«Эффекты поляризации в процессах e^+e^- -аннигиляции при высоких энергиях»

1: 1:18 BX

Диссертация по специальности 01.04.02 - «Теоретическая физика»

Дыдышко Егор Вячеславович Научный сотрудник ЛЯП ОИЯИ НЭОВП, Сектор №1.

Научный руководитель: Садыков Ренат Рафаилович, с.н.с. НЭОВП ЛЯП ОИЯИ, к.ф.-м.н.

Outline

- Глава 1. Введение
- Глава 2. Рассеяние Баба
- Глава 3. Рождение Хиггса
- Глава 4. Рождение лептонных пар
- Глава 5. Рождение $Z\gamma$
- Заключение и тезисы

Базовые процессы СМ для e^+e^- -аннигиляции

Сечения даны для углов $10^o < \theta < 170^o$ конечного состояния.

З

Глава 1. Введение

FCC - Future Circular Collider

CLIC - Compact linear collider

CEPC - Circular e^-e^+ Collider

ILC - International linear collider

Линейные e^+e^- -коллайдеры против циркулярных

Взаимная дополняемость

- Более высокие энергии ⇒ линейные (особенно, CLIC)
- Большая светимость \Rightarrow циркулярные (особенно, FCC)

Физика при низких Q^2 и поляризация конечного состояния Эксперимент BESIII на ускорителе BEPCII Institute of High Energy Physics (IHEP) (Пекин) *e*⁺*e*[−] пучки √s от 2 до 4.63 ГэВ • $L = 10^{33} cm^{-2} c^{-1}$ Проекты Супер Чарм-Тау фабрики *e*⁺*e*[−] пучки • \sqrt{s} от 2 до 7 ГэВ • $L = 10^{35} cm^{-2} c^{-1}$ • продольно поляризованные электроны Теоретическая поддержка • Светимость • Полный фазовый объём

Поляризации конечных частиц

Софт для e^+e^- -коллайдеров.

Mr. X. W. K. TX.

KKMC, Krakow, Poland

- QED corrections + DIZET
- YFS multiphotons
- polarization

BHWIDE, Krakow, Poland

Bhabha at wide angles

BHLUMI, Krakow, Poland Bhabha in forward region

GRACE, Japan

- polarization
- complete EW
- last release in 2006

BABAYAGA, Italy

- Bhabha, $e^+e^- \rightarrow \gamma\gamma$
- QED + EW[?] corrections
- shower multiphotons
- no polarization

WHIZARD, Germany

- official CEPC generator
- polarization
- any process, tree level

CalcHEP

- polarization
- any process, tree level

Среда SANC

В сечение процесса на однопетлевом уровне может быть выделено четыре части:

$$\sigma^{1\text{-loop}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \omega) + \sigma^{\text{hard}}(\omega),$$

where σ^{Born} — сечение на борновском уровне, σ^{virt} — вклад виртуальных (петлевых) диаграмм, σ^{soft} — вклад мягких тормозных фотонов, σ^{hard} — вклад жестких тормозных фотонов (с энергией $E_{\gamma} > \omega$).

Вспомогательные параметры λ ("масса фотона") и ω сокращаются после суммирования.

Декомпозиция векторов поляризации e^{\pm}

Квадрат матричного элемента

$$\begin{split} |\mathcal{M}|^2 &= L_{e^-}^{``}R_{e^+}^{``}|\mathcal{H}_{-+}|^2 + R_{e^-}^{``}L_{e^+}^{``}|\mathcal{H}_{+-}|^2 + L_{e^-}^{``}L_{e^+}^{``}|\mathcal{H}_{--}|^2 + R_{e^-}^{``}R_{e^+}^{``}|\mathcal{H}_{++}|^2 \\ &- \frac{1}{2}P_{e^-}^{\perp}P_{e^+}^{\perp}\operatorname{Re}\Big[e^{i(\Phi_+-\Phi_-)}\mathcal{H}_{++}\mathcal{H}_{--}^{*} + e^{i(\Phi_++\Phi_-)}\mathcal{H}_{+-}\mathcal{H}_{++}^{*}\Big] \\ &+ P_{e^-}^{\perp}\operatorname{Re}\Big[e^{i\Phi_-}\Big(L_{e^+}^{``}\mathcal{H}_{+-}\mathcal{H}_{--}^{*} + R_{e^+}^{``}\mathcal{H}_{++}\mathcal{H}_{-+}^{*}\Big)\Big] \\ &- P_{e^+}^{\perp}\operatorname{Re}\Big[e^{i\Phi_+}\Big(L_{e^-}^{``}\mathcal{H}_{-+}\mathcal{H}_{--}^{*} + R_{e^-}^{``}\mathcal{H}_{++}\mathcal{H}_{+-}^{*}\Big)\Big], \end{split}$$

Tipnp an

303

where

$$L_{e^{\pm}}^{``}=\frac{1}{2}(1-P_{e^{\pm}}^{``}), \quad R_{e^{\pm}}^{``}=\frac{1}{2}(1+P_{e^{\pm}}^{``}), \quad \Phi_{\pm}=\phi_{\pm}-\phi,$$

D'eq.

 $\mathcal{H}_{--},\,\mathcal{H}_{++},\!\mathcal{H}_{-+},\!\mathcal{H}_{+-}$ — спиральные амплитуды.

Глава 2. Рассеяние Баба $e^+e^- \rightarrow e^-e^+$

I HA A & X IL A SE FEITH X A BE SAN I AM

Используется для прецизионной люминометрии на фабриках ароматов и будущих коллайдерах. Требуется также удержание масс всех частиц, чтобы сделать расчёты пригодными в широком диапазоне энергий и гарантировать большую точность, по сравнению ультрарелятивистским приближением.

$e^+e^- ightarrow e^+e^-$: Ковариантная амплитуда

$$\begin{split} \mathcal{A} &= \mathcal{A}_{\gamma}(s) + \mathcal{A}_{Z}(s) - [\mathcal{A}_{\gamma}(t) + \mathcal{A}_{Z}(t)] \\ &= i e^{2} \Biggl\{ \Biggl[\gamma_{\mu} \otimes \gamma_{\mu} \frac{\mathcal{F}_{\gamma}(s)}{s} - \gamma_{\mu} \otimes \gamma_{\mu} \frac{\mathcal{F}_{\gamma}(t)}{t} \Biggr] \\ &+ \frac{\chi_{Z}^{s}}{s} \Biggl\{ \Biggl(I_{e}^{(3)} \Biggr)^{2} \gamma_{\mu} \gamma_{6} \otimes \gamma_{\mu} \gamma_{6} \mathcal{F}_{LL}(s, t, u) \\ &+ 2 \delta_{e} I_{e}^{(3)} \gamma_{\mu} \otimes \gamma_{\mu} \gamma_{6} \mathcal{F}_{QL}(s, t, u) + \delta_{e}^{2} \gamma_{\mu} \otimes \gamma_{\mu} \mathcal{F}_{QQ}(s, t, u) \Biggr\} \\ &- \frac{\chi_{Z}^{t}}{t} \Biggl\{ s \leftrightarrow t \Biggr\}, \end{split}$$

(1)

14

Символ \otimes используется в следующих обозначениях:

 $A_\mu \otimes B_\mu = ar v_1 A_\mu u_2 \, ar u_3 B_\mu v_4$ для *s*-канала $A_\mu \otimes B_\mu = ar u_3 A_\mu u_2 \, ar v_1 B_\mu v_4$ для *t*-канала

 $e^+e^- \rightarrow e^+e^-$: Борн и виртуальная часть

$$\begin{split} \mathcal{H}_{++++} &= \mathcal{H}_{----} = -2e^2 \, \frac{s}{t} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) - \chi_z^t \delta_e \mathcal{F}_{QL}^z(t,s,u) \Big], \\ \mathcal{H}_{+-+-} &= \mathcal{H}_{-+-+} = -e^2 \, c_- \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) - \chi_z^s \delta_e \mathcal{F}_{QL}^z(s,t,u) \Big], \\ \mathcal{H}_{+--+} &= -e^2 \, c_+ \Big(\Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) + \chi_z^s \left(\mathcal{F}_{LL}^z(s,t,u) - 2\delta_e \mathcal{F}_{QL}^z(s,t,u) \right) \Big] \\ &+ \frac{s}{t} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) + \chi_z^t \left(\mathcal{F}_{LL}^z(t,s,u) - 2\delta_e \mathcal{F}_{QL}^z(t,s,u) \right) \Big] \Big), \\ \mathcal{H}_{-++-} &= -e^2 \, c_+ \Big(\Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) \Big] + \frac{s}{t} \left[\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) \Big] \Big), \end{split}$$

где $c_+ = 1 + \cos \theta$, $c_- = 1 - \cos \theta$,

$$\chi_{Z}^{s} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{s}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}, \quad \chi_{Z}^{t} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{t}{t - M_{Z}^{2}}, \quad \delta_{e} = v_{e} - a_{e} = 2s_{W}^{2},$$
$$\mathcal{F}_{QQ}^{(\gamma, Z)}(a, b, c) = \mathcal{F}_{QQ}^{\gamma}(a, b, c) + \chi_{Z}^{a}\delta_{e}^{2}\mathcal{F}_{QQ}^{Z}(a, b, c).$$

Борновский уровень получается подстановкой $\mathcal{F}^Z_{LL} \to 1$, $\mathcal{F}^Z_{QL} \to 1$, $\mathcal{F}^Z_{QQ} \to 1$ и $\mathcal{F}^\gamma_{QQ} \to 1$.

