Functional reduction of one-loop Feynman integrals with arbitrary masses

ArXiv: 2203.00143

O.V. Tarasov

A method of functional reduction for the dimensionally regularized one-loop Feynman integrals with massive propagators is described in detail. The method is based on a repeated application of the functional relations proposed by the author. Explicit formulae are given for reducing one-loop scalar integrals to a simpler ones, the arguments of which are the ratios of polynomials in the masses and kinematic invariants. We show that a general scalar n-point integral, depending on $n(n+1) / 2$ generic masses and kinematic variables, can be expressed as a linear combination of integrals depending only on n variables. The latter integrals are given explicitly in terms of hypergeometric functions of $(n-1)$ dimensionless variables. Analytic expressions for the 2-, 3- and 4-point integrals, that depend on the minimal number of variables, were also obtained by solving the dimensional recurrence relations. The resulting expressions for these integrals are given in terms of Gauss' hypergeometric function $2 F_{1}$, the Appell function F_{1} and the hypergeometric Lauricella - Saran function Fs. A modification of the functional reduction procedure for some special values of kinematical variables is considered.

Speaker: Maxim Bezuglov

Algebraic relation between propagators

$$
\begin{gathered}
I_{n}^{(d)}\left(\left\{m_{j}^{2}\right\} ;\left\{s_{i k}\right\}\right)=\frac{1}{i \pi^{d / 2}} \int \frac{d^{d} k_{1}}{D_{1} \ldots D_{n}} \\
D_{j}=\left(k_{1}-p_{j}\right)^{2}-m_{j}^{2} \\
p_{j}-\text { external momenta }
\end{gathered}
$$

$$
\prod_{r=1}^{n} \frac{1}{D_{r}}=\frac{1}{D_{0}} \sum_{r=1}^{n} x_{r} \prod_{\substack{j=1 \\ j \neq r}}^{n} \frac{1}{D_{j}}
$$

new propagator
p_{0}, m_{0}^{2} and $x_{j}(j=1, \ldots n)$ must be chosen so that the ratio above holds to do this, they must satisfy the system of equations

Algebraic relation between propagators

$$
\prod_{r=1}^{n} \frac{1}{D_{r}}=\frac{1}{D_{0}} \sum_{r=1}^{n} x_{r} \prod_{\substack{j=1 \\ j \neq r}}^{n} \frac{1}{D_{j}} . \mid \times \prod_{j=0}^{n} D_{j}
$$

$$
D_{0}=\sum_{r=1}^{n} x_{r} D_{r}
$$

Differentiating the above by k_{1} and given that this is the independent variable of integration we find

$$
\left.\begin{array}{c}
1=\sum_{r=1}^{n} x_{r} \\
p_{0}=\sum_{j=1}^{n} x_{j} p_{j}
\end{array}\right\} \begin{gathered}
m_{0}^{2}-\sum_{k=1}^{n} x_{k} m_{k}^{2}+\sum_{j=2}^{n} \sum_{l=1}^{j-1} x_{j} x_{l} s_{l j}=0 \\
\text { where } \\
s_{i j}=s_{i, j}=\left(p_{i}-p_{j}\right)^{2} .
\end{gathered}
$$

the solution depends on $(n-2)$ remaning parameters x_{i} and one arbitrary mass m_{0}

$$
I_{n}^{(d)}\left(\left\{m_{r}^{2}\right\} ;\left\{s_{i k}\right\}\right)=\left.\sum_{j=1}^{n} x_{j} I_{n}^{(d)}\left(\left\{m_{r}^{2}\right\} ;\left\{s_{i k}\right\}\right)\right|_{m_{j}^{2} \rightarrow m_{0}^{2}, s_{j k} \rightarrow s_{0 k}}
$$

Method of functional reduction Sincov's functional equation

$$
f(x, y)=f(x, z)-f(y, z) .
$$

The general solution

$$
\begin{gathered}
f(x, y)=g(x)-g(y) \\
\text { where } \\
g(x)=f(x, 0)
\end{gathered}
$$

I.e. the function $f(x, y)$ is a combination of its 'boundary values', which may be completely arbitrary.

