Радиационные поправки для экспериментов на лептонных коллайдерах с поляризованными пучками

Диссертация по специальности 01.04.02 – "Теоретическая физика"

Ермольчик Виталий Леонидович Научный сотрудник ЛЯП ОИЯИ НЭОВП, Сектор №1

Научный руководитель:

Садыков Ренат Рафаилович, с.н.с. НЭОВП ЛЯП ОИЯИ, к.ф.-м.н.

Содержание

- Введение
- ullet Глава 1. Рассеяние $\mu^\pm e^- o e^- \mu^\pm$
- Глава 2. Рассеяние $e^-e^- o e^-e^-$ и $\mu^+\mu^+ o \mu^+\mu^+$
- ullet Глава 3. Поправки высших поправок для $e^+e^-
 ightarrow HZ$
- Глава 4. Монте-Карло генератор событий ReneSANCe
- Заключение

Введение

l

SANC – Support for Analytic and Numeric Calculations for experiments at colliders

- e^+e^- FCC, CEPC, ILC, CLIC, Super c-tau
- e⁻e⁻
- $\mu\mu \mu$ TRISTAN
- $e\mu$ MUonE, μ TRISTAN
- eγ
- $\gamma\gamma$
- pp LHC
- pp

ep

Проблема g-2 MUONE collaboration

Эксперимент MUonE M.Passera LFC17 Trento

 Radiative Corrections are crucial. S. Actis et al, Eur. Phys. J. C66 (2010) 585
 Lots of progress in lattice calculations. FNAL - Muon g-2 workshop - June 2017 Capri - FCCP 2017 workshop - Sep 2017

Эксперимент MUonE U.Marconi CSN1 Roma

Test Beam

Check Geant4 MSC prediction and populate the 2D (θ_{a} , θ_{u}) scattering plane

- 27 Sep-3 October 2017 allocated at CERN in "H8 Beam Line"
- 5 Si strips planes: 2 before (upstream) and 3 after the target
- Max rate 10 kHz
- Beam energy in the range 90 190 GeV

Мюонные коллайдеры: μ TRISTAN [arXiv:2201.06664]

Мюонные коллайдеры [Nature 17, 289-292]

Сечение на однопетлевом уровне

Сечение на однопетлевом уровне может быть разделено на четыре части:

$$\sigma^{1\text{-loop}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \omega) + \sigma^{\text{hard}}(\omega),$$

где

 $\sigma^{\rm Born}$ — борновское сечение,

$$\sigma^{\mathrm{virt}}$$
 — виртуальные (петлевые) поправки,

 $\sigma^{
m soft}$ — излучение мягких фотонов,

 $\sigma^{\rm hard}$ — излучение жестких фотонов (с энергией $E_{\gamma} > \omega$). Вспомогательные параметры λ ("масса фотона") и ω (разделитель между мягкими и жесткими фотонами) сокращаются после суммирования.

Метод спиральных амплитуд

Для всех вкладов мы используем метод спиральных амплитуд. Это дает нам возможность описывать:

- любую начальную (не только продольную) поляризацию
- поляризация конечных состояний
- спиновые корреляции, передачу поляризации от начального к конечному состоянию

Квадрат матричного элемента

$$\begin{split} |\mathcal{M}|^{2} = & L_{e^{-}}^{``} R_{e^{+}}^{``} |\mathcal{H}_{-+}|^{2} + R_{e^{-}}^{``} L_{e^{+}}^{``} |\mathcal{H}_{+-}|^{2} + L_{e^{-}}^{``} L_{e^{+}}^{``} |\mathcal{H}_{--}|^{2} + R_{e^{-}}^{``} R_{e^{+}}^{``} |\mathcal{H}_{++}|^{2} \\ & - \frac{1}{2} P_{e^{-}}^{\perp} P_{e^{+}}^{\perp} \operatorname{Re} \Big[e^{i(\Phi_{+} - \Phi_{-})} \mathcal{H}_{++} \mathcal{H}_{--}^{*} + e^{i(\Phi_{+} + \Phi_{-})} \mathcal{H}_{+-} \mathcal{H}_{-+}^{*} \Big] \\ & + P_{e^{-}}^{\perp} \operatorname{Re} \Big[e^{i\Phi_{-}} \Big(L_{e^{+}}^{``} \mathcal{H}_{+-} \mathcal{H}_{--}^{*} + R_{e^{+}}^{``} \mathcal{H}_{++} \mathcal{H}_{-+}^{*} \Big) \Big] \\ & - P_{e^{+}}^{\perp} \operatorname{Re} \Big[e^{i\Phi_{+}} \Big(L_{e^{-}}^{``} \mathcal{H}_{-+} \mathcal{H}_{--}^{*} + R_{e^{-}}^{``} \mathcal{H}_{++} \mathcal{H}_{+-}^{*} \Big) \Big], \end{split}$$

где

$$L_{e^{\pm}}^{``}=\frac{1}{2}(1-P_{e^{\pm}}^{``}), \quad R_{e^{\pm}}^{``}=\frac{1}{2}(1+P_{e^{\pm}}^{``}), \quad \Phi_{\pm}=\phi_{\pm}-\phi,$$

 \mathcal{H}_{--} , \mathcal{H}_{++} , \mathcal{H}_{-+} , \mathcal{H}_{+-} — спиральные амплитуды.

Moortgat-Pick, G. et al. Phys.Rept. 460 (2008) 131-243

Разложение поляризационных векторов e^{\pm}

Реализация расчетов

Расчеты проводились с использованием SANC-фреймворка в системе FORM. Для оптимизации интенсивно использовалась факторизация, появившаяся в FORM4 и вынесение общих подвыражений во временные переменные.

Результат расчета был автоматически преобразован в программные модули на языке Фортран со стандартным интерфейсом SANC. Эти модули с результатами физических расчетов могут быть использованы в любом коде, который понимает интерфейс SANC.

LQD базис для четырехфермионных процессов

$$\begin{split} \mathcal{A}_{\gamma}^{\text{IBA}} &= i\frac{4\pi Q_e Q_f}{s} \alpha(s) \gamma_{\mu} \otimes \gamma_{\mu} \,, \\ \mathcal{A}_{Z}^{\text{IBA}} &= ie^2 \frac{\chi_{Z}(s)}{s} \, \cdot \\ & \left\{ I_e^{(3)} I_f^{(3)} \gamma_{\mu} \gamma_{+} \otimes \gamma_{\mu} \gamma_{+} F_{_{LL}}(s,t) + \delta_e I_f^{(3)} \gamma_{\mu} \otimes \gamma_{\mu} \gamma_{+} F_{_{QL}}(s,t) \right. \\ & \left. + I_e^{(3)} \delta_f \gamma_{\mu} \gamma_{+} \otimes \gamma_{\mu} F_{_{LQ}}(s,t) + \delta_e \delta_f \gamma_{\mu} \otimes \gamma_{\mu} F_{_{QQ}}(s,t) \right. \\ & \left. + I_e^{(3)} I_f^{(3)} \gamma_{\mu} \gamma_{+} \otimes (-im_f D_{\mu}) F_{_{LD}}(s,t) + \delta_e I_f^{(3)} \gamma_{\mu} \otimes (-im_f D_{\mu}) F_{_{QD}}(s,t) \right. \\ & \left. + I_e^{(3)} I_f^{(3)} (-im_e D_{\mu}) \otimes \gamma_{\mu} \gamma_{+} F_{_{DL}}(s,t) + I_e^{(3)} \delta_f (-im_e D_{\mu}) \otimes \gamma_{\mu} F_{_{DQ}}(s,t) \right. \\ & \left. + I_e^{(3)} I_f^{(3)} (-im_e D_{\mu}) \otimes (-im_f D_{\mu}) F_{_{DD}}(s,t) \right\}. \end{split}$$

Схема расчетов FF

Вычисления организованы таким образом, чтобы контролировать согласованность результата.

- Все вычисления однопетлевом на уровне точности проводятся в R_{ξ} калибровке с тремя калибровочными параметрами: ξ_{A} , ξ_{Z} и $\xi \equiv \xi_{W}$
- Для параметризации ультрафиолетовых расходимостей используется размерная регуляризация
- Петлевые интегралы выражаются в терминах стандартных скалярных функций Пассарино-Вельтмана: *A*₀, *B*₀, *C*₀, *D*₀

Эти особенности позволяют провести несколько важных проверок на уровне аналитических выражений, например, проверить калибровочную инвариантность путем устраняя зависимость от калибровочного параметра, проверяя сокращение ультрафиолетовых полюсов, а также различные свойства симметрии и тождества Уорда.