Спиноры и безмассовые вектора

В спинорном пространстве Лоренцевский вектор представляется матрицей 2×2 .

$$p_{A\dot{A}} = \begin{pmatrix} p_0 + p_z & p_x - ip_y \\ p_x + ip_y & p_0 - p_z \end{pmatrix} = \begin{pmatrix} \sqrt{p_0 + p_z} \\ \frac{p_x + ip_y}{\sqrt{p_0 + p_z}} \end{pmatrix}_A \otimes \left(\sqrt{p_0 + p_z} & \frac{p_x - ip_y}{\sqrt{p_0 + p_z}}\right)$$

Для безмассового вектора ранг матрицы равен 1

- ALANDAR KING

$$\frac{1}{2!}\epsilon^{AB}\epsilon^{\dot{A}\dot{B}}p_{A\dot{A}}p_{B\dot{B}} = \det(p_{A\dot{A}}) = m_i^2.$$

Sterry March

N. 11 . S.

16

Безиндексные обозначения

N. D. Watter M.

$$\begin{split} p_{A\dot{A}} &\equiv \hat{p} = \lambda_A(p)\lambda_{\dot{A}}(p) \\ \lambda_A(p) &\equiv |p\rangle, \quad \lambda_{\dot{A}}(p) = \lambda^{\dot{B}}(p)\epsilon_{\dot{B}\dot{A}} = [p|, \\ \lambda^{\dot{A}}(p) &\equiv |p], \quad \lambda^A(p) = \epsilon^{AB}\lambda_B(p) = \langle p| \end{split}$$

Массивные импульсы: проекция на световой конус $q^2=0$

Мы разлагаем массивный импульс с $p_i^2 = m_i^2$ на 2 безмассовых с помощью вспомогательного безмассового импульса q, который соответствует вектору Паули-Любанского

$$p_i = k_i + \frac{m_i^2}{2p_i \cdot q_i} q_i,$$
 $k_i^2 = q_i^2 = 0,$ $k_i = \frac{\not\!\!\!/ \, i \not\!\!\!/ \, i \not\!\!/ \, i}{2p_i \cdot q_i}$

Декомпозиция Дираковских спиноров

$$u^{\chi}(p_{i}) \equiv |p\rangle = \{u^{+}(p_{i}), u^{-}(p_{i})\} = \begin{pmatrix} |i\rangle & \frac{m_{i}}{\langle i|5\rangle} |5\rangle \\ \frac{m_{i}}{[i|5]} |5] & |i] \end{pmatrix}$$
$$v_{\chi}(p_{i}) \equiv |p]] = \{v_{+}(p_{i}), v_{-}(p_{i})\} = \begin{pmatrix} -\frac{m_{i}}{\langle i|5\rangle} |5\rangle & |i\rangle \\ |i] & -\frac{m_{i}}{[i|5]} |5] \end{pmatrix}$$

Световой конус фотона

Будем считать все импульсы входящими, так что $\sum p_i = 0$. Выберем для всех фермионов $q_i = p_5$ и введём ассоциированные "импульсы" k_i :

$$k_i = p_i - \frac{m_i^2}{2p_i \cdot p_5} p_5, \quad k_i^2 = 0, \quad i = 1..4,$$
 (2)

$$k_{5} = -\sum_{i=1}^{4} k_{i} = Kp_{5}, \quad K = 1 + \sum_{i=1}^{4} \frac{m_{i}^{2}}{2p_{i} \cdot p_{5}} = 1 + \sum_{i=1}^{4} \frac{m_{i}^{2}}{2k_{i} \cdot p_{5}}$$

$$p_{5} = -\sum_{i=1}^{4} p_{i} = K'k_{5}, \quad K' = 1 - \sum_{i=1}^{4} \frac{m_{i}^{2}}{2p_{i} \cdot k_{5}} = 1 - \sum_{i=1}^{4} \frac{m_{i}^{2}}{2k_{i} \cdot k_{5}}$$
(3)

Вектор k_5 получается из p_5 таким образом, чтобы возникало "сохранение ассоциированных импульсов" $\sum k_i = 0$.

Anti-Schouten алгоритм

 $\langle a_1|b_1\rangle\langle a_2|b_2\rangle - \langle a_1|b_2\rangle\langle a_2|b_1\rangle \rightarrow \langle a_1|a_2\rangle\langle b_1|b_2\rangle$

18

Состояния спиральности

Произвол в проецировании на световой конус соответствует произволу в выборе оси квантования спина. Мы его использовали для упрощения.

Для получения амплитуды заданного поляризационного состояния достаточно применить матрицу поворота спина.

Трансформация к спиральному базису

$$\mathcal{H}_{a_i} = C_{a_i}^{\ \ b_i} \mathcal{M}_{b_i}$$

$$C_{a_i}^{\ b_i} = \begin{bmatrix} \frac{[i^{\flat}]_5]}{[i]_5]} & \frac{m_i \langle i^* | 5 \rangle}{\langle i^* | i^{\flat} \rangle \langle i | 5 \rangle} \\ \frac{m_i [i^*]_5]}{[i^*|i^{\flat}][i]_5]} & \frac{\langle i^{\flat}]_5 \rangle}{\langle i^{\flat} | 5 \rangle} \end{bmatrix} = \begin{bmatrix} \frac{\langle i^* | i \rangle}{\langle i^* | i^{\flat} \rangle} & \frac{m_i \langle i^* | 5 \rangle}{\langle i^* | i^{\flat} \rangle \langle i | 5 \rangle} \\ \frac{m_i [i^*]_5]}{[i^*|i^{\flat}][i]_5]} & \frac{\langle i^* | i \rangle}{\langle i^* | i^{\flat} \rangle} \end{bmatrix}$$

$$p_{i} = \{E_{i}, p_{i}^{x}, p_{i}^{y}, p_{i}^{z}\}, \qquad p_{i}^{2} = m_{i}^{2}$$

$$k_{i^{*}} = \{|\vec{p}_{i}|, -p_{i}^{x}, -p_{i}^{y}, -p_{i}^{z}\}, \qquad k_{i^{*}}^{2} = 0$$

$$k_{i^{\flat}} = p_{i} - \frac{m_{i}^{2}}{2p_{i} \cdot k_{i^{*}}}k_{i^{*}}, \qquad k_{i^{\flat}}^{2} = 0$$

Жесткое тормозное излучение $e^+e^- \rightarrow e^+e^-\gamma$

$$\mathcal{H}^{\mathsf{hard}} = \mathcal{H}^{\mathsf{isr}} + \mathcal{H}^{\mathsf{fsr}} + \mathcal{H}^{\mathsf{esr}} + \mathcal{H}^{\mathsf{psr}}$$

$$\begin{split} \mathcal{H}_{\chi_1\chi_2\chi_3\chi_4\chi_5}^{\mathrm{esr}}(p_1, p_2, p_3, p_4) &= -\mathcal{H}_{+\chi_1-\chi_3-\chi_2+\chi_4\chi_5}^{\mathrm{isr}}(+p_1, -p_3, -p_2, +p_4) \\ \mathcal{H}_{\chi_1\chi_2\chi_3\chi_4\chi_5}^{\mathrm{psr}}(p_1, p_2, p_3, p_4) &= -\mathcal{H}_{-\chi_4+\chi_2+\chi_3-\chi_1\chi_5}^{\mathrm{isr}}(-p_4, +p_2, +p_3, -p_1) \end{split}$$

CP-symmetry

$$\mathcal{H}^{\mathsf{hard}}_{\chi_1\chi_2\chi_3\chi_4\chi_5} = -\chi_1\chi_2\chi_3\chi_4\overline{\mathcal{H}}^{\mathsf{hard}}_{-\chi_1-\chi_2-\chi_3-\chi_4-\chi_5}$$

WARE A CONTRACT OF THE ACTION OF THE ACTION

$$D_{\chi_1\chi_3}(s) = 2\sqrt{2}e^3 K \left[\frac{Q_1Q_3}{s} + \frac{(v_1 + \chi_1a_1)(v_3 + \chi_3a_3)}{s - M_Z^2 + M_Z\Gamma_Z} \right],$$

$$K = 1 - \frac{m_1^2}{2p_1p_5} - \frac{m_2^2}{2p_2p_5} + \frac{m_3^2}{2p_3p_5} + \frac{m_4^2}{2p_4p_5} \quad \kappa = \frac{K - 1}{K}$$

 $\mathcal{M}_{+-+-+}^{\mathrm{isr}} = \!\! D_{++}^{\mathrm{isr}} \mathcal{A}_0\!\! \begin{bmatrix} \! 135 \\ \! 24 \! \end{bmatrix} + m_f^2 D_{+-}^{\mathrm{isr}} \mathcal{A}_{0M}\!\! \begin{bmatrix} \! 135 \\ \! 24 \! \end{bmatrix} + m_{f_1}^2 D_{-+}^{\mathrm{isr}} \mathcal{A}_4\!\! \begin{bmatrix} \! 135 \\ \! 24 \! \end{bmatrix}$ $\mathcal{M}_{+++++}^{\rm isr} = m_{f_1} m_f \left[D_{++}^{\rm isr} \mathcal{A}_7 \begin{bmatrix} 135\\24 \end{bmatrix} + D_{+-}^{\rm isr} \mathcal{A}_7 \begin{bmatrix} 145\\23 \end{bmatrix} \right]$ $-D_{-+}^{\mathrm{isr}} \mathcal{A}_{7} \begin{bmatrix} 235\\14 \end{bmatrix} - D_{--}^{\mathrm{isr}} \mathcal{A}_{7} \begin{bmatrix} 245\\13 \end{bmatrix} \Big|$ $\mathcal{M}_{---+}^{\rm isr} = m_{f_1} m_f \left[D_{-+}^{\rm isr} \mathcal{A}_1 \begin{bmatrix} 145\\23 \end{bmatrix} + D_{--}^{\rm isr} \mathcal{A}_1 \begin{bmatrix} 135\\24 \end{bmatrix} \right]$ $-D_{++}^{\text{isr}} \mathcal{A}_1 \begin{bmatrix} 245\\13 \end{bmatrix} - D_{+-}^{\text{isr}} \mathcal{A}_1 \begin{bmatrix} 235\\14 \end{bmatrix} \Big|$ $\mathcal{M}_{+++-+}^{\rm isr} = -m_{f_1} \left[D_{-+}^{\rm isr} \mathcal{A}_2 \begin{bmatrix} 235\\14 \end{bmatrix} + D_{++}^{\rm isr} \mathcal{A}_2 \begin{bmatrix} 235\\24 \end{bmatrix} \right]$ $\mathcal{M}_{-++++}^{\rm isr} = -m_f \Big[D_{-+}^{\rm isr} \mathcal{A}_5 [^{245}_{13}] + D_{--}^{\rm isr} \mathcal{A}_5 [^{235}_{14}] \Big]$ $\mathcal{M}_{+--+}^{\rm isr} = -m_f \left[D_{++}^{\rm isr} \mathcal{A}_6 \begin{bmatrix} 135\\ 24 \end{bmatrix} + D_{+-}^{\rm isr} \mathcal{A}_6 \begin{bmatrix} 145\\ 23 \end{bmatrix} \right]$ $\mathcal{M}_{--+-+}^{\rm isr} = m_{f_1} \Big[D_{++}^{\rm isr} \mathcal{A}_3 \begin{bmatrix} 245\\13 \end{bmatrix} - D_{-+}^{\rm isr} \mathcal{A}_3 \begin{bmatrix} 145\\23 \end{bmatrix} \Big]$