Method of functional reduction

$$
I_{n}^{(d)}\left(\left\{m_{r}^{2}\right\} ;\left\{s_{i k}\right\}\right)=\left.\sum_{j=1}^{n} x_{j} I_{n}^{(d)}\left(\left\{m_{r}^{2}\right\} ;\left\{s_{i k}\right\}\right)\right|_{m_{j}^{2} \rightarrow m_{0}^{2}, s_{j k} \rightarrow s_{0 k}}
$$

Additional conditions designed to reduce the number of variables:

$$
\begin{aligned}
& s_{0 j}=0, \quad s_{0 j}-s_{0 i}=0, \quad s_{0 j} \pm s_{i k}=0, \quad s_{0 j} \pm m_{0}^{2}=0, \quad m_{j}^{2} \pm m_{0}^{2}=0 \\
& m_{0}^{2}=0, \quad s_{0 j} \pm m_{0}^{2} \pm m_{k}^{2}=0, \quad(i, j, k=1 \ldots n)
\end{aligned}
$$

Solutions of these systems of equations and analysis of these solutions were performed using computer algebra system MAPLE. The number of these systems depends on n and varied from 10^{3} to 10^{6}. CPU execution time ranged from a few minutes to several hours. Many solutions of these equations have been found. Some of them lead to a simultaneous decrease in the number of variables in all integrals on the right-hand side of the functional equation

Functional reduction of the 2-point integral

$$
I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[\left(k_{1}-p_{1}\right)^{2}-m_{1}^{2}\right]\left[\left(k_{1}-p_{2}\right)^{2}-m_{2}^{2}\right]}
$$

Algebraic relation between propagators:

$$
\begin{gathered}
\frac{1}{D_{1} D_{2}}=\frac{x_{1}}{D_{0} D_{2}}+\frac{x_{2}}{D_{1} D_{0}} \\
x_{1}+x_{2}=1, \quad p_{0}=x_{1} p_{1}+x_{2} p_{2} \\
m_{0}^{2}-x_{1} m_{1}^{2}-x_{2} m_{2}^{2}+x_{1} x_{2} s_{12}=0
\end{gathered}
$$

Algebraic conditions on parameters:
The only arbitrary parameter will be mo

$$
x_{1}=\frac{m_{2}^{2}-m_{1}^{2}+s_{12}}{2 s_{12}} \pm \frac{\sqrt{4 s_{12}\left(m_{0}^{2}-r_{12}\right)}}{2 s_{12}}, \quad x_{2}=1-x_{1}
$$

$$
\begin{gathered}
s_{10}=m_{1}^{2}+m_{0}^{2}-2 r_{12} \pm \frac{m_{2}^{2}-m_{1}^{2}-s_{12}}{2 s_{12}} \sqrt{4 s_{12}\left(m_{0}^{2}-r_{12}\right)}, \quad s_{20}=m_{2}^{2}+m_{0}^{2}-2 r_{12} \pm \frac{m_{2}^{2}-m_{1}^{2}+s_{12}}{2 s_{12}} \sqrt{4 s_{12}\left(m_{0}^{2}-r_{12}\right)}, \\
r_{12}=-\frac{\lambda_{12}}{g_{12}}=\frac{2 m_{1}^{2} m_{2}^{2}+2 s_{12} m_{1}^{2}+2 s_{12} m_{2}^{2}-m_{1}^{4}-m_{2}^{4}-s_{12}^{2}}{4 s_{12}}
\end{gathered}
$$

Notations for determinants

modified Cayley determinant: $\quad \Delta_{n} \equiv \Delta_{n}\left(\left\{p_{1}, m_{1}\right\}, \ldots\left\{p_{n}, m_{n}\right\}\right)=\left|\begin{array}{cccc}Y_{11} & Y_{12} & \ldots & Y_{1 n} \\ Y_{12} & Y_{22} & \ldots & Y_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1 n} & Y_{2 n} & \ldots & Y_{n n}\end{array}\right|$,
$Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j}$,