Глава 1. Рассеяние $\mu^\pm e^- o e^- \mu^\pm$

Спиральные амплитуды для $\mu^+e^- ightarrow e^-\mu^+$

$$\begin{split} \mathcal{H}_{\mp\mp\mp\mp} &= \frac{1}{t} \bigg\{ s^{-} (2 - c_{+} r_{s}) \tilde{F}_{\gamma} \\ &+ \chi_{Z}(t) \Big[s^{-} \left(-2c_{+} r_{s} \tilde{F}_{LL} + (2 - c_{+} r_{s}) (\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL}) - 2m_{\mu}^{2} c_{-} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &\pm \sqrt{\lambda}_{\mu e} \left(-2c_{+} r_{s} \tilde{F}_{LL} + (2 - c_{+} r_{s}) \tilde{F}_{LQ} - (2 + c_{+} r_{s}) \tilde{F}_{QL} - 2c_{-} m_{\mu}^{2} \tilde{F}_{LD} \right) \Big] \bigg\}, \\ \mathcal{H}_{\mp - -\pm} &= \sin \vartheta_{e} \frac{m_{\mu}}{\sqrt{st}} \bigg\{ s^{-} \tilde{F}_{\gamma} \\ &+ \chi_{Z}(t) \Big[s^{-} \left(2\tilde{F}_{LL} + \tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &+ \sqrt{\lambda}_{\mu e} \left(2\tilde{F}_{LL} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &+ \chi_{Z}(t) \Big[s^{-} \left(2\tilde{F}_{LL} + \tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &- \sqrt{\lambda}_{\mu e} \left(2\tilde{F}_{LL} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+} \tilde{F}_{LD} \right) \Big] \bigg\}. \\ \mathcal{H}_{\mp \pm \pm \mp} &= - \sin \vartheta_{e} \frac{m_{\mu}}{\sqrt{st}} \bigg\{ s^{-} \tilde{F}_{\gamma} \\ &+ \chi_{Z}(t) \Big[s^{-} \left(2\tilde{F}_{LL} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+} \tilde{F}_{LD} \right) \Big] \bigg\}. \\ \mathcal{H}_{\mp \pm \pm \mp} &= - \frac{c_{-}}{t} \bigg\{ s^{-} \tilde{F}_{\gamma} \\ &+ \chi_{Z}(t) \Big[s^{-} \left(2\tilde{F}_{LL} + \tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - 2m_{\mu}^{2} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &- \sqrt{\lambda}_{\mu e} \left(2\tilde{F}_{LL} + \tilde{F}_{LQ} + \tilde{F}_{LQ} - 2m_{\mu}^{2} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \\ &\mp \sqrt{\lambda}_{\mu e} \left(2\tilde{F}_{LL} + \tilde{F}_{LQ} + \tilde{F}_{QL} - 2m_{\mu}^{2} (\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \bigg\} \end{split}$$

18/82

Спиральные амплитуды для $\mu^-e^- ightarrow e^-\mu^-$

$$\begin{split} \mathcal{H}_{\pm\pm\pm\pm} &= -\frac{1}{t} \left\{ s^{-} (2 - c_{+}r_{s})\tilde{F}_{\gamma} \right. \\ &+ \chi_{Z}(t) \left[s^{-} \left(4\tilde{F}_{LL} + (2 - c_{+}r_{s})(\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL}) - 2m_{\mu}^{2}c_{-}(\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \right. \\ &\mp \sqrt{\lambda}_{\mu e} \left(4(\tilde{F}_{QL} + \tilde{F}_{LL}) + (2 - c_{+}r_{s})(\tilde{F}_{LQ} - \tilde{F}_{QL}) - 2m_{\mu}^{2}c_{-}\tilde{F}_{LD} \right) \right] \right\}, \\ \mathcal{H}_{-\pm\pm+} &= -\sin \vartheta_{e} \frac{m_{\mu}}{t\sqrt{s}} \left\{ s^{-} \tilde{F}_{\gamma} \right. \\ &+ \chi_{Z}(t) \left[s^{-} \left(\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+}(\tilde{F}_{LD} + \tilde{F}_{QD}) \right) \right. \\ &\mp \sqrt{\lambda}_{\mu e} \left(\tilde{F}_{LQ} - \tilde{F}_{QL} - s^{+} \tilde{F}_{LD} \right) \right] \right\}, \\ \mathcal{H}_{+\pm\pm-} &= \sin \vartheta_{e} \frac{m_{\mu}}{t\sqrt{s}} \left\{ s^{-} \tilde{F}_{\gamma} \right. \\ &+ \chi_{Z}(t) \left(s^{-} \left[\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - s^{+}(\tilde{F}_{LD} + \tilde{F}_{QD}) \right] \right. \\ &\mp \sqrt{\lambda}_{\mu e} (\tilde{F}_{LQ} - \tilde{F}_{QL} - s^{+} \tilde{F}_{LD}) \right) \right\}, \\ \mathcal{H}_{\pm\mp\mp\pm} &= -\frac{c_{-}}{t} \left\{ s^{-} \tilde{F}_{\gamma} \right. \\ &+ \chi_{Z}(t) \left[s^{-} (\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL} - 2m_{\mu}^{2}(\tilde{F}_{LD} + \tilde{F}_{QD}) \right. \\ &\pm \sqrt{\lambda}_{\mu e} (\tilde{F}_{LQ} - \tilde{F}_{QL} - 2m_{\mu}^{2} \tilde{F}_{LD}) \right] \right\} \end{split}$$

19/82

Использовались следующие сокращения: $\lambda_{\mu e} = \lambda(s, m_{\mu}^2, m_e^2)$ $s^- = s - m_{\mu}^2, \quad s^+ = s + m_{\mu}^2,$ $\chi_z(t)$ – отношение пропагаторов γ/Z

Для обоих каналов остальные шесть СА выражаются через вышеуказанные следующим образом: $\mathcal{H}_{--++} = \mathcal{H}_{+---}$, $\mathcal{H}_{-+++} = \mathcal{H}_{++--}$, $\mathcal{H}_{-+-+} = \mathcal{H}_{-+-+}$, $\mathcal{H}_{-+++} = \mathcal{H}_{+++-}$, $\mathcal{H}_{-+++} = \mathcal{H}_{+++-}$, $\mathcal{H}_{+-++} = \mathcal{H}_{++-+}$.