Редуцированные амплитуды

$$\mathcal{A}_{0}[{}^{135}_{24}] = \frac{\langle 1|4\rangle^{2}[4|3]}{\langle 1|5\rangle\langle 2|5\rangle} - \kappa \frac{\langle 1|4\rangle[5|3]}{\langle 2|5\rangle}$$
$$\mathcal{A}_{3}[{}^{135}_{24}] = \frac{\langle 2|3\rangle\langle 3|5\rangle[4|3]}{\langle 1|5\rangle\langle 2|5\rangle^{2}} - \kappa \frac{\langle 3|5\rangle[5|4]}{\langle 1|5\rangle\langle 2|5\rangle}$$
$$\mathcal{A}_{0M}[{}^{135}_{24}] = \frac{\langle 1|2\rangle[5|2]}{\langle 2|5\rangle\langle 3|5\rangle[5|4]} \quad \mathcal{A}_{1}[{}^{135}_{24}] = \frac{\langle 1|2\rangle\langle 3|5\rangle[5|1]}{\langle 1|5\rangle\langle 2|5\rangle^{2}[5|4]}$$
$$\mathcal{A}_{2}[{}^{135}_{24}] = \frac{\langle 1|2\rangle\langle 1|4\rangle[5|3]}{z_{25}\langle 1|5\rangle} \quad \mathcal{A}_{4}[{}^{135}_{24}] = \frac{\langle 1|2\rangle\langle 4|5\rangle[5|3]}{z_{15}\langle 2|5\rangle^{2}}$$
$$\mathcal{A}_{5}[{}^{135}_{24}] = \frac{\langle 1|3\rangle[4|3]}{\langle 2|5\rangle\langle 3|5\rangle} \quad \mathcal{A}_{6}[{}^{135}_{24}] = \frac{\langle 1|2\rangle\langle 1|4\rangle[5|2]}{\langle 1|5\rangle\langle 2|5\rangle[5|3]}$$
$$\mathcal{A}_{7}[{}^{135}_{24}] = \frac{\langle 1|2\rangle[5|3]}{z_{25}\langle 4|5\rangle}$$

Tip and

22

$e^+e^- \to e^+e^- {:}$ ReneSANCe однопетлевые ЭС РП

T. MINTER

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6					
$\sqrt{s} = 250 \text{ GeV}$									
$\sigma^{Born}_{e^+e^-}$, pb	56.677(1)	57.775(1)	56.272(1)	59.275(1)					
$\sigma^{1-\mathrm{loop}}_{e^+e^-}$, pb	61.55(1)	59.72(3)	61.02(3)	58.44(3)					
δ, %	8.59(2)	3.37(5)	8.45(5)	-1.42(5)					
$\sqrt{s} = 500 \text{ GeV}$									
$\sigma^{Born}_{e^+e^-}$, pb	14.379(1)	15.030(1)	12.706(1)	17.354(1)					
$\sigma_{e^+e^-}^{1-\mathrm{loop}}$, pb	15.436(7)	14.441(7)	13.501(6)	15.40(1)					
δ, %	7.35(5)	-3.92(5)	6.26(5)	-11.29(5)					
$\sqrt{s} = 1000 \text{ GeV}$									
$\sigma_{e^+e^-}^{Born}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7755(1)					
$\sigma^{1 ext{-loop}}_{e^+e^-}$, pb	3.862(2)	3.609(2)	3.148(1)	4.067(3)					
δ, %	4.98(5)	-7.60(5)	3.70(5)	-14.84(6)					

Ded.

TITUP an

26

 $e^+e^-
ightarrow e^+e^-$: Дифференциальное сечение по $\cos \theta$ $\sqrt{s} = 250$ ГэВ $\sqrt{s} = 500$ ГэВ Born Born 1-loon 1-loop 10 10 da/dcos(θ) [pb] da/dcos(θ) [pb] 10² 10² 10 10 10⁻¹ -0.8-0.6-0.4 10 -0.20 0.2 0.4 0.6 0.8 -1-0.8-0.6 -0.20.2 0.4 0.6 0.8 cos(θ) $\cos(\theta)$ 300 120 [∞] 300 [∞] 250 % 120 % 100 80 200 60 150Ē 40 100E 20 50 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 -1 -0.8-0.6-0.4-0.2 0.2 0.4 0.6 0.8 0 1

 $\cos(\theta)$

27

cos(θ)

Глава 3. Ассоциированное рождение Хиггса $e^+e^- \rightarrow ZH$ TAN WENTON CONSTANT

114-16 11 12

Данный процесс при энергии в системе центра масс 250 ГэВ дает наибольшее сечение рождения бозона Хиггса и может быть использован для прецизионного измерения его массы.

$e^+e^- \rightarrow HZ$: HA for Born and Virtual parts

$$\begin{aligned} \mathcal{H}_{+-+} &= N(s) \sqrt{\frac{s}{2}} c_+ \Big\{ \sqrt{\lambda} c_- \left[\mathcal{F}_2^+ - \mathcal{F}_1^+ \right] - 4\sigma_e \mathcal{F}_0^+ \Big\}, \\ \mathcal{H}_{+--} &= N(s) \sqrt{\frac{s}{2}} c_- \Big\{ \sqrt{\lambda} c_+ \left[\mathcal{F}_2^+ - \mathcal{F}_1^+ \right] - 4\sigma_e \mathcal{F}_0^+ \Big\}, \\ \mathcal{H}_{+-0} &= N(s) \frac{\sin \vartheta_z}{2M_z} \Big\{ \sqrt{\lambda} \left[\beta_+ \mathcal{F}_1^+ + \beta_- \mathcal{F}_2^+ \right] + 4\sigma_e L \mathcal{F}_0^+ \Big\}, \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{-++} &= \mathcal{H}_{+-+} \\ \mathcal{H}_{-+-} &= \mathcal{H}_{+--} \\ \mathcal{F}^+ &\to \mathcal{F}^- \end{aligned} \qquad \qquad \mathcal{H}_{-+0} = -\mathcal{H}_{+-0} | \sigma_e \to \delta_e \end{aligned}$$

whith

$$L = s + M_Z^2 - M_H^2, \quad \lambda = \lambda(s, M_Z^2, M_H^2), \quad \beta = \frac{\sqrt{\lambda}}{L}, \quad \beta_{\pm} = \beta \pm \cos \vartheta_Z, \quad c_{\pm} = 1 \pm \cos \vartheta_Z.$$

/ 30

HA for $e^+e^- \rightarrow ZH\gamma$ (Bremsstrahlung)

$$\begin{split} \mathcal{M}_{--++} &= 2em_1 M_Z N(s') [1|2] \left(\frac{\delta_e}{s_{15}} + \frac{\sigma_e}{s_{25}} \right) \iota_{35}, \\ \mathcal{M}_{++-+} &= 2em_1 M_Z N(s') [1|2] \left(\frac{\sigma_e}{s_{15}} + \frac{\delta_e}{s_{25}} \right) \iota_{15} \iota_{25} \iota_{35}^*, \\ \mathcal{M}_{-+-+} &= -2eM_Z N(s') \frac{\sigma_e}{s_{15}} \frac{[1|2] [1|3] \langle 1|5 \rangle}{\langle 3|5 \rangle} \iota_{25}, \\ \mathcal{M}_{+--+} &= -2eM_Z N(s') \frac{\delta_e}{s_{25}} \frac{[1|2] [2|3] \langle 2|5 \rangle}{\langle 3|5 \rangle} \iota_{15}, \\ \mathcal{M}_{--0+} &= \sqrt{2}em_1 N(s') [1|2] \langle 3|5 \rangle \left(\frac{\delta_e}{s_{15}} \frac{[2|3]}{[2|5]} + \frac{\sigma_e}{s_{25}} \frac{[1|3]}{[1|5]} \right), \\ \mathcal{M}_{-+++} &= -2eM_Z N(s') \sigma_e \left(\frac{[1|2] \langle 2|3 \rangle \langle 2|5 \rangle}{s_{25} [3|5]} + \frac{[1|5]}{[2|5]} \iota_{35} \right), \\ \mathcal{M}_{+-++} &= -2eM_Z N(s') \delta_e \left(\frac{[1|2] \langle 1|3 \rangle \langle 1|5 \rangle}{s_{15} [3|5]} - \frac{[2|5]}{[1|5]} \iota_{35} \right), \end{split}$$

 $\iota_{35} = \langle 3|5\rangle / [3|5]$

HA for $e^+e^- \rightarrow ZH\gamma$ (Bremsstrahlung)

$$\begin{split} \mathcal{M}_{++0+} &= \sqrt{2}em_1 N(s') \left([1|2] \left(\frac{\sigma_e}{s_{15}} \langle 1|5 \rangle \langle 2|3 \rangle + \frac{\delta_e}{s_{25}} \langle 2|5 \rangle \langle 1|3 \rangle \right) \\ &+ \langle 3|5 \rangle \left(\sigma_e - \delta_e \right) \right) \frac{[3|5]}{[1|5] [2|5]}, \\ \mathcal{M}_{-+0+} &= -\sqrt{2}eN(s') \left(\sigma_e \left(\frac{[1|3] \langle 2|3 \rangle \langle 1|5 \rangle}{s_{15}} + \frac{[1|3] \langle 3|5 \rangle}{[1|2]} + \frac{M_Z^2 \langle 2|5 \rangle}{s_{45}} \right) \\ &+ \delta_e \frac{m_1^2 s_{45} \langle 2|5 \rangle}{s_{15} s_{25}} \right) \frac{[1|2]}{[2|5]}, \\ \mathcal{M}_{+-0+} &= -\sqrt{2}eN(s') \left(\delta_e \left(\frac{[2|3] \langle 1|3 \rangle \langle 2|5 \rangle}{s_{25}} - \frac{[2|3] \langle 3|5 \rangle}{[1|2]} + \frac{M_Z^2 \langle 1|5 \rangle}{s_{45}} \right) \\ &+ \sigma_e \frac{m_1^2 s_{45} \langle 1|5 \rangle}{s_{15} s_{25}} \right) \frac{[1|2]}{[1|5]}, \end{split}$$

32

where $s_{i5} = 2k_i \cdot p_5 = K' \langle i|5 \rangle [5|i]$.