Gram determinant:

$$
\begin{aligned}
G_{n-1} \equiv G_{n-1}\left(p_{1}, \ldots, p_{n}\right) & =-2\left|\begin{array}{cccc}
S_{11} & S_{12} & \ldots & S_{1 n-1} \\
S_{21} & S_{22} & \ldots & S_{2 n-1} \\
\vdots & \vdots & \ddots & \vdots \\
S_{n-1} & S_{n-1} & \ldots & S_{n-1} n-1
\end{array}\right| \\
S_{i j} & =s_{i n}+s_{j n}-s_{i j},
\end{aligned}
$$

$$
\begin{array}{rlr}
\lambda_{i_{1} i_{2} \ldots i_{n}} & =\Delta_{n}\left(\left\{p_{i_{1}}, m_{i_{1}}\right\},\left\{p_{i_{2}}, m_{i_{2}}\right\}, \ldots,\left\{p_{i_{n}}, m_{i_{n}}\right\}\right) & r_{i j \ldots k}=-\frac{\lambda_{i j \ldots k}}{g_{i j \ldots k}} \\
g_{i_{1} i_{2} \ldots i_{n}} & =G_{n-1}\left(p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{n}}\right) & \text { and }
\end{array} \quad \kappa_{j_{r} j_{1} \ldots j_{r-1} j_{r+1} \ldots j_{n}}=\frac{\partial r_{j_{1} \ldots j_{r} \ldots j_{n}}}{\partial m_{j_{r}}^{2}} .
$$

Functional reduction of the 2-point integral

$$
I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[\left(k_{1}-p_{1}\right)^{2}-m_{1}^{2}\right]\left[\left(k_{1}-p_{2}\right)^{2}-m_{2}^{2}\right]}
$$

Algebraic relation between propagators:

$$
\frac{1}{D_{1} D_{2}}=\frac{x_{1}}{D_{0} D_{2}}+\frac{x_{2}}{D_{1} D_{0}}
$$

Integrating algebraic relation over momentum k_{1} we get the functional relation

$$
I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=x_{1} I_{2}^{(d)}\left(m_{2}^{2}, m_{0}^{2} ; s_{20}\right)+x_{2} I_{2}^{(d)}\left(m_{1}^{2}, m_{0}^{2} ; s_{10}\right)
$$

The only arbitrary parameter will be mo

- Case 1. $m_{0}^{2}=0$
- Case 2. $m_{0}^{2}=r_{12}$
- Case 3. Combination of two equations

Case 1. $m_{0}^{2}=0$

$$
\begin{gathered}
I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\bar{x}_{1} I_{2}^{(d)}\left(m_{2}^{2}, 0 ; \bar{s}_{20}\right)+\bar{x}_{2} I_{2}^{(d)}\left(m_{1}^{2}, 0 ; \bar{s}_{10}\right) \\
\bar{x}_{1,2}=\left.x_{1,2}\right|_{m_{0}^{2}=0}, \quad \bar{s}_{01}=\left.s_{01}\right|_{m_{0}^{2}=0}, \quad \bar{s}_{02}=\left.s_{02}\right|_{m_{0}^{2}=0} \\
I_{2}^{(d)}\left(m^{2}, 0 ; p^{2}\right)=-\Gamma\left(1-\frac{d}{2}\right) m_{2}^{d-4} F_{1}\left[\begin{array}{c}
1,2-\frac{d}{2} ; \frac{p^{2}}{m^{2}} \\
\frac{d}{2} ;
\end{array}\right]
\end{gathered}
$$