Излучение мягких фотонов

$$\begin{split} \sigma^{\text{soft},\mu-\text{leg}} &= -Q_{\mu}^{2} \frac{\alpha}{\pi} \sigma^{\text{Born}} \bigg\{ \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) + \frac{s + m_{\mu}^{2}}{s - m_{\mu}^{2}} \ln (r_{\text{s}}) - \frac{1 + 2r_{\text{t}}}{\sqrt{1 + 4r_{\text{t}}}} \bigg[\ln(a_{14}) \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) \\ &+ \text{Li}_{2} \left(1 - \frac{a_{14}x_{\mu}}{v_{14}} \right) - \text{Li}_{2} \left(1 - \frac{x_{\mu}}{v_{14}} \right) + \text{Li}_{2} \left(1 - \frac{a_{14}}{v_{14}x_{\mu}} \right) - \text{Li}_{2} \left(1 - \frac{1}{v_{14}x_{\mu}} \right) \bigg] \bigg\}, \\ \sigma^{\text{soft,ifi}} &= -Q_{e}Q_{\mu} \frac{\alpha}{\pi} \sigma^{\text{Born}} \bigg\{ 2\ln(x_{\mu}x_{e}) \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) + \text{Li}_{2} \left(1 - x_{\mu}^{2} \right) + \text{Li}_{2} \left(1 - x_{e}^{2} \right) \\ &- \text{Li}_{2} \left(1 - \frac{1}{x_{\mu}^{2}} \right) - \text{Li}_{2} \left(1 - \frac{1}{x_{e}^{2}} \right) - \ln(a_{13}) \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) \\ &- \text{Li}_{2} \left(1 - \frac{a_{13}x_{\mu}}{v_{13}} \right) - \text{Li}_{2} \left(1 - \frac{x_{e}}{v_{13}} \right) - \text{Li}_{2} \left(1 - \frac{a_{13}}{v_{13}x_{\mu}} \right) + \text{Li}_{2} \left(1 - \frac{1}{v_{13}x_{e}} \right) \\ &- \ln(a_{24}) \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) - \text{Li}_{2} \left(1 - \frac{a_{24}x_{e}}{v_{24}} \right) \\ &+ \text{Li}_{2} \left(1 - \frac{x_{\mu}}{v_{24}} \right) - \text{Li}_{2} \left(1 - \frac{a_{24}}{v_{24}x_{e}} \right) + \text{Li}_{2} \left(1 - \frac{1}{v_{24}x_{\mu}} \right) \bigg\}, \\ \sigma^{\text{soft,e-leg}} &= -Q_{e}^{2} \frac{\alpha}{\pi} \sigma^{\text{Born}} \bigg\{ \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) + \ln \left(\frac{m_{e}^{2}}{s(1 - r_{s}^{2})} \right) - \ln(a_{23}) \ln \left(\frac{4\omega^{2}}{\lambda^{2}} \right) \\ &- \text{Li}_{2} \left(1 - \frac{a_{23}x_{e}}{v_{23}} \right) + \text{Li}_{2} \left(1 - \frac{x_{e}}{v_{23}} \right) - \text{Li}_{2} \left(1 - \frac{a_{23}}{v_{23}x_{e}} \right) + \text{Li}_{2} \left(1 - \frac{1}{v_{23}x_{e}} \right) \bigg\}. \end{split}$$

$$\begin{aligned} x_{\mu} &= \frac{\sqrt{s}}{m_{\mu}}, \quad x_{e} = \frac{\sqrt{s}}{m_{e}} \left(1 - r_{s} \right), \\ a_{14} &= \frac{1}{2m_{\mu}^{2}} \left(2m_{\mu}^{2} + t + \sqrt{t^{2} + 4m_{\mu}^{2}t} \right), \quad v_{14} = \frac{m_{\mu}}{\sqrt{s}(1 + r_{s})} \left(a_{14} + 1 \right), \\ a_{23} &= \frac{t}{m_{e}^{2}}, \quad v_{23} = \frac{m_{e}}{\sqrt{s}(1 - r_{s})} \left(a_{23} + 1 \right), \\ a_{13} &= \frac{\left(u + m_{\mu}^{2} \right)}{m_{e}m_{\mu}}, \quad v_{13} = \frac{a_{13}^{2}}{\sqrt{s} \left(a_{13}(1 + r_{s})/m_{\mu} - (1 - r_{s})/m_{e} \right)}, \\ a_{24} &= a_{13}, \quad v_{24} = \frac{a_{24}^{2}}{\sqrt{s} \left(a_{24}(1 - r_{s})/m_{e} - (1 + r_{s})/m_{\mu} \right)}, \\ r_{I} &= \frac{m_{\mu}^{2}}{I}, \quad I = s, t. \end{aligned}$$

MUonE

- Пучок мюонов с энергией 150 ГэВ и поляризацией до 80%.
- Покоящаяся электронная мишень, неполяризованная.
- Минимальная энергия наблюдаемого электрона 1 ГэВ (0.2 ГэВ).

Требуемая точность – 10^{-5} и выше!

 $\mu^+e^-
ightarrow e^-\mu^+(\gamma)$, $\mathrm{d}\sigma/\mathrm{d}artheta_{\mu^+}$, MUonE

 $\mu^+ e^-
ightarrow e^- \mu^+(\gamma)$, $\mathrm{d}\sigma/\mathrm{d}t_{ee}$, MUonE

 $\mu^+ e^-
ightarrow e^- \mu^+(\gamma)$, $\mathrm{d}\sigma/\mathrm{d}t_{\mu\mu}$, MUonE

 $\mu^+e^-
ightarrow e^-\mu^+(\gamma)$, $\mathrm{d}\sigma/\mathrm{d}E_{e^-}$, MUonE

 $\mu^+ e^-
ightarrow e^- \mu^+(\gamma)$, $\mathrm{d}\sigma/\mathrm{d} E_{\mu^+}$, MUonE

$\mu \text{TRISTAN}$

- Пучок мюонов с энергией до 1000 ГэВ и поляризацией до 80%.
- Пучок электронов с энергией 30 ГэВ и поляризацией до 70%.

 $\mu^+ e^-
ightarrow e^- \mu^+(\gamma)$, $d\sigma/d\cos\vartheta_{e^-}$, μ TRISTAN

 $\mu^+ e^- \rightarrow e^- \mu^+(\gamma)$, $d\sigma/d \cos \vartheta_{\mu^+}$, μ TRISTAN

Поправки высших порядков

- Ведущее логарифмическое приближение (ВЛП) (в формализме КЭД структурных функций).
- Поправки к $\Delta \alpha$.
- Ливень с матчингом.

- Поправки к $\Delta \rho$.
- Лидирующие судаковские логарифмы.

Поправки высших порядков, слабые

Электрослабый параметр ρ

определяет относительную силу заряженного и нейтрального токов

$$\rho = \frac{G_{NC}(0)}{G_{CC}(0)} = \frac{1}{1 - \Delta\rho}$$

На двухпетлевом уровне величина $\Delta \rho$ содержит два вклада:

$$\Delta
ho = N_c x_t \left[1 +
ho^{(2)} \left(M_{\scriptscriptstyle H}^2 / m_t^2 \right) x_t \right] \left[1 - \frac{2 lpha_s (M_Z^2)}{9 \pi} (\pi^2 + 3) \right],$$
где $x_t = \frac{\sqrt{2} G_F m_t^2}{16 \pi^2}.$

Поправки высших порядков, слабые

 $\mathcal{O}(\alpha)$ A. Sirlin, PRD22, (1980) 971, W.J. Marciano, A. Sirlin, PRD22 (1980) 2695; G. Degrassi, A. Sirlin, NPB352 (1991) 352, P. Gambino and A. Sirlin, PRD49 (1994) 1160 $\mathcal{O}(\alpha \alpha_s)$ A. Djouadi, C. Verzegnassi, PLB195 (1987) 265; B. Kiehl, NPB353 (1991) 567; B. Kniehl, A. Sirlin, NPB371 (1992) 141, PRD47 (1993) 883; A. Djouadi, P. Gambino, PRD49 (1994) 3499 $\mathcal{O}(\alpha \alpha_s^2)$ L. Avdeev et al., PLB336 (1994) 560;K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, PLB351 (1995) 331; PRL75 (1995) 3394; NPB482 (1996) $\mathcal{O}(\alpha \alpha_s^3)$ Y. Schroder, M. Steinhauser, PLB622 (2005) 124; K.G. Chetyrkin et al., hep-ph/0605201; R. Boughezal, M. $\mathcal{O}(\alpha^2)$ Czakon, hep-ph/0606232 G. Degrassi, P. Gambino, A. Sirlin, PLB394 (1997) 188; M. Awramik, M. Czakon, A. Freitas, JHEP0611 (2006) 048

Поправки высших порядков

Поправки высших порядков добавленные через параметр $\Delta \alpha$ и $\Delta \rho$:

$$\begin{aligned} \alpha(0) &\to \alpha(t) = \alpha(0) \left[1 + \Delta \alpha(t) + \Delta \alpha(t)^2 \right], \\ \mathbf{s}_w^2 &\to \bar{\mathbf{s}}_w^2 \equiv \mathbf{s}_w^2 (1 + \frac{\mathbf{c}_w^2}{\mathbf{s}_w^2} \Delta \rho) \quad \mathbf{c}_w^2 \to \bar{\mathbf{c}}_w^2 \equiv 1 - \bar{\mathbf{s}}_w^2 = (1 - \Delta \rho) \, \mathbf{c}_w^2 \end{aligned}$$