 $e^+e^- \to HZ$: Результаты для однопетлевой ЭС РП

$\sqrt{s} =$	250	ГэВ
--------------	-----	-----

P_{e^-}, P_{e^+}	0,0	-0.8,0	-1,1	1,-1	-0.8,-0.6		
$\sigma^{Born}, п б$	0.22559(1)	0.26605(1)	0.55234(1)	0.35001(1)	0.12742(1)		
$\sigma^{1-loop}, пб$	0.20693(1)	0.22353(1)	0.45532(1)	0.37227(1)	0.11176		
$\delta,\%$	-8.27(1)	-15.98(1)	-17.57(1)	-6.36(1)	-12.29(1)		
$\sqrt{s} = 500$ ГэВ							
$P_{e^{-}}, P_{e^{+}}$	0,0	-0.8,0	-1,1	1,-1	-0.8,-0.6		
$\sigma^{Born}, \ п б$	0.05373(1)	0.06337(1)	0.13157(1)	0.08337(1)	0.03035(1)		
$\sigma^{1-loop}, пб$	0.06242(1)	0.06831(1)	0.13937(1)	0.10990(1)	0.03404(1)		
$\delta,\%$	16.15(1)	7.78(1)	5.493(1)	31.81(1)	12.16(1)		
$\sqrt{s} = 1000$ ГэВ							
P_{e^-}, P_{e^+}	0,0	-0.8,0	-1,1	1,-1	-0.8,-0.6		
$\sigma^{Born}, \ п f$	0.01205(1)	0.01421(1)	0.02951(1)	0.01870(1)	0.00680(1)		
$\sigma^{1-loop}, \ пб$	0.01457(1)	0.01582(1)	0.03214(1)	0.02590(1)	0.00795(1)		
$\delta,\%$	20.86(1)	11.30(1)	8.89(1)	38.49(1)	16.77(1)		

 $e^+e^-
ightarrow HZ$: Дифференциальное сечение по $\cos heta$

7. 10/0000

$$rac{d\sigma}{d\cosartheta_Z}$$
, для $(P_{e^+},P_{e^-})=(-0.8,-0.6)$, $\sqrt{s}=500$ ГэВ

Tijnp an

Ded.

 $e^+e^- o HZ$: Дифференциальное сечение по M_{ZH} $rac{d\sigma}{dM_{HZ}}$, для $(P_{e^+},P_{e^-})=(-1,-1)$, $\sqrt{s}=500$ ГэВ

Tijnp an

T. MINDT

35

Глава 4. Рождение лептонных пар $e^+e^- \rightarrow \ell^+\ell^-$ Данный процесс является основным для изучения распадов тау-лептонов, что требует также учёта поляризации конечных частиц. Результат может быть использован для проектируемой в России « $c - \tau$ -фабрики». Процесс рождения лептонных пар также пригоден для люминометрии на существующих и будущих e^+e^- -коллайдерах.

$e^+e^- \rightarrow f\bar{f}$: HA for Born and Virtual parts

$$\begin{aligned} \mathcal{H}_{-++-} &= -c_{+} \left(Q_{e}Q_{l}\mathcal{F}_{\gamma} + \chi_{Z}(s)\delta_{e} \left[\beta^{-}I_{l}^{(3)}\mathcal{F}_{QL} + \delta_{l}\mathcal{F}_{QQ} \right] \right), \\ \mathcal{H}_{-+\pm\pm} &= \frac{2m_{l}}{\sqrt{s}} \sin \vartheta_{l} \left(Q_{e}Q_{l}\mathcal{F}_{\gamma} \right. \\ &\quad + \chi_{Z}(s)\delta_{e} \left[I_{l}^{(3)}\mathcal{F}_{QL} + \delta_{l}\mathcal{F}_{QQ} + \frac{s}{2}\beta_{l}^{2}I_{l}^{(3)}\mathcal{F}_{QD} \right] \right), \\ \mathcal{H}_{+-\pm\pm} &= -\frac{2m_{l}}{\sqrt{s}} \sin \vartheta_{l} \left(Q_{e}Q_{l}\mathcal{F}_{\gamma} + \chi_{Z}(s) \left[2I_{e}^{(3)} \left(I_{l}^{(3)}\mathcal{F}_{LL} + \delta_{l}\mathcal{F}_{LQ} \right) \right. \\ &\quad + \delta_{e}I_{l}^{(3)}\mathcal{F}_{QL} + \delta_{e}\delta_{l}\mathcal{F}_{QQ} + \frac{s}{2}\beta_{f}^{2}I_{l}^{(3)} \left(2I_{e}^{(3)}\mathcal{F}_{LD} + \delta_{e}\mathcal{F}_{QD} \right) \right] \right), \\ \mathcal{H}_{+--+} &= -c_{+} \left(Q_{e}Q_{l}\mathcal{F}_{\gamma} + \chi_{Z}(s) \left[\beta^{+}I_{l}^{(3)} \left(2I_{e}^{(3)}\mathcal{F}_{LL} + \delta_{e}\mathcal{F}_{QL} \right) \right. \\ &\quad + \delta_{l} \left(2I_{e}^{(3)}\mathcal{F}_{LQ} + \delta_{e}\mathcal{F}_{QQ} \right) \right] \right). \end{aligned}$$

Gauge-invariant diagram sets

 $\mathsf{A}=\mathsf{A}^e+\mathsf{A}^l$

Вектор поляризации

For massless vector boson with momentum k in axial gauge (fixed by light-like vector g) we can construct polarization vectors explicitly in terms of spinor dyad

$$\varepsilon_{\mu}^{+}(k,g) = \frac{[g|\gamma_{\mu}|k\rangle}{\sqrt{2}[g|k]}, \quad \hat{\varepsilon}^{+}(k,g) = \sqrt{2}\frac{|g]\langle k| + |k\rangle[g|}{[g|k]}, \\ \varepsilon_{\mu}^{-}(k,g) = \frac{\langle g|\gamma_{\mu}|k]}{\sqrt{2}\langle g|k\rangle} \stackrel{\Rightarrow}{\Rightarrow} \hat{\varepsilon}^{-}(k,g) = \sqrt{2}\frac{|g\rangle[k| + |k]\langle g|}{\langle g|k\rangle}$$

Тензор напряженности Максвелла

$$F_{\mu\nu}(k) = k_{[\mu}\varepsilon_{\nu]}(k,g), \quad \Rightarrow \frac{\mathbf{F}^{+}(k) = \sqrt{2}}{\mathbf{F}^{-}(k) = \sqrt{2}}\frac{|k\rangle\langle k|, \\ \mathbf{F}(k) = F_{\mu\nu}(k)\sigma^{\mu\nu} \stackrel{\Rightarrow}{\Rightarrow} \frac{\mathbf{F}^{+}(k) = \sqrt{2}}{\mathbf{F}^{-}(k) = \sqrt{2}}\frac{|k\rangle\langle k|, \\ \mathbf{F}^{-}(k) = \sqrt{2}\frac{|k\rangle[k|}{k}$$
Эйкональный множитель выраженный через тензор Максвелла

$$\begin{aligned} \frac{2\varepsilon_4 \cdot p_2}{2p_2 \cdot p_4} &- \frac{2\varepsilon_4 \cdot p_1}{2p_1 \cdot p_4} = 4 \frac{(p_1 \cdot p_4)(p_2 \cdot \varepsilon_4) - (p_2 \cdot p_4)(p_1 \cdot \varepsilon_4)}{z_{14}z_{24}} \\ &= 4 \frac{\begin{vmatrix} p_1 \cdot p_4 & p_2 \cdot p_4 \\ p_1 \cdot \varepsilon_4 & p_2 \cdot \varepsilon_4 \end{vmatrix}}{z_{14}z_{24}} = 4 \frac{(\not\!p_1 \wedge \not\!p_2) \cdot (\not\!\epsilon_4 \wedge \not\!p_4)}{z_{14}z_{24}} \\ &= -\frac{\operatorname{Tr}[\not\!p_1 \not\!p_2 \mathbf{F}_4]}{z_{14}z_{24}} \end{aligned}$$

где

 $z_{14} \equiv 2p_1 \cdot p_4,$

 $z_{24} \equiv 2p_2 \cdot p_4$

Явным образом колибровочно инвариантная амплитуда

$$A^{e} = -\frac{\operatorname{Tr}[\not\!\!\!p_1 \not\!\!\!p_2 \mathbf{F}_5]}{z_1 z_2} \bar{v}_1 \hat{e}_{34} u_2 - \frac{\bar{v}_1 \mathbf{F}_5 \hat{e}_{34} u_2}{z_1} - \frac{\bar{v}_1 \hat{e}_{34} \mathbf{F}_5 u_2}{z_2}$$

where

$$\hat{e}_{34}^{cd} = \sum_{a,b=\pm 1} \mathcal{D}_s^{ab} (\bar{u}_4^d \gamma^\mu \gamma_b v_3^c) \gamma^\mu \gamma_a, \quad c,d=\pm 1$$
$$\mathcal{D}_s^{ab} = \frac{Q_e Q_l}{s} + \frac{g_e^a g_l^b}{s - M_Z^2 + iM_Z \Gamma_Z}, \quad z_i = 2p_i \cdot p_5$$

Обобщение на виртуальный фотон $e^+e^-Z\gamma^* \rightarrow 0$

$$e^+(p_1) + e^-(p_2) + Z(p_3) + \gamma^*(p_4) \to 0$$

For virtual photon $p_4^2 \neq 0$. Vector e_4 does not contain γ_5 ! We also relax property $e_4 \cdot p_4 \neq 0$.

 $\mathcal{A} = \bar{v}_1 e_3 \frac{1}{\not{p}_{24} - m} \not{e}_4 u_2 + \bar{v}_1 \not{e}_4 \frac{1}{\not{p}_{23} - m} e_3 u_2$ $m_1 = m_2 = m, \quad e_3 = \not{e}_3 (g_V + g_A \gamma_5)$ $P_1 = p_1 + \frac{p_4}{2}, \qquad P_2 = p_2 + \frac{p_4}{2}, \qquad \mathbf{F}_4 = \not{p}_4 \wedge \not{e}_4$

 $Z_{14} = 2P_1 \cdot p_4,$ $Z_{24} = 2P_2 \cdot p_4,$ $P_1 + P_2 + p_3 = 0$

1.5 1. 1. 43

$e^+e^- o \mu^+\mu^-$: Сечение с однопетлевой ЭС РП с обрезаниями.

\sqrt{s}	P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, 0.6	-0.8, -0.6
m	$\sigma^{ m born}_{\mu^+\mu^-}$, пб	2978.6(1)	2978.0(1)	4407.2(1)	1548.7(1)
Ē	$\sigma^{ m ew}_{\mu^+\mu^-}$, пб	3436(1)	3436(1)	5079(1)	1793(1)
ഹ	δ,%	15.4(1)%	15.4(1)%	15.2(1) %	15.8(1)%
B	$σ_{\mu^+\mu^-}^{\rm born}$, φ6	1417.6(1)	1546.5(1)	2323.5(1)	769.37(2)
250 F₃	$\sigma^{\rm ew}_{\mu^+\mu^-}$, фб	2399(1)	2614(1)	3909(1)	1318(1)
	δ,%	69.2(1)%	69.0(1)%	68.2(1) %	71.3(1)%
J Γ∋B	$σ_{\mu^+\mu^-}^{\rm born}$, φ6	343.63(1)	371.62(1)	557.56(1)	185.69(1)
	$σ^{\rm ew}_{\mu^+\mu^-}$, φ6	469.8(4)	495.4(5)	739.3(7)	251.5(2)
500	δ,%	36.7(1)%	33.3(1) %	32.6(1) %	35.4(1)%
0 Γ∍B	$σ_{\mu^+\mu^-}^{\rm born}$, φ6	85.355(3)	92.131(5)	138.18(1)	46.079(2)
	$\sigma^{\mathrm{ew}}_{\mu^+\mu^-}$, фб	116.2(1)	121.1(1)	180.3(1)	61.83(2)
<u> </u>	δ,%	36.2(1) %	31.4(1) %	30.5(1)%	34.2(1)%
обрезания: $ \cos heta_{\mu^-} < 0.9, \cos heta_{\mu^+} < 0.9.$					

1.1.51 1 5.11

$e^+e^- \to \mu^+\mu^-$: Сечение с однопетлевой ЭС РП без обрезаний.

