \Psi(E,t)}{\partial E} \right) = 0$$

Drift term

Diffusion term

$$F(E) = f_0 \Delta E_c \sim \prod_j TF_j \qquad D(E, t) = \frac{1}{2} f_0 \langle \Delta E_{ic}^2 \rangle \sim \prod_j TF_j^2$$

Bandwidth and Cooling Rate vs Acceptance

Pickup/Kicker Locations

- Uncoupled motion
 - Momentum cooling

 - Transit Time method $(\eta_{p\leftrightarrow k} \uparrow)$ Filter method $(\eta_{p\leftrightarrow k} \rightarrow 0, \eta_{p,k,k} \uparrow)$
 - Transverse cooling
- Betatron method $(\phi_{p\leftrightarrow k} \rightarrow (2k-1)\cdot \pi/2)$

- Coupled motion
 - Palmer method $(D_p \uparrow , \beta_n \downarrow , D_k \rightarrow 0)$
 - Palmer-Hereward method $(D_p \uparrow, \beta \downarrow, D_{\downarrow} \rightarrow 0)$

System parameters

Longitudinal cooling method	Filter	
Passband, GHz	0,7-3,2	
Beam distance from pickup to kicker, m	179,8	
Ion Energy ¹⁹⁷ Au ⁷⁹⁺ , GeV/u	3,0	4,5
Slip-factor from pickup to kicker	0.0294	0.0027
Collider slip-factor	0.0362	0.0095
Pickup/kicker coupling impedance, Ω	200/800	
Gain, dB	75 – 79	
Gain variation, dB	≤±2	
Deviation from linear phase, deg	≤±15	
Peak power at kicker, W	120	
Pickup/noise temperature, K 300/40)/40

Main parameters for NICA Stochastic cooling system has been defined

Cooling rates

- Filter method is chosen for longitudinal cooling, betatron method for transverse cooling. Main parameters are defined.
- Given stochastic cooling system provides the required cooling rates.

General scheme

Ring-Slot Coupler Pickup/Kicker

Proposed by L.Thorndahl Developed by R.Stassen

Pickup ring

16 rings stack

Advantages:

High Coupling Impedance (sensitivity)
Applicable for both long./trans. cooling

Problem:

Extremely hard to achieve ultra-high vacuum

Pickup/Kicker Modification

Separated structure with ceramic vacuum chamber inside rings

G.Zhu et al., HIAF, IMP, Lanzhou, China

Design by Konstantin Osipov, JINR

Sensitivity

Nuclotron measurements: original structure

Comparison with modifications

Pickups do not need to be inside cryostat due to higher sensitivity and heavy ions

Pickup/Kicker Modification

The base for prototype testing is installed at Nuclotron

Test prototype of corrugated pickup has been produced

Coupling Axial \leftrightarrow Loop ports

Band: 1800 – 2300 MHz

Simulated and measured S-parameters are in agreement with each other

Pickup/Kicker Modification

Design documentation for the base is ready. Tender procedure is in progress

Channels distribution

Comb Filter

Comb Filter Specifications

RF:				
Frequency	see order description			
Latency (own delay)	< 20 ns			
Phase variation	± 10°			
Insertion loss variation	±2 dB			
Notch-frequency range	520.833 to 595.238 kHz ¹			
Average notch depths	> 30 dB ²			
Maximum input power	24 dBm			
Optical delays:				
System delay range	0 to 88 ns			
Filter delay range	0 to 240 ns			
Resolution	< 0.75 ps			
Accuracy	< 0.15 ps ³			
Repeatability	< 0.15 ps ³			
Other:				
System and filter optical attenuators ranges	0 to 30 dB			
Control modes	Front panel controls, USB, Ethernet			
Operating temperature	10°C - 40°C			
Storage temperature	0°C - 60°C			

Comb Filter

Filter is conceptually working. Reassembly is in progress

Power Amplifiers Specifications

Band №	ı	II	III	IV	
Band, GHz	0.7 – 1.0	1.0 – 1.5	1.5 – 2.2	2.2 – 3.2	
Operating power, Watt	4	12	32	72	
Quantity	8	8	8	8	
Input/Output Impedance	50 Ω				
Max Input/Output VSWR	1.5				
Gain ripple	±1.5 dB				
Phase deviation from linear	±10°				
1 dB compression point (P1dB)	> 6 dB above operating power				
Odd-order Intermodulation Intercept Point	> 6 dB above P1dB				

Power Amplifiers

Conclusion

- System parameters are defined and are in agreement with NICA tasks
- Requirements for the main components (Pu/Kk, Filter, Power Amps) has been specified
- Pu/Kk & Filter prototypes are under tests
- Ceramic tubes and Amplifiers are to be purchased

Thank you for attention