Схема $\alpha(0)$

$$\begin{split} \tilde{F}_{\gamma} &\to 1 + \Delta \alpha(t) + \Delta \alpha(t)^{2}, \\ \tilde{F}_{LL} &\to (1 + \Delta \alpha(t) + \Delta \alpha(t)^{2})(1 + \Delta \rho + \Delta \rho^{2})(1 - \frac{c_{W}^{2}}{s_{W}^{2}}\Delta \rho + \frac{c_{W}^{4}}{s_{W}^{4}}\Delta \rho^{2}), \\ \tilde{F}_{LQ} &\to (1 + \Delta \alpha(t) + \Delta \alpha(t)^{2})(1 + \Delta \rho + \Delta \rho^{2}), \\ \tilde{F}_{QL} &\to (1 + \Delta \alpha(t) + \Delta \alpha(t)^{2})(1 + \Delta \rho + \Delta \rho^{2}), \\ \tilde{F}_{QQ} &\to (1 + \Delta \alpha(t) + \Delta \alpha(t)^{2})(1 + \Delta \rho + \Delta \rho^{2})(1 + \frac{c_{W}^{2}}{s_{W}^{2}}\Delta \rho). \end{split}$$
Поправки высших порядков

Схема G_{μ}

$$\begin{split} \tilde{F}_{\gamma} &\rightarrow 1 + \frac{c_{W}^{2}}{s_{W}^{2}} \Delta \rho, \\ \tilde{F}_{LL} &\rightarrow 1 + \Delta \rho + \Delta \rho^{2}, \\ \tilde{F}_{LQ} &\rightarrow (1 + \Delta \rho + \Delta \rho^{2})(1 + \frac{c_{W}^{2}}{s_{W}^{2}} \Delta \rho), \\ \tilde{F}_{QL} &\rightarrow (1 + \Delta \rho + \Delta \rho^{2})(1 + \frac{c_{W}^{2}}{s_{W}^{2}} \Delta \rho), \\ \tilde{F}_{QQ} &\rightarrow (1 + \Delta \rho + \Delta \rho^{2})(1 + \frac{c_{W}^{2}}{s_{W}^{2}} \Delta \rho)^{2}. \end{split}$$

Для избежания двойного счета, необходимо удалить вклады, присутствующий в однопетлевом электрослабом результате: $\Delta\rho \longrightarrow \left(\Delta\rho - \Delta\rho^{(1)} \Big|^{\alpha(0)} \right) \text{ и } \Delta\alpha(t) \to 0.$

 $\mu^+ e^- \rightarrow e^- \mu^+ (\gamma)$

сечение в условиях MUonE, влияние поправок высших порядков

P_{μ^+} , P_{e^-}	0,0	-1, -1	-1, +1	+1, -1	+1, +1
σ^{Born} , μb	1265.1(1)	1275.3(1)	1254.8(1)	1254.8(1)	1275.3(1)
δ^{QED} , $\%$	4.762(1)	4.766(1)	4.757(1)	4.759(1)	4.765(1)
δ^{VP} , $\%$	0.940(1)	0.943(1)	0.936(1)	0.936(1)	0.943(1)
$\delta^{ m ho}(\Delta lpha^2)$, $\%$	0.006(1)	0.006(1)	0.006(1)	0.006(1)	0.006(1)

 $\mu^- e^-
ightarrow e^- \mu^-(\gamma)$

сечение в условиях MUonE, влияние поправок высших порядков

P_{μ^-} , P_{e^-}	0,0	-1, -1	-1, +1	+1, -1	+1, +1
σ^{Born} , μb	1265.1(1)	1275.3(1)	1254.8(1)	1254.8(1)	1275.3(1)
$\delta^{QED},\%$	4.624(1)	4.608(1)	4.640(1)	4.639(1)	4.608(1)
$\delta^{VP},\%$	0.940(1)	0.940(1)	0.940(1)	0.940(1)	0.940(1)
$\delta^{ho}(\Delta lpha^2)$, %	0.006(1)	0.006(1)	0.006(1)	0.006(1)	0.006(1)

$\mu^+ e^- o e^- \mu^+(\gamma)$ сечение при $\sqrt{s} = 250$ ГэВ, угловые обрезания: $\cos \vartheta_{e^-}$ и $\cos \vartheta_{\mu^+}$ в интервале [-0.9,0.9]

P_{μ^+} , P_{e^-}	0, 0	-1, -1	-1, +1	+1, -1	+1, +1		
$\alpha(0)$ EW scheme							
σ^{Born} , pb	66.487(1)	55.333(1)	73.186(1)	82.097(1)	55.333(1)		
$\delta^{QED},\%$	-1.936(1)	-0.481(1)	-2.933(1)	-3.013(1)	-0.482(1)		
δ^{VP} , $\%$	11.466(1)	13.729(2)	10.151(1)	9.586(1)	13.729(2)		
δ^{weak} - VP , $\%$	-0.396(1)	-1.758(1)	2.297(1)	-0.962(1)	-1.758(1)		
$\delta^{ho},\%$	1.032(1)	0.929(1)	0.895(1)	1.295(1)	0.929(1)		
		G_{μ} EW s	cheme				
σ^{Born} , pb	71.458(1)	59.470(1)	78.658(1)	88.234(1)	59.470(1)		
$\delta^{QED},\%$	-1.935(2)	-0.481(2)	-2.930(2)	-3.007(2)	-0.482(2)		
δ^{VP} , $\%$	5.568(1)	6.705(1)	4.899(1)	4.630(1)	6.705(2)		
δ^{weak} - VP , $\%$	-0.391(1)	-0.626(1)	1.656(1)	-1.891(1)	-0.626(1)		
$\delta^{ho},\%$	-0.456(1)	-0.512(1)	-0.520(1)	-0.322(1)	-0.512(1)		

$\mu^- e^- o e^- \mu^-(\gamma)$ сечение при $\sqrt{s} = 250$ ГэВ, угловые обрезания: $\cos \vartheta_{e^-}$ и $\cos \vartheta_{\mu^+}$ в интервале [-0.9,0.9]

P_{μ^+} , P_{e^-}	0, 0	-1, -1	-1, +1	+1, -1	+1, +1		
lpha(0) EW scheme							
σ^{Born} , pb	75.231(1)	115.076(1)	42.157(1)	42.157(1)	101.538(1)		
$\delta^{QED},\%$	-2.085(1)	-1.912(1)	-2.682(1)	-2.683(1)	-1.781(1)		
$\delta^{VP},\%$	10.849(1)	9.602(1)	13.305(1)	13.305(1)	10.220(1)		
δ^{weak} - $^{VP},\%$	-0.161(1)	-1.476(1)	-1.540(1)	-1.540(1)	2.474(1)		
$\delta^{ho},\%$	1.089(1)	1.365(1)	0.907(1)	0.907(1)	0.926(1)		
		G_{μ} EW s	scheme				
σ^{Born} , pb	80.855(1)	123.679(1)	45.309(1)	45.309(1)	109.128(1)		
$\delta^{QED},\%$	-2.082(2)	-1.911(1)	-2.685(2)	-2.685(2)	-1.780(1)		
$\delta^{VP},\%$	5.295(1)	4.729(1)	6.393(1)	6.393(1)	5.027(1)		
δ^{weak} - $^{VP},\%$	-0.501(1)	-2.495(1)	-0.519(1)	-0.519(1)	1.775(1)		
$\delta^{\sf ho},\%$	-0.436(1)	-0.306(1)	-0.511(1)	-0.511(1)	-0.522(1)		

 $\mu^+ e^- \to e^- \mu^+(\gamma)$ сечение при $\sqrt{s} = 250$ ГэВ, влияние поправок высших порядков на разницу между схемами $\alpha(0)$ и G_μ

P_{μ^+} , P_{e^-}	0,0	-1, -1	-1, +1	+1, -1	+1, +1
$\sigma_{\alpha(0)}^{weak}, pb$	73.846(1)	61.956(1)	82.295(1)	89.175(1)	61.956(1)
$\sigma_{G_{\mu}}^{weak}$, pb	75.156(1)	63.084(1)	83.812(1)	90.642(1)	63.084(1)
$\delta^{weak}_{\mathcal{G}_{\mu}/lpha(0)},\%$	1.77	1.82	1.84	1.65	1.82
$\sigma_{\alpha(0)}^{\text{weak+ho}}$, pb	74.533(1)	62.471(1)	82.951(1)	90.240(1)	62.471(1)
$\sigma_{G_{\mu}}^{weak+ho}$, pb	74.830(1)	62.779(1)	83.405(1)	90.359(1)	62.779(1)
$\delta^{ imes imes hat ho}_{\mathcal{G}_{\mu}/lpha(0)},\%$	0.40	0.50	0.55	0.13	0.50