\sqrt{s}	P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, 0.6	-0.8, -0.6
m	$\sigma^{ m born}_{\mu^+\mu^-}$, пб	3474.1(1)	3473.4(1)	5140.5(1)	1806.4(1)
Ē	$\sigma^{\mathrm{ew}}_{\mu^+\mu^-}$, пб	4612.2(2)	4612.0(3)	6786.6(4)	2437.4(1)
വ	δ,%	32.76(1)%	32.78(1)%	32.02(1)%	34.93(1)%
B	$σ^{\rm born}_{\mu^+\mu^-}$, φ6	1653.7(1)	1804.0(1)	2710.5(1)	897.5(1)
250 F₃	$σ_{\mu^+\mu^-}^{\rm ew}$, φ6	4526.3(2)	4915.2(2)	7298.3(4)	2532.0(1)
	δ,%	173.7(1)%	172.4(1)%	169.3(1)%	182.1(1)%
B	$\sigma^{\rm born}_{\mu^+\mu^-}$, fb	400.85(1)	433.51(1)	650.41(1)	216.61(1)
	$\sigma^{\rm ew}_{\mu^+\mu^-}$, fb	1138.9(1)	1227.7(1)	1818.2(1)	637.2(1)
20(δ,%	184.1(1)%	183.2(1)%	179.5(1)%	194.2(1)%
B€] 000	$\sigma^{ m born}_{\mu^+\mu^-}$, фб	99.57(1)	107.47(1)	161.20(1)	53.75(1)
	$\sigma^{\mathrm{ew}}_{\mu^+\mu^-}$, фб	296.70(2)	318.74(3)	471.61(4)	165.87(1)
	δ,%	198.0(1)%	196.6(1)%	192.6(1)%	208.6(1)%

$e^+e^- \to \mu^+\mu^-$ и $e^+e^- \to \tau^+\tau^-$: для $\sqrt{s}=5~$ ГэВ

	P_{e^+} , P_{e^-}	0, 0	0,-0.8	0.6,-0.8	-0.6,-0.8
5	$\sigma^{born}_{\mu^+\mu^-}$, пб	2978.6(1)	2978.0(1)	4407.2(1)	1548.7(1)
иег	$\sigma^{\rm born}_{ au^+ au^-}$, пб	2703.15(3)	2702.63(5)	3999.8(1)	1405.51(2)
зан	$\sigma^{ew}_{\mu^+\mu^-}$, пб	3436(1)	3436(1)	5079(1)	1793(1)
5 pe	$\delta,\%$	15.4(1)%	15.4(1)%	15.2(1)%	15.8(1)%
) 0 0	$\sigma^{ew}_{ au^+ au^-}$, пб	2817.4(1)	2817.1(1)	4168.6(1)	1465.6(1)
Ŭ	$\delta,\%$	4.22(1)%	4.24(1)%	4.22(1)%	4.27(1)%
ез обрезаний	$\sigma^{born}_{\mu^+\mu^-}$, пб	3474.1(1)	3473.4(1)	5140.5(1)	1806.4(1)
	$\sigma^{ m born}_{ au^+ au^-}$, пб	3060.9(1)	3060.3(1)	4529.1(1)	1591.5(1)
	$\sigma^{ew}_{\mu^+\mu^-}$, пб	4612.2(2)	4612.0(3)	6786.6(4)	2437.4(1)
	$\delta,\%$	32.76(1)%	32.78(1)%	32.02(1)%	34.93(1)%
	$\sigma^{ew}_{ au^+ au^-}$, пб	3220.6(1)	3221.3(1)	4766.9(1)	1675.8(1)
	$\delta,\%$	5.218(1)%	5.262(1)%	5.251(2)%	5.292(1)%
обрезания: $ \cos heta_{ au^-} < 0.9, \cos heta_{ au^+} < 0.9.$					

 $e^+e^- \rightarrow \mu^+\mu^-$:результаты для $\sqrt{s} = 250$ ГэВ в схемах $\alpha(0)$ и G_μ .

P_{e^+} , P_{e^-}	0, 0	0,-0.8	0.3,-0.8	0,0.8	-0.3,0.8
$\sigma^{born}_{lpha(0)}$, пб	1.6537	1.8040	2.2572	1.5034	1.8440
$\sigma^{ m born}_{G_{\mu}}$, пб	1.7611	1.9212	2.4039	1.6011	1.9638
$\sigma^{weak}_{lpha(0)}$, пб	1.8360	1.9447	2.4261	1.7273	2.1271
$\delta, \%$	11.03%	7.81%	7.49%	14.89%	15.36%
$\sigma^{weak}_{G_{\mu}}$, пб	1.8547	1.9614	2.4466	1.7480	2.1532
$\delta,\%$	5.31%	2.10%	1.78%	9.18%	9.64%
$\sigma^{EW}_{lpha(0)}$, пб	4.534	4.923	6.115	4.145	5.047
$\delta, \%$	174.2%	172.9%	170.9%	175.7%	173.7%
$\sigma^{EW}_{G_{\mu}}$, пб	4.728	5.132	6.376	4.323	5.263
$\delta, \%$	168.5%	167.1%	165.2%	170.0%	168.0%

Tip nr are

$e^+e^- \to \mu^-\mu^+$: Асимметрия A_{LR} в зависимости от $\cos \vartheta_{14}$ с ЭС РП

1 10000

 $e^+e^- \to \mu^-\mu^+$, $\sqrt{s} = 250$, 500, 1000 ГэВ.

<u>Λ</u>

Глава 5. Рождение $e^+e^- \rightarrow \gamma Z$

Этот процесс представляет особый интерес для поиска отклонений от Стандартной модели трёхбозонных констант взаимодействия вида фотон-Z-бозон-фотон или фотон-Z-бозон-Z-бозон.

$e^+e^- \rightarrow ZA$: HA for Born and Virtual parts, example

$$\begin{aligned} \mathcal{H}_{\mp\mp\mp\mp} &= \frac{m_e}{\sqrt{s}} \left[2 - \frac{1}{2} \frac{sk_{tu}}{Z_1 Z_2} \sin^2 \theta_{\gamma} \right] v_e \mathcal{F}_v^0 \\ &+ \frac{k_{tu}}{4\sqrt{s}} c_{-} \left[c_{+} \left(\mathcal{F}_2^{\pm} - \mathcal{F}_3^{\pm} - \mathcal{F}_4^{\pm} \right) - c_{-} \mathcal{F}_5^{\pm} + \mathcal{F}_{12}^{\pm} - \frac{s}{2} c_{+} \mathcal{F}_{13}^{\pm} \right], \\ \mathcal{H}_{\mp\mp\mp\mp0} &= \mp \frac{k_{tu}}{4\sqrt{2}M_Z} \sin \theta_{\gamma} \left[\frac{4M_Z^2 m_e}{Z_1 Z_2} \cos \theta_{\gamma} v_e \mathcal{F}_v^0 \right. \\ &+ k_2 \mathcal{F}_2^{\pm} + k_1 \mathcal{F}_3^{\pm} - k_2 \mathcal{F}_4^{\pm} + k_+ c_- \mathcal{F}_5^{\pm} - s \mathcal{F}_{12}^{\pm} + \frac{s}{2} k_1 \mathcal{F}_{13}^{\pm} \right], \\ \mathcal{H}_{\mp\mp\mp\pm\pm} &= \frac{\sqrt{s}}{4} k_{tu} \sin^2 \theta_{\gamma} \left[\frac{2m_e v_e}{Z_1 Z_2} \mathcal{F}_v^0 - \mathcal{F}_2^{\pm} + \mathcal{F}_3^{\pm} + \mathcal{F}_4^{\pm} - \mathcal{F}_5^{\pm} + \frac{s}{2} \mathcal{F}_{13}^{\pm} \right], \\ \mathcal{H}_{\mp\mp\pm\pm} &= \frac{\sqrt{s}}{8} k_{tu} \sin^2 \theta_{\gamma} \left[\frac{4m_e}{Z_1 Z_2} v_e \mathcal{F}_v^0 + s \mathcal{F}_{13}^{\pm} \right], \\ \mathcal{H}_{\mp\mp\pm\pm0} &= \pm \frac{k_{tu}}{\sqrt{2}M_Z} \sin \theta_{\gamma} \left[\frac{m_e}{Z_1 Z_2} \left(M_Z^2 \cos \theta_{\gamma} v_e \mathcal{F}_v^0 \pm k_{tu} a_e \mathcal{F}_a^0 \right) \right. \\ &- \frac{s}{4} \left(2\mathcal{F}_4^{\pm} + \mathcal{F}_{12}^{\pm} - \frac{1}{2} k_1 \mathcal{F}_{13}^{\pm} \right) \right], \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\pm\mp\pm\pm} &= \mp \frac{\sin\theta_{\gamma}}{8} \left[\frac{4M_z^2}{Z_1} \mathcal{F}_0^{\pm} - k_{tu} \left[sc_+ \left(\mathcal{F}_6^{\pm} - \mathcal{F}_8^{\pm} \right) + 4\mathcal{F}_{10}^{\pm} + 2sc_- \mathcal{F}_{11}^{\pm} \right] \right], \\ \mathcal{H}_{\pm\mp\mp\mp} &= \pm \frac{\sin\theta_{\gamma}}{8} \left[\frac{4M_z^2}{Z_2} \mathcal{F}_0^{\pm} - k_{tu} \left[8\mathcal{F}_1^{\pm} + sc_- \left(\mathcal{F}_7^{\pm} - \mathcal{F}_9^{\pm} \right) - 4\mathcal{F}_{10}^{\pm} + 2sc_+ \right], \\ \mathcal{H}_{\pm\mp\pm0} &= \frac{c_+}{8\sqrt{2}} \frac{\sqrt{s}}{M_z} \left[\frac{8M_z^2}{Z_1} \mathcal{F}_0^{\pm} + k_{tu} \left(k_2 \mathcal{F}_6^{\pm} + k_1 \mathcal{F}_8^{\pm} - 4\mathcal{F}_{10}^{\pm} - 2k_+ c_- \mathcal{F}_{11}^{\pm} \right) \right], \\ \mathcal{H}_{\mp\pm\pm0} &= \frac{c_-}{8\sqrt{2}} \frac{\sqrt{s}}{M_z} \left[\frac{-8M_z^2}{Z_2} \mathcal{F}_0^{\pm} + k_{tu} \left(8\mathcal{F}_1^{\pm} + k_2 \mathcal{F}_7^{\pm} + k_1 \mathcal{F}_9^{\pm} - 4\mathcal{F}_{10}^{\pm} + 2k_+ \right) \right] \end{aligned}$$

$$\mathcal{H}_{\pm\mp\pm\mp} = \mp \frac{s}{8} k_{tu} \sin \theta_{\gamma} c_{+} \left[\frac{2}{Z_{1} Z_{2}} \mathcal{F}_{0}^{\pm} + \mathcal{F}_{6}^{\pm} - \mathcal{F}_{8}^{\pm} - 2 \mathcal{F}_{11}^{\pm} \right],$$
$$\mathcal{H}_{\pm\mp\mp\pm} = \pm \frac{s}{8} k_{tu} \sin \theta_{\gamma} c_{-} \left[\frac{2}{Z_{1} Z_{2}} \mathcal{F}_{0}^{\pm} + \mathcal{F}_{7}^{\pm} - \mathcal{F}_{9}^{\pm} - 2 \mathcal{F}_{11}^{\pm} \right].$$