Case 2. $m_{0}^{2}=r_{12}$

$$
I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\kappa_{12} I_{2}^{(d)}\left(r_{12}, r_{2} ; r_{2}-r_{12}\right)+\kappa_{21} I_{2}^{(d)}\left(r_{12}, r_{1} ; r_{1}-r_{12}\right)
$$

where

$$
\begin{gathered}
\kappa_{12}=\frac{\partial r_{12}}{\partial m_{1}^{2}}, \quad \kappa_{21}=\frac{\partial r_{12}}{\partial m_{2}^{2}}, \quad r_{i}=m_{i}^{2} \\
(d-1) I_{2}^{(d+2)}\left(r_{12}, r_{j} ; r_{j}-r_{12}\right)=-2 r_{12} I_{2}^{(d)}\left(r_{12}, r_{j} ; r_{j}-r_{12}\right)-I_{1}^{(d)}\left(r_{j}\right) \\
I_{2}^{(d)}\left(r_{12}, r_{j} ; r_{j}-r_{12}\right)=\frac{-\pi^{\frac{3}{2}} r_{12}^{2}-2}{2 \sin \frac{\pi d}{2} \Gamma\left(\frac{d-1}{2}\right)} \sqrt{\frac{r_{12}}{r_{12}-r_{j}}}+\frac{\pi}{2 r_{12}} \frac{r_{j}^{\frac{d}{2}-1}}{\sin \frac{\pi d}{2} \Gamma\left(\frac{d}{2}\right)}{ }_{2} F_{1}\left[1, \frac{d-1}{\frac{d}{2} ;} \frac{r_{j}}{r_{12}}\right]
\end{gathered}
$$

Case 3. Combination of two equations

We take $m_{0}^{2}=m_{2}^{2}$

$$
I_{2}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\frac{m_{1}^{2}-m_{2}^{2}}{s_{12}} I_{2}^{(d)}\left(m_{1}^{2}, m_{2}^{2} ; \frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{s_{12}}\right)+\frac{s_{12}-m_{1}^{2}+m_{2}^{2}}{s_{12}} I_{2}^{(d)}\left(m_{2}^{2}, m_{2}^{2} ; \frac{\left(s_{12}-m_{1}^{2}+m_{2}^{2}\right)^{2}}{s_{12}}\right)
$$

invariant under interchange $m_{1}^{2} \longleftrightarrow m_{2}^{2}$
$I_{2}\left(m_{1}^{2}, m_{2}^{2} ; s_{12}\right)=\frac{s_{12}+m_{1}^{2}-m_{2}^{2}}{2 s_{12}} I_{2}^{(d)}\left(m_{1}^{2}, m_{1}^{2} ; \frac{\left(s_{12}+m_{1}^{2}-m_{2}^{2}\right)^{2}}{s_{12}}\right)$

$$
+\frac{s_{12}-m_{1}^{2}+m_{2}^{2}}{2 s_{12}} I_{2}^{(d)}\left(m_{2}^{2}, m_{2}^{2} ; \frac{\left(s_{12}-m_{1}^{2}+m_{2}^{2}\right)^{2}}{s_{12}}\right)
$$

$$
I_{2}^{(d)}\left(m^{2}, m^{2} ; p^{2}\right)=m^{d-4} \Gamma\left(2-\frac{d}{2}\right){ }_{2} F_{1}\left[\begin{array}{c}
1,2-\frac{d}{2} ; \frac{p^{2}}{\frac{3}{2} ;} \frac{4 m^{2}}{}
\end{array}\right]
$$

Functional reduction of the 3-point integral

$$
I_{3}^{(d)}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ; s_{23}, s_{13}, s_{12}\right)=\frac{1}{i \pi^{d / 2}} \int \frac{d^{d} k_{1}}{D_{1} D_{2} D_{3}}
$$

Algebraic relation between propagators: $\quad \frac{1}{D_{1} D_{2} D_{3}}=\frac{x_{1}}{D_{0} D_{2} D_{3}}+\frac{x_{2}}{D_{1} D_{0} D_{3}}+\frac{x_{3}}{D_{1} D_{2} D_{0}}$.
Algebraic conditions on parameters : $\left\{\begin{array}{l}p_{0}=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}, \\ x_{1}+x_{2}+x_{3}=1, \\ x_{1} x_{2} s_{12}+x_{1} x_{3} s_{13}+x_{2} x_{3} s_{23}-x_{1} m_{1}^{2}-x_{2} m_{2}^{2}-x_{3} m_{3}^{2}+m_{0}^{2}=0 .\end{array}\right.$
The functional equation depends on two arbitrary parameters