 $\mu^- e^- \to e^- \mu^-(\gamma)$ сечение при $\sqrt{s} = 250$ ГэВ, влияние поправок высших порядков на разницу между схемами $\alpha(0)$ и G_μ

P_{μ^+} , P_{e^-}	0,0	-1, -1	-1, +1	+1, -1	+1, +1
$\sigma_{\alpha(0)}^{weak}$, pb	82.272(1)	124.427(1)	47.117(1)	47.117(1)	114.427(1)
$\sigma_{G_{\mu}}^{weak}$, pb	84.732(1)	126.441(1)	47.969(1)	47.969(1)	116.551(1)
$\delta_{\mathcal{G}_{\mu}/lpha(0)}^{weak},\%$	2.99	1.62	1.81	1.81	1.86
$\sigma_{\alpha(0)}^{\text{weak+ho}}$, pb	84.091(1)	125.999(1)	47.499(1)	47.499(1)	115.368(1)
$\sigma_{G_{\mu}}^{weak+ho}$, pb	84.379(1)	126.062(1)	47.738(1)	47.738(1)	115.981(1)
$\delta_{\mathcal{G}_{\mu}/lpha(0)}^{ ilde{weak}+ho},\%$	0.34	0.05	0.05	0.50	0.53

Глава 2. Рассеяние $e^-e^- o e^-e^-$ и $\mu^+\mu^+ o \mu^+\mu^+$

$e^-e^- o e^-e^-(\gamma)$ Спиральные амплитуды для борновского и виртуального вклада

$$\begin{aligned} \mathcal{H}_{-----} &= \frac{1}{t} \Bigg[2(k_1 + m_l^2 c_-) \tilde{F}_{\gamma} + \chi_Z(t) \Big(2m_l^2 c_- k_2 \cdot \\ & (\tilde{F}_{DQ} + \tilde{F}_{DL} - \tilde{F}_{LD} - \tilde{F}_{QD}) + 2m_l^2 c_- \sqrt{\lambda_e} (\tilde{F}_{DL} - \tilde{F}_{LD}) \\ & + 2(k_1 + m_l^2 c_-) (\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL}) \\ & + 2\sqrt{\lambda_e} (\tilde{F}_{LQ} + \tilde{F}_{QL} + 2\tilde{F}_{LL}) + 4k_2 \tilde{F}_{LL} \\ & + (4m_l^4 k_2 \cos \vartheta_3 - m_l^4 k_1 \cos^2 \vartheta_3 - 3m_l^4 s + 4m_l^6) \tilde{F}_{DD} \Big) \Bigg] + \\ & \frac{1}{u} \Bigg[2(k_1 + m_l^2 c_+) \tilde{F}_{\gamma} + \chi_Z(t) \Big(2m_l^2 c_+ k_2 \cdot \\ & (\tilde{F}_{DQ} + \tilde{F}_{DL} - \tilde{F}_{LD} - \tilde{F}_{QD}) + 2m_l^2 c_+ \sqrt{\lambda_e} (\tilde{F}_{DL} - \tilde{F}_{LD}) \\ & + 2(k_1 + m_l^2 c_+) (\tilde{F}_{QQ} + \tilde{F}_{LQ} + \tilde{F}_{QL}) \\ & + 2\sqrt{\lambda_e} (\tilde{F}_{LQ} + \tilde{F}_{QL} + 2\tilde{F}_{LL}) + 4k_2 \tilde{F}_{LL} \\ & + (-4m_l^4 k_2 \cos \vartheta_3 - m_l^4 k_1 \cos^2 \vartheta_3 - 3m_l^4 s + 4m_l^6) \tilde{F}_{DD} \Big) \Bigg]. \end{aligned}$$

45/82

$e^-e^- \to e^-e^-(\gamma)$ Сечения в пб и относительные поправки в процентах

<i>√s</i> , ГэВ	250	380	500	1000	1500	3000	
$P_{e^-}, P_{e^-} = 0, 0$							
$\sigma^{ m Born}$, pb	94.661(1)	42.969(1)	25.498(1)	6.657(1)	2.992(1)	0.7536(1)	
$\sigma^{ m one-loop}$, pb	103.906(2)	47.327(1)	28.068(1)	7.218(1)	3.185(1)	0.7665(1)	
$\delta,\%$	9.77(1)	10.14(1)	10.08(1)	8.42(1)	6.46(1)	1.71(1)	
		P _e -,	$P_{e^-} = 0.8, 0$.8			
$\sigma^{ m Born}$, pb	120.152(1)	55.739(1)	33.430(1)	8.850(1)	3.989(1)	1.007(1)	
$\sigma^{ m one-loop}$, pb	134.976(2)	63.264(1)	38.171(2)	10.229(1)	4.635(1)	1.177(1)	
$\delta,\%$	12.34(1)	13.50(1)	14.18(1)	15.58(1)	16.19(1)	16.94(1)	
$P_{e^-}, P_{e^-} = -0.8, -0.8$							
$\sigma^{ m Born}$, pb	136.377(1)	65.487(1)	39.984(1)	10.865(1)	4.928(1)	1.249(1)	
$\sigma^{ m one-loop}$, pb	147.224(2)	70.345(1)	42.627(2)	11.104(1)	4.827(1)	1.103(1)	
$\delta,\%$	7.95(1)	7.42(1)	6.61(1)	2.20(1)	-2.06(1)	-11.70(1)	

 $\mu^+\mu^+ \to \mu^+\mu^+(\gamma)$ Сечения в пб и относительные

поправки в процентах

P_{μ^+}, P_{μ^+}	P_{μ^+}, P_{μ^+} 0, 0		-0.8, -0.8				
$\sqrt{s} = 600 \text{ GeV}$							
$\sigma^{ m Born}$, pb	17.974(1)	23.690(1)	28.601(1)				
$\sigma^{ m one-loop}$, pb	19.715(1)	27.064(1)	30.160(1)				
$\delta,\%$	9.69(1)	14.24(1)	5.45(1)				
	$\sqrt{s} =$	1 TeV					
$\sigma^{ m Born}$, pb	6.6572(1)	8.8497(1)	10.8648(1)				
$\sigma^{ m one-loop}$, pb	7.2019(1)	10.1930(1)	11.0589(2)				
$\delta,\%$	8.18(1)	15.18(1)	1.79(1)				
$\sqrt{s} = 2$ TeV							
$\sigma^{ m Born}$, pb	1.6903(1)	2.2559(1)	2.7935(1)				
$\sigma^{ m one-loop}$, pb	1.7646(1)	2.6195(1)	2.6210(1)				
$\delta,\%$	4.40(1)	16.12(1)	-6.17(1)				

 $e^-e^- o e^-e^-(\gamma)$, ${
m d}\sigma/{
m d}\cosartheta_3$, $\sqrt{s}=250$ ГэВ

 $e^-e^-\to e^-e^-(\gamma)$ и $\mu^+\mu^+\to\mu^+\mu^+(\gamma),~{\rm d}\sigma/{\rm d}\cos\vartheta_3,$ $\sqrt{s}=1000$ ГэВ

Глава 3. Поправки высших поправок для $e^+e^- ightarrow HZ$

Поправки высших поправок, КЭД

В аннигиляционном канале $e^+e^- o HZ(n\gamma)$ большой логарифм равен $L=\lnrac{s}{m_e^2}.$

В ведущем логарифмическом (ВЛ) приближении можно разделить чисто фотонные (помечены " γ ") и остальные поправки, включающие эффекты излучения лептонных пар и смешанные фотон-пары эффекты (помечены как "pair").

ISR поправки в ВЛ приближении

Основная формула:

$$\sigma^{\text{LLA}} = \int_{0}^{1} \mathrm{d}x_1 \int_{0}^{1} \mathrm{d}x_2 \mathcal{D}_{ee}(x_1) \mathcal{D}_{ee}(x_2) \sigma_0(x_1, x_2, s) \Theta(\text{cuts}),$$

где $\sigma_0(x_1, x_2, s)$ – сечение борновского уровня аннигиляционного процесса с измененными импульсами начальных частиц.

 $\mathcal{D}_{ee}(x)$ описывает плотность вероятности найти электрон с долей энергии x в начальном электронном пучке.