Здесь мы вводим следующие сокращённые обозначения

$$\mathcal{F}_{0}^{\pm} = v_{e} \mathcal{F}_{v}^{0}(s, t, u) \pm a_{e} \mathcal{F}_{a}^{0}(s, t, u),$$

$$\mathcal{F}_{i}^{\pm} = \mathcal{F}_{v}^{j}(s, t, u) \pm \mathcal{F}_{a}^{j}(s, t, u), \quad j = 1, ... 13,$$

Матрицы Дирака в 6-мерном пространстве $\dot{\gamma}^M \dot{\gamma}^N + \dot{\gamma}^N \dot{\gamma}^M = 2g^{MN},$ $\dot{\gamma}_{M\alpha}{}^{\beta} = \{\gamma_{\mu}, \gamma_5, +1\},\$ $g^{MN} = \text{diag}[g^{\mu\nu}, 1, -1]$ $\dot{\gamma}_{M\dot{\alpha}}{}^{\beta} = \{\gamma_{\mu}, \gamma_5, -1\},\$ YNU THUR AND ANY 1 Auto Int Спинорная метрика $\epsilon^{\alpha\dot{\beta}} = \epsilon^{\dot{\beta}\alpha} = \epsilon_{\alpha\dot{\beta}} = \epsilon_{\dot{\beta}\alpha} = \begin{vmatrix} \epsilon^{AB} & 0\\ 0 & \epsilon_{\dot{A}\dot{B}} \end{vmatrix}$ The second second IIIIIX PLEY-1 B d = 5дотированные и недотированные спинорные индексы можно не различать, поскольку $\gamma^{6}{}_{\alpha}{}^{\dot{\beta}} = "1"$ MILL Kelly RUBA IX I A THE (Леви-Чивита) полностью антисимметричный спинор $\epsilon^{\alpha\beta\gamma\delta} = 3\epsilon^{[\alpha\beta}\epsilon^{\gamma\delta]} = -\epsilon^{\alpha\beta}\epsilon^{\gamma\delta} - \epsilon^{\alpha\gamma}\epsilon^{\beta\delta} + \epsilon^{\alpha\delta}\epsilon^{\beta\gamma}, \qquad \epsilon^{1234} = 1$

Обращение матриц малой группы

$$\langle p|\dot{q}|p\rangle = \langle p|q] [\![q|p\rangle] = 2\dot{p} \cdot \dot{q} \quad \Rightarrow \quad \frac{1}{\langle p|q]\!} = \frac{[\![q|p\rangle]}{2\dot{p} \cdot \dot{q}}, \quad \frac{1}{[\![q|p\rangle]} = \frac{\langle p|q]\!}{2\dot{p} \cdot \dot{q}}$$

тождество Схоутена для d=6

Мы можем разложить произвольный спинор $|u\rangle$ на линейную комбинацию заданных спиноров $|p\rangle$ и $|q\rangle$ $|u\rangle = |p\rangle \frac{1}{\|q|p\rangle} \|q|u\rangle + |q\rangle \frac{1}{\|p|q\rangle} \|p|u\rangle$

Процесс $e^+e^-Z\gamma \to 0$ в d=6 $e^+(p_1) + e^-(p_2) + Z(p_3) + \gamma(p_4) \to 0$ $\mathcal{A} = \begin{array}{c} 3 & 4 \\ \end{array} + \begin{array}{c} 1 \\ \end{array}$ 1/4 V Wart D. The Borth I I K $\dot{p}_1 = p_1 - m, \quad \dot{p}_3 = p_3 + 0, \quad z_{14} = 2\dot{p}_1 \cdot \dot{p}_4 = z_{23}, \quad \ddot{F}_4 = \dot{p}_4 \dot{\epsilon}_4$ $\dot{p}_2 = p_2 + m, \quad \dot{p}_4 = p_4 + 0, \quad z_{24} = 2\dot{p}_2 \cdot \dot{p}_4 = z_{14},$ V TANKARA CARACTER AND A CARACTER AND Правила Фейнмана дают $\mathcal{A} = \langle 1|e_3 \frac{1}{\dot{p}_{24}} \dot{\varepsilon}_4 |2\rangle + \langle 1|\dot{\varepsilon}_4 \frac{1}{\dot{p}_{23}} e_3 |2\rangle = \frac{\langle 1|e_3 \dot{p}_{24} \dot{\varepsilon}_4 |2\rangle}{z_{24}} + \frac{\langle 1|\dot{\varepsilon}_4 \dot{p}_{23} e_3 |2\rangle}{z_{23}}$ 56

Тензор напряженности Максвелла

$$\dot{k}\ddot{F} = 0$$
,
 $\ddot{F} = \dot{k} \wedge \dot{\varepsilon}$,
 $\dot{k}\dot{k} = k^2 = 0$

 Вектор поляризации в аксиальной калибровке

 $\dot{\varepsilon} = \frac{\dot{g}|\ddot{F}}{g \cdot k}$,
 $\dot{\varepsilon} \cdot \dot{k} = 0$,
 $\dot{\varepsilon} \cdot \dot{g} = 0$

 Выражение через спиноры

 $Jac_a^a = \sqrt{2}|k^a| \otimes [k_{\dot{a}}|,$
 $\ddot{F}_a^{\dot{a}} = \sqrt{2}|k^{\dot{a}}] \otimes (k_a|$

Пример выкладки

$$(p_{2}' + p_{4})\dot{\varepsilon}_{4}|2) = |2\rangle(2|\dot{\varepsilon}_{4}|2) + \ddot{F}_{4}|2\rangle = |2\rangle(2p_{2}' \cdot \dot{\varepsilon}_{4}) + \ddot{F}_{4}|2)$$
Калибровочно-инвариантная форма для $e^{+}e^{-}Z\gamma \rightarrow 0$ в
 $d = 6$

$$\mathcal{A} = -\frac{\text{Tr}[p_{1}'p_{2}'\tilde{F}_{4}]}{z_{14}z_{24}}(1|e_{3}|2) + \frac{(1|e_{3}'\tilde{F}_{4}|2)}{z_{24}} + \frac{(1|\ddot{F}_{4}e_{3}|2)}{z_{14}}$$
Тождество Уорда выполняется для *каждого* слагаемого.
Амплитуда

$$\frac{\mathcal{A}}{\sqrt{2}} = -\frac{1}{(1|4]}(1|2]\frac{1}{(4|2]}\otimes(1|e_{3}|2) + (1|e_{3}|4)\otimes\frac{1}{(2|4]} + \frac{1}{[4|1]}\otimes(4|e_{3}|2)$$

14B

 $e^+(p_1) + e^-(p_2) + Z(p_3) + \gamma(p_4) + \gamma(p_5) \to 0$

 $\mathcal{A} = \langle 1 | e_3 \frac{1}{\dot{p}_{13}} \dot{\varepsilon}_4 \frac{1}{\dot{p}_{25}} \dot{\varepsilon}_5 | 2 \rangle + \langle 1 | \dot{\varepsilon}_4 \frac{1}{\dot{p}_{14}} e_3 \frac{1}{\dot{p}_{25}} \dot{\varepsilon}_5 | 2 \rangle + \langle 1 | \dot{\varepsilon}_4 \frac{1}{\dot{p}_{14}} \dot{\varepsilon}_5 \frac{1}{\dot{p}_{23}} e_3 | 2 \rangle$ $+ \langle 1|e_3\frac{1}{\dot{p}_{13}}\dot{\varepsilon}_5\frac{1}{\dot{p}_{24}}\dot{\varepsilon}_4|2\rangle + \langle 1|\dot{\varepsilon}_5\frac{1}{\dot{p}_{15}}e_3\frac{1}{\dot{p}_{24}}\dot{\varepsilon}_4|2\rangle + \langle 1|\dot{\varepsilon}_5\frac{1}{\dot{p}_{15}}\dot{\varepsilon}_4\frac{1}{\dot{p}_{23}}e_3|2\rangle$

 $e^+e^- \rightarrow ZA$: Скаляризованая амплитуда $\mathcal{A} = \left(-\frac{\mathrm{Tr}[\dot{p}_1\dot{p}_2\ddot{F}_4]\,\mathrm{Tr}[\dot{p}_1\dot{p}_2\ddot{F}_5]}{z_{14}z_{24}z_{15}z_{25}} + \frac{\mathrm{Tr}[\dot{p}_2\ddot{F}_4\dot{p}_2\ddot{F}_5]}{z_{24}z_{245}z_{25}} + \frac{\mathrm{Tr}[\dot{p}_1\ddot{F}_4\dot{p}_1\ddot{F}_5]}{z_{14}z_{145}z_{15}}\right)(1|e_3|2)$ $+\left(\frac{\mathrm{Tr}[\dot{p}_1\dot{p}_2\ddot{F}_4]}{z_{14}z_{24}}+\frac{\mathrm{Tr}[\dot{p}_2\dot{p}_5\ddot{F}_4]}{z_{24}z_{245}}\right)\frac{\left\langle1\big|e_3\ddot{F}_5\big|2\right\rangle}{z_{25}}$ $+\left(\frac{\text{Tr}[\dot{p}_1\dot{p}_2\ddot{F}_4]}{z_{14}z_{24}}-\frac{\text{Tr}[\dot{p}_1\dot{p}_5\ddot{F}_4]}{z_{14}z_{145}}\right)\frac{\left\langle1\big|\ddot{F}_5e_3\big|2\right\rangle}{z_{15}}$ $- \frac{(1|e_3 \H{F}_4 \H{F}_5|2)}{(1|e_3 \H{F}_5 \H{F}_4|2)} - \frac{(1|\mathring{F}_4 e_3 \H{F}_5|2)}{(1|\mathring{F}_4 e_3 \H{F}_5|2)}$ $z_{25}z_{245}$ $z_{24}z_{245}$ $z_{14}z_{25}$ $(1|\breve{F}_5e_3\breve{F}_4|2)$ $(1|\breve{F}_4\breve{F}_5e_3|2)$ $(1|\breve{F}_5\breve{F}_4e_3|2)$ $z_{15}z_{24}$ $z_{14}z_{145}$ $z_{15}z_{145}$ 60

 $e^+e^-Z\gamma\gamma
ightarrow 0$ в d=6

$$\begin{aligned} \mathcal{A} &= - \left(\mathcal{S}_4 \otimes \mathcal{S}_5 + \frac{\mathcal{Y}_{154} \otimes \tilde{\mathcal{Y}}_{145}}{z_{145}} + \frac{\mathcal{Y}_{254} \otimes \tilde{\mathcal{Y}}_{245}}{z_{245}} \right) \otimes \mathcal{B} \quad \begin{array}{l} \mathcal{B} &= (1|e_3|2), \\ \mathcal{G}_{15} &= (1|e_3|5), \\ \mathcal{H}_{45} &= (4|e_3|5), \\ \mathcal{H}_{45} &= (4|e_3|5), \\ \mathcal{H}_{45} &= (4|e_3|5), \\ \mathcal{H}_{45} &= [4|5), \\ \mathcal{H}_{4$$

Dec.