$$
\begin{aligned}
I_{3}^{(d)}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ; s_{23}, s_{13}, s_{12}\right)=x_{1} I_{3}^{(d)}\left(m_{0}^{2}, m_{2}^{2}, m_{3}^{2} ; s_{23}, s_{03}, s_{02}\right) & +x_{2} I_{3}^{(d)}\left(m_{1}^{2}, m_{0}^{2}, m_{3}^{2} ; s_{03}, s_{13}, s_{01}\right) \\
& +x_{3} I_{3}^{(d)}\left(m_{1}^{2}, m_{2}^{2}, m_{0}^{2} ; s_{02}, s_{01}, s_{12}\right)
\end{aligned}
$$

Functional reduction goes in two steps

Step 1

$$
\begin{aligned}
I_{3}\left(m_{1}^{2},\right. & \left.m_{2}^{2}, m_{3}^{2} ; s_{23}, s_{13}, s_{12}\right) \\
& =\kappa_{123} I_{3}\left(r_{123}, r_{2}, r_{3} ; s_{23}, r_{3}-r_{123}, r_{2}-r_{123}\right) \\
& +\kappa_{213} I_{3}\left(r_{123}, r_{1}, r_{3} ; s_{13}, r_{3}-r_{123}, r_{1}-r_{123}\right) \\
& +\kappa_{312} I_{3}(\underbrace{r_{123}, r_{2}, r_{1} ; s_{12}, r_{1}-r_{123}, r_{2}-r_{123}}_{\text {four independent variables }})
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{123}=-\frac{\lambda_{123}}{g_{123}}, \quad r_{i}=m_{i}^{2} \\
& \kappa_{123}=\frac{\partial r_{123}}{\partial m_{1}^{2}}, \quad \kappa_{213}=\frac{\partial r_{123}}{\partial m_{2}^{2}}, \quad \kappa_{312}=\frac{\partial r_{123}}{\partial m_{3}^{2}}
\end{aligned}
$$

Step 2

$$
\begin{aligned}
I_{3}^{(d)}\left(r_{123}, r_{2}, r_{3} ; s_{23}, r_{3}-\right. & \left.r_{123}, r_{2}-r_{123}\right)=\kappa_{23} I_{3}^{(d)}\left(r_{123}, r_{23}, r_{3} ; r_{3}-r_{23}, r_{3}-r_{123}, r_{23}-r_{123}\right) \\
& +\kappa_{32} I_{3}^{(d)}\left(r_{123}, r_{23}, r_{2} ; r_{2}-r_{23}, r_{2}-r_{123}, r_{23}-r_{123}\right) \\
I_{3}^{(d)}\left(m_{1}^{2}, m_{2}^{2}\right. & \left., m_{3}^{2} ; s_{23}, s_{13}, s_{12}\right) \\
& =\kappa_{123} \kappa_{23} I_{3}^{(d)}\left(r_{123}, r_{23}, r_{3} ; r_{3}-r_{23}, r_{3}-r_{123}, r_{23}-r_{123}\right) \\
& +\kappa_{123} \kappa_{32} I_{3}^{(d)}\left(r_{123}, r_{23}, r_{2} ; r_{2}-r_{23}, r_{2}-r_{123}, r_{23}-r_{123}\right) \\
& +\kappa_{213} \kappa_{31} I_{3}^{(d)}\left(r_{123}, r_{13}, r_{1} ; r_{1}-r_{13}, r_{1}-r_{123}, r_{13}-r_{123}\right) \\
& +\kappa_{213} \kappa_{13} I_{3}^{(d)}\left(r_{123}, r_{13}, r_{3} ; r_{3}-r_{13}, r_{3}-r_{123}, r_{13}-r_{123}\right) \\
& +\kappa_{312} \kappa_{12} I_{3}^{(d)}\left(r_{123}, r_{12}, r_{2} ; r_{2}-r_{12}, r_{2}-r_{123}, r_{12}-r_{123}\right) \\
& +\kappa_{312} \kappa_{21} I_{3}^{(d)}\left(r_{123}, r_{12}, r_{1} ; r_{1}-r_{12}, r_{1}-r_{123}, r_{12}-r_{123}\right)
\end{aligned}
$$