Функции партонной плотности электрона

$$\begin{split} \mathcal{D}_{ee}(x) &= \mathcal{D}_{ee}^{\gamma}(x) + \mathcal{D}_{ee}^{\text{pair}}(x), \\ \mathcal{D}_{ee}^{\gamma}(x) &= \delta(1-x) + \frac{\alpha}{2\pi}(L-1)P^{(1)}(x) + \left(\frac{\alpha}{2\pi}(L-1)\right)^{2}\frac{1}{2!}P^{(2)}(x) \\ &+ \left(\frac{\alpha}{2\pi}(L-1)\right)^{3}\frac{1}{3!}P^{(3)}(x) + \left(\frac{\alpha}{2\pi}(L-1)\right)^{4}\frac{1}{4!}P^{(4)}(x) + \mathcal{O}\left(\alpha^{5}L^{5}\right), \\ \mathcal{D}_{ee}^{\text{pair}}(x) &= \left(\frac{\alpha}{2\pi}L\right)^{2}\left[\frac{1}{3}P^{(1)}(x) + \frac{1}{2}R_{s}(x)\right] \\ &+ \left(\frac{\alpha}{2\pi}L\right)^{3}\left[\frac{1}{3}P^{(2)}(x) + \frac{4}{27}P^{(1)}(x) + \frac{1}{3}R_{p}(x) - \frac{1}{9}R_{s}(x)\right] + \mathcal{O}\left(\alpha^{4}L^{4}\right). \end{split}$$

Поправки для эффектов излучения пар можно разделить на синглетные $(\sim R_{s,p})$ и несинглетные $(\sim P^{(n)})$. По умолчанию мы учитываем и те, и другие.

Большой логарифм равен $L = \ln(s/m_e^2)$, где \sqrt{s} выбрано как масштаб факторизации.

Функции расщепления

Несинглетные функции расщепления:

$$P^{(n)}(x) = \lim_{\Delta \to 0} \bigg\{ \delta(1-x) P^{(n)}_{\Delta} + P^{(n)}_{\Theta}(x) \Theta(1-\Delta-x) \bigg\},$$

где $\Delta \ll 1$ — разделитель между мягкой и жесткой частью. Например, для n = 1:

$${\sf P}^{(1)}_{\Delta}=2\ln\Delta+rac{3}{2}, \qquad {\sf P}^{(1)}_{\Theta}(x)=rac{1+x^2}{1-x}.$$

Чисто фотонные несинглетные функции расщепления высшего порядка получаются путем итерированной свертки

$$P^{(n+1)}(x) = \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \ \delta(x - x_{1}x_{2}) P^{(n)}(x_{1}) P^{(1)}(x_{2}).$$

Подробнее в [А.В. Arbuzov. Phys. Lett. В 1999,470, 252–258]

КЭД ISR вклады с различной кинематикой

Партонное сечение борновского уровня $\sigma_0(x_1, x_2, s)$ известно в партонной СЦМ как $\sigma_{\text{Born}}(\hat{s})$, где $\hat{s} = x_1 x_2 s$. Необходим переход от партонной СЦМ в лабораторную систему отсчета, если $x_1 x_2 \neq 1$.

Вклады с различной кинематикой:

- I. $(SV)_1 \times (SV)_2$ Борновская кинематика: дополнительный вклад в "Born+Soft+Virt".
- II. *H*₁ × (*SV*)₂ Один жесткий фотон, коллинеарный первой начальной частице, с возможными мягкими и (или) виртуальными (Soft+Virt) поправками ко второй начальной частице. Здесь и далее "один жесткий фотон" означает "по крайней мере один жесткий фотон в том же направлении".
- III. $(SV)_1 \times H_2$ Мягкая+виртуальная поправка к первой начальной частице и один жесткий фотон вдоль второй начальной частицы.
- IV. *H*₁ × *H*₂ Один жесткий фотон вдоль первой начальной частицы и один вдоль второй.

Схема с экспоненциацией

Экспоненциированные структурные функции включают ВЛ часть однопетлевых радиационных поправок КЭД. Чтобы избежать двойного счета с полными однопетлевыми поправками, мы должны вычесть ведущие логарифмические члены первого порядка из однопетлевых поправок. Таким образом, окончательный результат выглядит следующим образом

$$\sigma^{\text{corr.}} = \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \mathcal{D}_{ee}^{\exp}(x_{1}) \mathcal{D}_{ee}^{\exp}(x_{2}) \sigma_{0}(x_{1}, x_{2}, s) \Theta(\text{cuts} + \left[\sigma^{\text{Soft+Virt}} - \sigma_{\text{LLA}}^{\text{Soft+Virt}}\right] + \left[\sigma^{\text{Hard}} - \sigma_{\text{LLA}}^{\text{Hard}}\right].$$

"Soft+Virt" часть имеет борноподобную кинематику:

$$\sigma_{\rm LLA}^{\rm Soft+Virt} = \sigma^{\rm Born} 2 \frac{\alpha}{2\pi} (L-1) \left[2\ln\omega + \frac{3}{2} \right].$$

"Hard LLA" вклад переписан так, чтобы соответствовать "Hard" кинематике: $\sigma_{\text{LLA}}^{\text{Hard}} = \frac{\alpha}{2\pi} \int \frac{\mathrm{d}^3 k}{k_0^2 2\pi} \left[\frac{E^2}{k p_1} \sigma^{\text{Born}}(x_1, 1, s) + \frac{E^2}{k p_2} \sigma^{\text{Born}}(1, x_2, s) \right] \left(2 - 2\frac{k_0}{E} + \frac{k_0^2}{E^2} \right).$

 $e^+e^-
ightarrow ZH$. КЭД поправки в ВЛП _[Symmetry 13, 01256]

(a) $\mathcal{O}(\alpha^2 L^2)\gamma$, (b) $\sum_{n=2}^4 \mathcal{O}(\alpha^n L^n)$.

 $e^+e^-
ightarrow ZH$. КЭД поправки в ВЛП _[Symmetry 13, 01256]

(a) $\mathcal{O}(\alpha^2 L^2) e^+ e^-$, (b) $\mathcal{O}(\alpha^2 L^2) \mu^+ \mu^-$, (c) $\mathcal{O}(\alpha^3 L^3) \gamma$.

 $e^+e^-
ightarrow ZH$. КЭД поправки в ВЛП _[Symmetry 13, 01256]

(a) $\mathcal{O}(\alpha^3 L^3)e^+e^-$, (b) $\mathcal{O}(\alpha^3 L^3)\mu^+\mu^-$, (c) $\mathcal{O}(\alpha^4 L^4)\gamma$.

$e^+e^- ightarrow ZH$ [Symmetry 13, 01256]

Сечения: (а) Борновское, (b)с $\mathcal{O}(\alpha)$ КЭД поправками, (c) с полными однопетлевыми ЭС вкладами

$e^+e^- ightarrow ZH$ [Symmetry 13, 01256]

Сечения: (а) для $\mathcal{O}(\alpha L)$, (b) для КЭД $\mathcal{O}(\alpha)$, (c) для полных 1-петлевых ЭС и (d) для суммы (c) и $\sum_{n=2}^{4} \mathcal{O}(\alpha^n L^n)$ ISR

$$e^+e^-
ightarrow ZH$$
, $\sqrt{s}=240$ [Symmetry 13, 01256]

	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(lpha^3 L^3)$
	γ	e^+e^-	$\mu^+\mu^-$	γ
$\delta\sigma_{\rm LLA}$, fb	1.128(1)	-0.368(1)	-0.218(1)	0.176(1)
$\delta_{ m LLA}$, %	0.500(1)	-0.163(1)	-0.097(1)	0.078(1)
	$\mathcal{O}(\alpha^3 L^3)$	$\mathcal{O}(\alpha^3 L^3)$	$\mathcal{O}(\alpha^4 L^4)$	$\sum_{n=2}^{4} \mathcal{O}(\alpha^n L^n)$
	e^+e^-	$\mu^+\mu^-$	γ	11-2
$\delta\sigma_{\rm LLA}$, fb	0.019(1)	0.011(1)	-0.023(1)	0.727(1)
$\delta_{ m LLA}$, %	0.008(1)	0.005(1)	-0.010(1)	0.322(1)

$$\delta_{\rm ISR \; LLA} \equiv \delta \sigma_{\rm ISR \; LLA} / \sigma_0 \text{, } \sigma_0 = 225.74(1) \text{ fb}.$$