Tijnp\as

Численные результаты

Два набора обрезаний

- угловые пределы $\cos \vartheta_{\gamma} \in [-0.9, 0.9]$ для борновского и виртуального вкладов, а также для вклада мягкого тормозного излучения, когда есть только один фотон в конечном состоянии и для вклада жёсткого тормозного излучения оба фотона должны иметь энергию в с.ц.м. больше $\bar{\omega}$;
 - Набор I: для того, чтобы жёсткое событие было принято, $\cos \vartheta_Z$ и $\cos \vartheta_\gamma$ для фотона с наибольшей энергией должны лежать в интервале [-0.9, 0.9];
 - Набор II: чтобы жесткое событие было принято, $\cos \vartheta_Z$ и хотя бы для одного из фотонов $\cos \vartheta_{\gamma_1}$, $\cos \vartheta_{\gamma_2}$ должны лежать в интервале [-0.9, 0.9].

Сечения σ (в пб), и относительные поправки δ

P_{e^+}, P_{e^-}		0, 0	-1, -1	-1, +1	+1, -1	+1, +1
$\sigma^{Born}_{lpha(0)}$		4.094(1)	_	6.3528(1)	10.025(1)	_
_1-loop	I	4.281(1)	0.0025(1)	7.254(1)	9.863(1)	0.0029(1)
$^{O}\alpha(0)$	Ш	4.487(1)	0.0058(1)	7.572(1)	10.364(1)	0.0060(1)
8 07	I	4.55(2)		14.19(1)	-1.62(1)	—
$\sigma_{\alpha(0)}, \sigma_{\alpha(0)}$		9.60(2)	—	19.19(1)	3.38(1)	—
$\sigma^{Born}_{G_\mu}$		4.361(1)	—	6.7664(1)	10.678(1)	—
$\sigma^{1 ext{-loop}}_{G_{\mu}}$	I	4.311(1)	0.0026(1)	7.341(1)	9.896(1)	0.0025(1)
	Ш	4.529(1)	0.0057(1)	7.679(1)	10.428(1)	0.0064(1)
$\delta_{G_{\mu}}, \%$		-1.16(2)	—	8.49(1)	-7.33(1)	—
	Ш	3.87(2)	—	13.48(1)	-2.34(1)	—
для $\sqrt{s} = 250$ ГэВ, при различных поляризациях начальных частиц в						

ЭС схемах $\alpha(0)$ и G_μ для Набора I и Набора II.

Сечение и поправка в зависимости от $\cos \vartheta_z$

Асимметрия A_{LR} как функция $\cos \vartheta_Z$

для \sqrt{s} = 250, 500, 1000 ГэВ в схеме $\alpha(0)$ и Набора II.

Заключение

anne

Основные публикации

Результаты по теме диссертации изложены в 6 статьях, из которых 4 изданы в журналах, рекомендованных ВАК или в научных журналах, индексируемых Web of Science и Scopus:

- One-loop electroweak radiative corrections to polarized Bhabha scattering *Phys.Rev.***D**98,013001(2018) arXiv:1801.00125
- ② One-loop electroweak radiative corrections to polarized e⁺e⁻ → ZH Phys.Rev.D100,073002(2019) arXiv:1812.10965
- One-loop electroweak radiative corrections to lepton pair production in polarized electron-positron collisions *Phys. Rev.*D102, 033004 (2020) arXiv:2005.04748
- QED and electroweak radiative corrections to polarized Bhabha scattering J. Phys.: Conf. Ser. 1525 012011(2020)
- One-loop electroweak radiative corrections to polarized $e^+e^- → Z\gamma$ arXiv:2111.11490
- Development of the automatic procedures for spinor matrix element calculation with massive particles. Отправлено в J.Phys.:Conf.Ser.

Апробация результатов:

- 2021, Virtual and IBS Science Culture Center (Южная Корея): 20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2021). Доклад: «Development of the automatic procedures for spinor matrix element calculation with massive particles».
- 2019, *IHEP(Пекин, Китай):* CEPC Topical Workshop: Theoretical Uncertainty Controls for the CEPC measurements. Доклад: *«Helicity amplitudes for Bremsstrahlung».*
- 2019, CERN: 11th FCC-ee workshop: Theory and Experiments. Доклад: «One-loop electroweak radiative corrections to $e^+e^- \rightarrow e^+e^-, f\bar{f}, ZH$ for polarized e^+e^- beams».
- 2018, ОИЯИ: Helmholtz International Workshop "Calculations for Modern and Future Colliders (CALC2018)". Доклад: «Bremsstrahlung helicity amplitudes with massive fermions».
- 2018, НИИ ЯП (Минск): "LHC Days in Belarus". Доклад: «Complete one-loop electroweak corrections to polarized e^+e^- scattering in SANC».

Тезисы, выносимые на защиту

Впервые вычислены однопетлевые ЭС РП с учётом поляризации входящих частиц для процесса Баба-рассеяния. Массы всех частиц удержаны.

Впервые получены однопетлевые ЭС РП с учётом поляризации всех частиц для процесса **рождения лептонных пар** в электрон-позитронных столкновениях для полного фазового объёма.

Впервые получены однопетлевые ЭС РП с учётом поляризации входящих частиц для процесса ассоциированного **рождения бозона Хиггса** совместно с Z-бозоном.

Впервые получены однопетлевые ЭС РП с учётом поляризации входящих частиц для **процесса рождения пары фотон-Z-бозон**.

Спасибо за внимание

Conclusion

- Applying extended set of Clifford-algebra operations we obtained *explicitly gauge-invariant form* of amplitudes for some processes.
 - Expressions contain only Maxwell bivector.
 - Relations to scalar QED and photon power expansion are transparent.
- Generalized form of axial-type gauge is proposed.
 - Massive gauge-fixing vectors are allowed.
 - Simplification of "amplitude" with off-shell photons is possible.
- Spinor formalism in d = 6 dimensions is applied to obtain modular form of amplitude.
 - Formalism is implemented as C++14 library.
 - Allowed pseudo-mass term $\mu\gamma_5$ can be useful to deal with 1-loop integrands.

Future plans

• Application of the formalism to virtual part.

Приложения

an p

Setup for tuned comparison

We performed a tuned comparison of our results for polarized Born and hard Bremsstrahlung with the results WHIZARD and CalcHEP programs.

Initial parameters

$\alpha^{-1}(0) = 137.03599976,$	$M_W = 80.4514$ ГэВ,	$\Gamma_W = 2.0836$ ГэВ,			
$M_H = 125.0 \Gamma \tiny 9B,$	$M_Z = 91.1876$ ГэВ,	$\Gamma_Z = 2.49977$ ГэВ,			
$m_e = 0.5109990 \mathrm{M}$ əB,	$m_{\mu} = 0.105658$ ГэВ,	$m_{ au} = 1.77705$ ГэВ,			
$m_d = 0.083$ ГэВ,	$m_s = 0.215$ ГэВ,	$m_b = 4.7$ ГэВ,			
$m_u = 0.062$ ГэВ,	$m_c = 1.5$ ГэВ,	$m_t = 173.8$ ГэВ.			
with cuts $ \cos heta < 0.9, ~~ E_{\gamma} > 1$ GeV					

WHIZARD and CalcHEP

- W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J.C71 (2011) 1742,
- A.Belyaev, N.Christensen, A.Pukhov, Comp. Phys. Comm. 184 (2013), pp. 1729-1769

1.11.51 1 1.11

ReneSANCe vs. WHIZARD (dots): all-polarized $e^+e^- \rightarrow \tau^+\tau^-\gamma$ $\frac{d\sigma}{d\cos\theta}$ $1 \mathrm{nb}$ $0.1 \mathrm{nb}$ 10pb 1pb -0.50.5 $\cos \theta$

$e^+e^- \rightarrow e^+e^-$: WHIZARD vs SANC (Born)

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6			
$\sqrt{s} = 250 \text{ GeV}$							
$\sigma^{Born}_{e^+e^-}$, pb	56.677(1)	57.774(1)	56.272(1)	59.276(1)			
$\sigma^{Born}_{e^+e^-}$, pb	56.677(1)	57.775(1)	56.272(1)	59.275(1)			
$\sqrt{s} = 500 \text{ GeV}$							
$\sigma^{Born}_{e^+e^-}$, pb	14.379(1)	15.030(1)	12.706(1)	17.355(1)			
$\sigma^{Born}_{e^+e^-}$, pb	14.379(1)	15.030(1)	12.706(1)	17.354(1)			
$\sqrt{s} = 1000 \text{ GeV}$							
$\sigma^{Born}_{e^+e^-}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7756(1)			
$\sigma^{Born}_{e^+e^-}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7755(1)			

$e^+e^- \rightarrow e^+e^-$: WHIZARD vs SANC (hard)

$e^+e^- \rightarrow e^+e^- {:}$ alTALC vs SANC $\sqrt{s} = 500 {\rm GeV}$

$\cos \theta$	$\sigma^{Born}_{e^+e^-}$, pb	$\sigma^{Born+virt+soft}_{e^+e^-}$, pb
-0.9	$2.16999 \cdot 10^{-1}$	$1.93445 \cdot 10^{-1}$
	$2.16999 \cdot 10^{-1}$	$1.93445 \cdot 10^{-1}$
-0.5	$2.61360 \cdot 10^{-1}$	$2.38707 \cdot 10^{-1}$
	$2.61360\cdot 10^{-1}$	$2.38707 \cdot 10^{-1}$
0	$5.98142 \cdot 10^{-1}$	$5.46677 \cdot 10^{-1}$
	$5.98142 \cdot 10^{-1}$	$5.46677 \cdot 10^{-1}$
+0.5	$4.21273 \cdot 10^{0}$	$3.81301\cdot 10^0$
	$4.21273\cdot 10^0$	$3.81301\cdot 10^0$
+0.9	$1.89160 \cdot 10^2$	$1.72928 \cdot 10^2$
	$1.89160\cdot10^2$	$1.72928\cdot10^2$
+0.99	$2.06556\cdot 10^4$	$1.90607\cdot 10^4$
	$2.06555\cdot 10^4$	$1.90607\cdot 10^4$
+0.999	$2.08236\cdot 10^6$	$1.91624\cdot 10^6$
	$2.08236\cdot 10^6$	$1.91624\cdot 10^6$
+0.9999	$2.08429\cdot 10^8$	$1.91402\cdot10^8$
	$2.08429\cdot 10^8$	$1.91402\cdot10^8$

1.00

1

CNERCHT.