Изменение масштаба факторизации в аргументе большого логарифма L может моделировать следующие за ведущими логарифмические поправки, например, $\mathcal{O}(\alpha^2 L)$. $\delta_{\text{LLA}}(2\sqrt{s}) = 0.361(1)\%$ $\delta_{\text{LLA}}(\sqrt{s}/2) = 0.286(1)\%$

$$e^+e^-
ightarrow ZH$$
, $\sqrt{s}=250$ [59B [Symmetry 13, 01256]

	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(\alpha^2 L^2)$	$\mathcal{O}(lpha^3 L^3)$
	γ	e^+e^-	$\mu^+\mu^-$	γ
$\delta\sigma_{ m LLA}$, fb	-0.223(1)	-0.268(1)	-0.159(1)	0.211(1)
$\delta_{ m LLA}$, %	-0.099(1)	-0.119(1)	-0.070(1)	0.094(1)
	$\mathcal{O}(\alpha^3 L^3)$	$\mathcal{O}(\alpha^3 L^3)$	$\mathcal{O}(\alpha^4 L^4)$	$\sum_{n=2}^{4} \mathcal{O}(\alpha^n L^n)$
	e^+e^-	$\mu^+\mu^-$	γ	
$\delta\sigma_{\rm LLA}$, fb	-0.010(1)	-0.006(1)	-0.016(1)	-0.468(1)
$\delta_{ m LLA}$, %	-0.004(1)	-0.003(1)	-0.007(1)	-0.207(1)

$$\delta_{\rm ISR\;LLA}\equiv\delta\sigma_{\rm ISR\;LLA}/\sigma_0\text{, }\sigma_0=225.59(1)~{\rm fb}.$$

Изменение масштаба факторизации в аргументе большого логарифма L может моделировать следующие за ведущими логарифмические поправки, например, $\mathcal{O}(\alpha^2 L)$. $\delta_{\text{LLA}}(2\sqrt{s}) = -0.228(1)\%$ $\delta_{\text{LLA}}(\sqrt{s}/2) = -0.187(1)\%$

$e^+e^- \rightarrow ZH$. Order-by-order vs Exponentiated SF

[Symmetry 13, 01256]

	$\sum_{n=1}^{N} \mathcal{O}(\alpha^{n} L^{n})$				
N	1	2	3	4	
	$\sqrt{2}$	$= 240 { m G}$	eV		
R _{LLA}	0.9934	0.9993	1.0002	1.0001	
$R_{\text{Exp Add}}$	0.9975	1.0054	1.0000		
R _{Exp Mul}	0.9996	1.0000	1.0000		
	\sqrt{s}	$s = 250 { m G}$	eV		
R _{LLA}	1.0001	0.9990	1.0000	0.9999	
R _{Exp Add}	0.9969	1.0002	1.0000		
R _{Exp Mul}	0.9994	1.0000	1.0000		

Учтены только чисто фотонные поправки. Здесь $R_i = \sigma_i / \sigma_{Exp Mul}^{(3)}$, $i = (LLA, Exp Add, Exp Mul), \sigma_{Exp Add}$ расчитано со структурной функцией электрона

взятой в аддитивной экспоненциированной форме [Cacciari et al., М. Europhys. Lett.1992,17,123–128] и $\sigma_{\mathsf{Exp}\ \mathsf{Mul}}$ в мультипликативной экспоненциированной форме [Przybycien, M., Acta Phys. Polon. В 1993,24, 1105–1114].

Глава 4. Монте-Карло генератор событий ReneSANCe

Фрэймворк SANC и семейство продуктов

Публикации:

SANC – Comput.Phys.Commun. 174 (2006), 481-517. MCSANC (pp-mode) – Comput.Phys.Commun. 184 (2013),2343-2350; JETP Letters 103 (2016), 131-136. ReneSANCe – Comput.Phys.Commun. 256 (2020), 107445.

Продукты SANC доступны на сайте http://sanc.jinr.ru/download.php

Генератор ReneSANCe

ReneSANCe (Renewed SANC Monte Carlo event generator) – Монте-Карло генератор событий для симуляции процессов на лептонных и адронных коллайдерах.

- В том числе реализованы процессы:
 - ▶ $\mu^{\pm}e^{-} \rightarrow e^{-}\mu^{\pm}$
 - ► $e^-e^- \rightarrow e^-e^-$
 - ► $e^+e^- \rightarrow HZ$
- Основан на модулях SANC (Support for Analytic and Numeric Calculations for experiments at colliders)
- Реализованы полные однопетлевые электрослабые поправки и некоторые поправки высших порядков
- Все частицы массивные и поляризованные
- Эффективно работает в коллинеарном регионе и в широком интервале значений √s
- Новые процессы могут быть легко добавлены

Генератор ReneSANCe

- CMAKE build system (generator)
- Модульная архитектура
- c++ & FORTRAN
- Для сэмплирования используется адаптивный алгоритм mFOAM Jadach, S. and Sawicki, P., Comp. Phys. Comm. 177 (2007), pp. 441–458
- События записываются в root/LHEF формат и затем могут быть обработаны (построены гистограммы и т.д.)

Стратегия генерации событий

Для генерации событий мы используется многоканальную стратегию с преобразованием переменных. Реализовано два подхода:

- Ручное разыгрывание канала. Для каждого канала создан отдельный экземпляр класса FOAM. В этом случае каждый канал может использовать как оптимальное преобразование переменных, так и оптимальную настройку сэмплера FOAM. Как следствие, необходим дополнительный этап для вычисления весов ветвления, который замедляет этап инициализации генератора.
- Разыгрывание событий производится с использованием только одного экземпляра FOAM. Тем не менее, оптимальное преобразование переменных для каждого канала также доступно. В таком подходе FOAM отвечает за разыгрывание канала, что достигается путем создания искусственной дополнительной размерности интеграла с фиксированными точками деления.

Генератор ReneSANCe

ReneSANCe v1.2.1

доступен публично
http://sanc.jinr.ru/download.php
https://renesance.hepforge.org

Заключение
Основные публикации

Результаты по теме диссертации изложены в 6 статьях, из которых 4 изданы в журналах, рекомендованных ВАК или в научных журналах, индексируемых Web of Science и Scopus:

- MCSANCee generator with one-loop electroweak corrections for processes with polarized e⁺e⁻ beams, J. Phys. Conf. Ser. 1525 012012 (2020).
- Polarized NLO EW e^+e^- cross section calculations with ReneSANCe-v1.0.0, Comp.Phys.Comm. **256**, 107445 (2020).
- Electroweak Effects in $e^+e^- \rightarrow ZH$ Process, Symmetry 13, no. 7, 1256 (2021).
- Electroweak effects in polarized muon-electron scattering, Physical Review D **105**, no. 3, 033009 (2022).
- One-loop electroweak radiative corrections to polarized Møller scattering, arXiv:2203.10538, отправлено в JETP Letters
- ReneSANCe event generator for high-precision e⁺e⁻ physics, отправлено в J. Phys. Conf. Ser.

Апробация результатов

- CEPC Topical Workshop: Theoretical Uncertainty Controls for the CEPC measurements, Beijing, China, 04 April 2019.
- 13th APCTP-BLTP JINR Joint Workshop, г. Дубна, РФ, 14-20 Июля 2019 г.
- 3rd FCC Physics and Experiments Workshop, Geneva, Switzerland, 13-17 January 2020.
- 4th FCC Physics and Experiments Workshop, Geneva, Switzerland, 10-13 November 2020.
- The Joint Workshop of the CEPC Physics, Software and New Detector Concept, Yangzhou, China, 14-17 April 2021.
- Workshop on future Super c-tau factories, Novosibirsk, Russia, 15-17 November 2021.

Положения выносимые на защиту

- Впервые вычислены полные однопетлевые ЭС поправки к поляризованному упругому мюон-электронному рассеянию. Исследовано поведение КЭД и слабых поправок при больших значениях энергии µTRISTAN (KEK), а также при условиях эксперимента MUonE (ЦЕРН).
- Впервые вычислены полные однопетлевые ЭС поправки к поляризованному процессу Меллера и мюон-мюонному рассеянию с учетом масс лептонов. Проанализировано поведение КЭД и слабых поправок в широком диапазоне энергий.
- Предложена схема учета отдельных универсальных поправок высших порядков для t-канальных четырехфермионных процессов через параметр $\Delta \rho$.
- Проведено вычисление КЭД поправок вплоть до $O(\alpha^4 L^4)$ к полному сечению $e^+e^- \to HZ$.
- Создан Монте-Карло генератор ReneSANCe, позволяющий эффективно разыгрывать события в широких кинематических пределах.

Спасибо за внимание!

Дополнительные слайды

$\mu^- e^- ightarrow e^- \mu^-(\gamma)$ Сравнение

$\overline{P_{\mu^-}, P_{e^-}}$	0, 0	-1, -1	-1, 1	1, -1	1, 1
S	102.42(1)	157.64(1)	56.53(1)	56.52(1)	139.05(1)
W	102.43(1)	157.62(1)	56.53(1)	56.54(1)	139.05(1)
С	102.43(1)	157.63(1)	56.53(1)	56.52(1)	139.06(2)

Сравнение между SANC (первая линия), WHIZARD (вторая линия), и CalcHEP (третья линия) результатов для сечения жесткого тормозного излучения (пб) для 100% поляризованного $\mu^-e^- \to e^-\mu^-\gamma$ рассеяния при энергии $\sqrt{s} = 250$ ГэВ в СЦМ. Кинематические ограничения по углу составляют $|\cos \vartheta_{\mu}| \le 0.9$ и $|\cos \vartheta_{e}| \le 0.9$. Кроме того, применялось дополнительное ограничение на энергию фотона $E_{\gamma} \ge \omega = 10^{-4}\sqrt{s}/2$.

$$e^+e^- \to \mu^-\mu^+({\it n}\gamma)$$

ISR поправки в ЛЛ приближении

 $\begin{array}{l} \sqrt{s} = 250 \ \text{GeV}, \ \text{Born cross section } \sigma_0 = 1417.6(1) \ \text{fb}. \\ \sum \equiv \sum_{n=2}^4 \mathcal{O}(\alpha^n L^n), \ \delta = \delta_{\text{ISR LLA}} \equiv \delta \sigma_{\text{ISR LLA}} / \sigma_0 \end{array}$

	$O(\alpha^2 L^2)$		$\mathcal{O}(lpha^3 L^3)$		$\mathcal{O}(\alpha^4 L^4)$	∇
	$[\gamma]$	[pair]	$[\gamma]$	[pair]	$[\gamma]$	
Cuts: $ \cos \theta_{\mu^{\pm}} < 0.9$, $M_{\mu^{+}\mu^{-}} > 10$ GeV.						
$\delta\sigma$, fb	108.2(1)	53.70(1)	-0.49(3)	3.47(1)	-0.23(1)	164.7(1)
δ, %	7.63(1)%	3.79(1)%	-0.035(2)%	0.245(1)%	-0.017(1)%	11.62(1)%
Cuts: $ \cos \theta_{\mu^{\pm}} < 0.9$, $M_{\mu^{+}\mu^{-}} > 100$ GeV.						
$\delta\sigma$, fb	4.8(1)	5.9(1)	-0.76(2)	0.00(1)	0.00(1)	9.9(1)
δ, %	0.34(1)%	0.42(1)%	-0.053(1)%	0.00(1)%	0.00(1)%	0.70(1)%

$${\rm e^+e^-} \rightarrow \mu^-\mu^+({\rm n}\gamma)$$

FSR поправки в ЛЛ приближении

 $\begin{array}{l} \sqrt{s}=250 \ \text{GeV}, \ \text{Born cross section } \sigma_0=1417.6(1) \ \text{fb}.\\ \sum \equiv \sum_{n=2}^4 \mathcal{O}(\alpha^n L^n), \ \delta=\delta_{\text{FSR LLA}}\equiv \delta\sigma_{\text{FSR LLA}}/\sigma_0 \end{array}$

	$\mathcal{O}(\alpha^2 L^2)$		$\mathcal{O}(lpha^3 L^3)$		$\mathcal{O}(\alpha^4 L^4)$	~
	$[\gamma]$	[pair]	$[\gamma]$	[pair]	$[\gamma]$	
Cuts: $ \cos \theta_{\mu^{\pm}} < 0.9$, $M_{\mu^{+}\mu^{-}} > 10$ GeV.						
$\delta\sigma$, fb	0.00(1)	7.64(1)	0.00(1)	-0.129(1)	0.00(1)	7.50(1)
δ, %	0.00(1)%	0.539(1)%	0.00(1)%	-0.0091(1)%	0.00(1)%	0.529(1)%
Cuts: $ \cos \theta_{\mu\pm} < 0.9$, $M_{\mu+\mu-} > 100$ GeV.						
$\delta\sigma$, fb	-0.54(1)	0.87(1)	0.00(1)	-0.069(1)	0.00(1)	0.26(1)
δ, %	-0.038(1)%	0.061(1)%	0.00(1)%	-0.005(1)%	0.00(1)%	0.018(1)%

 $e^+e^-
ightarrow \mu^-\mu^+$

Поправки высших порядков, слабые

P_{e^+} , P_{e^-}	0, 0	0,-0.8	0.3,-0.8	0,0.8	-0.3,0.8
$\sigma_{\alpha(0)}^{Born}$, pb	1.41763(1)	1.54645(1)	1.93499(1)	1.28880(1)	1.58073(1)
$\sigma_{G_{ii}}^{\text{Born}}$, pb	1.50971(1)	1.64690(1)	2.06068(1)	1.37252(1)	1.68341(1)
$\sigma^{Born}_{\alpha(M_7^2)}$, pb	1.59923(1)	1.74456(1)	2.18287(1)	1.45391(1)	1.78323(1)
$\delta \sigma_{\alpha(0)}^{\text{weak}}$, pb	0.15525(1)	0.11883(1)	0.14243(1)	0.19167(1)	0.242587(1)
$\delta \sigma_{G_{II}}^{\text{weak}}$, pb	0.07911(1)	0.03249(1)	0.03400(1)	0.12574(1)	0.162206(1)
$\delta \sigma^{ m weak}_{lpha(M_Z^2)}$, pb	-0.01194(1)	-0.07003(1)	-0.09468(1)	0.46147(1)	0.06506(1)
$\delta \sigma^{\rm ho}_{\alpha(0)}$, pb	0.02122(1)	0.02304(1)	0.02882(1)	0.01940(1)	0.02380(1)
$\delta \sigma_{G_{\mu}}^{ho}$, pb	-0.00555(1)	-0.00351(1)	-0.00407(1)	-0.00759(1)	-0.00969(1)
$\delta \sigma^{ho}_{lpha(M^2_Z)}$, pb	0.00387(1)	0.00898(1)	0.01183(1)	-0.00124(1)	-0.00222(1)

 $\text{cuts are:} \ |\cos\theta_{\mu^-}| < 0.9, \quad |\cos\theta_{\mu^+}| < 0.9.$

 $e^+e^- \rightarrow \mu^-\mu^+(n\gamma)$

Влияние различных поправок

	Born	+QED (1-loop)	+WEAK (1-loop)	+WEAK $(\Delta \rho)$	+QED (LL)
σ , pb	1.50971(1)	cut1: + 0.829(1)	+0.07911(1)	-0.00555(1)	cut1: + 0.1837(1)
		cut2: $+0.197(1)$			cut2: + 0.0108(1)
$\delta,\%$		cut1: + 54.9(1)%	+5.24(1)%	-0.37(1)%	cut1: $+ 12.17(1)\%$
		cut2: $+ 13.1(1)\%$			cut2: $+0.72(1)\%$

 $\begin{array}{l} \mbox{Calculated in } {\cal G}_{\mu} \ \mbox{EW scheme}, \sqrt{s} = 250 \ \mbox{GeV}. \\ \mbox{Cuts are: } |\cos\theta_{\mu^-}| < 0.9, \quad |\cos\theta_{\mu^+}| < 0.9, \\ \mbox{cut1: } {\cal M}_{ll} > 10 \ \mbox{GeV}, \\ \mbox{cut2: } {\cal M}_{ll} > 100 \ \mbox{GeV}. \end{array}$