$e^+e^- \rightarrow \mu^+\mu^-$: al̈́TALC vs SANC, $\sqrt{s} = 500 {\rm GeV}$

	$\cos \vartheta$	$\sigma^{Born}_{\mu^+\mu^-}$, pb	$\sigma^{virt}_{\mu^+\mu^-}$, pb	$\sigma^{soft}_{\mu^+\mu^-}$, pb	$\sigma^{\rm Born+virt+soft}_{\mu^+\mu^-}$, pb
a	-0.9	0.09458936	0.007074202	01137770	0.09028587
S		0.09458937	0.007074200	01137770	0.09028587
a	-0.5	0.08929449	0.01142066	01603201	0.08468314
S		0.08929448	0.01142066	01603201	0.08468313
a	0.0	0.1503198	0.02280391	03291616	0.1402075
S		0.1503199	0.02280392	03291616	0.1402075
a	0.5	0.2865049	0.06366626	07403504	0.2761361
S		0.2865049	0.06366627	07403505	0.2761361
a	0.9	0.4495681	0.1596106	1428113	0.4663674
S		0.4495682	0.1596107	1428113	0.4663675

An Integrated Tool for Loop Calculations: aITALC

HELY SV BA

A. Lorca and T. Riemann, Comput. Phys. Commun. 174 (2006) 71–82, hep-ph/0412047

$e^+e^- \rightarrow ZH$: WHIZARD vs SANC (Born), fb							
\sqrt{s} =250 GeV							
P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	225.59	6.368E-8	552.34	350.01	6.368E-8		
CalcHEP	225.59	4.411E-8	552.34	350.02	4.411E-8		
SANCee	225.59	0	552.34	350.01	0		
\sqrt{s} =500 GeV							
P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	53.738	3.762E-7	131.57	83.377	3.762E-7		
CalcHEP	53.738	5.994E-8	131.57	83.377	5.994E-8		
SANCee	53.737	0	131.57	83.377	0		
\sqrt{s} =1000 GeV							
$P_{e^{-}}, P_{e^{+}}$	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	12.054	4.801E-7	29.515	18.703	4.801E-7		
CalcHEP	12.054	2.639E-8	29.515	18.703	2.639E-8		
SANCee	12.054	0	29.515	18.703	0		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$e^+e^- \rightarrow ZH$: WHIZARD and CalcHEP vs SANC (hard), fb						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\sqrt{s} =250 GeV						
WHIZARD82.00(1)0.009143(1)200.7(2)127.2(1)0.01470(1)CalcHEP82.00(1)0.02596(1)200.8(1)127.2(1)0.02596(1)SANCee82.00(1)0.02596(1)200.7(1)127.2(1)0.02597(1) $\sqrt{s}=500$ GeV	P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1	
CalcHEP82.00(1) $0.02596(1)$ $200.8(1)$ $127.2(1)$ $0.02596(1)$ SANCee82.00(1) $0.02596(1)$ $200.7(1)$ $127.2(1)$ $0.02597(1)$ $\sqrt{s}=500$ GeV	WHIZARD	82.00(1)	0.009143(1) 200.7(2)	127.2(1)	0.01470(1)	
SANCee 82.00(1) 0.02596(1) 200.7(1) 127.2(1) 0.02597(1) \sqrt{s} =500 GeV	CalcHEP	82.00(1)	0.02596(1)	200.8(1)	127.2(1)	0.02596(1)	
\sqrt{s} =500 GeV	SANCee	82.00(1)	0.02596(1)	200.7(1)	127.2(1)	0.02597(1)	
	\sqrt{s} =500 GeV						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1	
WHIZARD 38.96(1) 0.1256(1) 95.10(8) 60.27(1) 0.1169(1)	WHIZARD	38.96(1)	0.1256(1)	95.10(8)	60.27(1)	0.1169(1)	
CalcHEP 38.96(1) 0.2201(1) 95.12(1) 60.27(1) 0.2198(1)	CalcHEP	38.96(1)	0.2201(1)	95.12(1)	60.27(1)	0.2198(1)	
SANCee 38.96(1) 0.2200(1) 95.10(1) 60.25(1) 0.2199(1)	SANCee	38.96(1)	0.2200(1)	95.10(1)	60.25(1)	0.2199(1)	
\sqrt{s} =1000 GeV							
P_{e^-}, P_{e^+} 0,0 -1,-1 -1,1 1,-1 1,1	$P_{e^{-}}, P_{e^{+}}$	0,0	-1,-1	-1,1	1,-1	1,1	
WHIZARD 11.67(1) 0.07051(1) 28.41(1) 18.00(1) 0.07018(2)	WHIZARD	11.67(1)	0.07051(1)	28.41(1)	18.00(1)	0.07018(1)	
CalcHEP 11.67(1) 0.1326(1) 28.41(1) 18.00(1) 0.1326(1)	CalcHEP	11.67(1)	0.1326(1)	28.41(1)	18.00(1)	0.1326(1)	
SANCee 11.67(1) 0.1327(1) 28.40(1) 18.00(1) 0.1326(1)	SANCee	11.67(1)	0.1327(1)	28.40(1)	18.00(1)	0.1326(1)	

$e^+e^- \rightarrow HZ$: σ distributions on $E\gamma$

 $\frac{d\sigma}{dE\gamma}$, with $(P_{e^+},P_{e^-})=(-1,-1),$ $\sqrt{s}=500 {\rm GeV}$

	1. 13/	IN DI	SALE INT	C CT FO TO STAND	11/1		
$e^+e^- \rightarrow Z\gamma$: WHIZARD and CalcHEP vs SANC (hard), fb							
\sqrt{s} =250 GeV							
P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	46.22(1)	2.53(1)	110.07(2)	69.75(1)	2.53(1)		
SANCee	46.18(2)	2.51(1)	110.04(3)	69.71(2)	2.45(1)		
\sqrt{s} =500 GeV							
P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	11.36(1)	0.76(1)	26.90(1)	17.05(1)	0.76(1)		
SANCee	11.34(1)	0.73(1)	26.88(1)	17.03(1)	0.72(1)		
\sqrt{s} =1000 GeV							
P_{e^-}, P_{e^+}	0,0	-1,-1	-1,1	1,-1	1,1		
WHIZARD	11.28(3)	1.032(2)	26.43(3)	16.63(3)	1.043(3)		
SANCee	3.07(2)	0.198(1)	7.265(2)	4.605(1)	0.196(3)		
10-4							
$v = 10^{-4}$.							
1/ 1. 1	14 11 11 11 11	· · · · · · · · · · · · · · · · · · ·	WI I	A Strate and and some sall	1211 1		

Maxwell's bivector in spinor notation

Maxwell tensor in terms of Dirac spinors

$$\mathbf{F}^{a\dot{a}} = \sqrt{2}|k^a\rangle [\![k^{\dot{a}}]\!] = \sqrt{2} \begin{bmatrix} |k\rangle\langle k| & \\ & |k][k| \end{bmatrix}_{a\dot{a}}, \qquad \mathbf{F} = \sqrt{2}|k\rangle \otimes [\![k]\!]$$

N ICA INS X AVIT-

Eikonal factor in terms of Maxwell's bivector

$$\begin{aligned} \frac{2\varepsilon_4 \cdot p_2}{2p_2 \cdot p_4} &- \frac{2\varepsilon_4 \cdot p_1}{2p_1 \cdot p_4} = 4 \frac{(p_1 \cdot p_4)(p_2 \cdot \varepsilon_4) - (p_2 \cdot p_4)(p_1 \cdot \varepsilon_4)}{z_{14}z_{24}} \\ &= 4 \frac{\begin{vmatrix} p_1 \cdot p_4 & p_2 \cdot p_4 \\ p_1 \cdot \varepsilon_4 & p_2 \cdot \varepsilon_4 \end{vmatrix}}{z_{14}z_{24}} = 4 \frac{(\not p_1 \wedge \not p_2) \cdot (\not \epsilon_4 \wedge \not p_4)}{z_{14}z_{24}} \\ &= -\frac{4 \langle \not p_1 \not p_2 \mathbf{F}_4 \rangle_0}{z_{14}z_{24}} = -\frac{\mathrm{Tr}[\not p_1 \not p_2 \mathbf{F}_4]}{z_{14}z_{24}} \\ &= \frac{2\varepsilon_4^{p_1} \cdot p_2}{2p_2 \cdot p_4} = \frac{4 \langle \not p_1 \mathbf{F}_4 \rangle_1 \cdot p_2}{z_{14}z_{24}} \end{aligned}$$

with

 $z_{14} \equiv 2p_1 \cdot p_4,$ $z_{24} \equiv 2p_2 \cdot p_4$

Phase space variables

Phase space volume

$$dR_{3} = d^{4}p_{3}\delta(p_{3}^{2} - m_{3}^{2})d^{4}p_{4}\delta(p_{4}^{2} - m_{4}^{2})d^{4}p_{5}\delta(p_{5}^{2})\delta^{4}(\sum_{i=1}^{5}p_{i})$$
$$dR_{3} = d^{4}k_{3}\delta(k_{3}^{2})d^{4}k_{4}\delta(k_{4}^{2})d^{4}k_{5}\delta(k_{5}^{2})\delta^{4}(\sum_{i=1}^{5}k_{i})K'$$

John

Some notations

$$p_{i...j} = p_i + \dots + p_j$$
 $s_{i...j} = p_{i...j}^2$
 $k_{i...j} = k_i + \dots + k_j$ $z_{i...j} = k_{i...j}^2$