Analytic results for integrals depending on the MNV

$$
\begin{aligned}
& (d-2) I_{3}^{(d+2)}\left(r_{123}, r_{23}, r_{3} ; r_{3}-r_{23}, r_{3}-r_{123}, r_{23}-r_{123}\right)= \\
& \quad-2 r_{123} I_{3}^{(d)}\left(r_{123}, r_{23}, r_{3} ; r_{3}-r_{23}, r_{3}-r_{123}, r_{23}-r_{123}\right)-I_{2}^{(d)}\left(r_{23}, r_{3} ; r_{3}-r_{23}\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& I_{3}^{(d)}\left(r_{123}, r_{23}, r_{3} ; r_{3}-r_{23}, r_{3}-r_{123}, r_{23}-r_{123}\right)= \\
& \quad \frac{1}{\sin \frac{\pi d}{2}}\left\{\frac{r_{123}^{\frac{d-6}{2}}}{\Gamma\left(\frac{d-2}{2}\right)} C_{3}(x, y)+\frac{\pi^{\frac{3}{2}} r_{23}^{\frac{d-4}{2}}}{4 r_{123} \Gamma\left(\frac{d-1}{2}\right)} \sqrt{\frac{r_{23}}{r_{23}-r_{3}}}{ }_{2} F_{1}\left[\begin{array}{c}
1, \frac{d-2}{2} ; \frac{r_{23}}{\frac{d-1}{2}} ; \frac{r_{123}}{}
\end{array}\right.\right. \\
& \left.\quad-\frac{\pi r_{3}^{\frac{d-2}{2}}}{4 \Gamma\left(\frac{d}{2}\right)\left(r_{23}-r_{3}\right) r_{123}} \sqrt{1-\frac{r_{3}}{r_{23}}} F_{1}\left(\frac{d-2}{2}, 1, \frac{1}{2}, \frac{d}{2} ; \frac{r_{3}}{r_{123}}, \frac{r_{3}}{r_{23}}\right)\right\}
\end{aligned}
$$

where

$$
C_{3}(x, y)=\frac{\pi x y^{2}}{4\left(x^{2}-y^{2}\right)^{\frac{1}{2}}} \ln \left(\frac{x-\left(x^{2}-y^{2}\right)^{\frac{1}{2}}}{x+\left(x^{2}-y^{2}\right)^{\frac{1}{2}}}\right) \quad x=\sqrt{\frac{r_{123}}{r_{123}-r_{3}}}, \quad y=\sqrt{\frac{r_{123}}{r_{123}-r_{23}}} .
$$

Functional reduction of the 4-point integral

The integral depending on ten variables is rewritten through a combination of integrals depending on four independent variables

$$
\begin{aligned}
& I_{4}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2} ; s_{12}, s_{23}, s_{34}, s_{14}, s_{24}, s_{13}\right) \\
& =\kappa_{1234} \kappa_{234} \kappa_{34} I_{4}^{(d)}\left(r_{1234}, r_{234}, r_{34}, r_{4}\right. \\
& \left.\quad r_{234}-r_{1234}, r_{34}-r_{234}, r_{4}-r_{34}, r_{4}-r_{1234}, r_{4}-r_{234}, r_{34}-r_{1234}\right) \\
& +\kappa_{1234} \kappa_{234} \kappa_{43} I_{4}^{(d)}\left(r_{1234}, r_{234}, r_{34}, r_{3} ;\right. \\
& \left.\quad r_{234}-r_{1234}, r_{34}-r_{234}, r_{3}-r_{34}, r_{3}-r_{1234}, r_{3}-r_{234}, r_{34}-r_{1234}\right) \\
& +\kappa_{1234} \kappa_{324} \kappa_{24} I_{4}^{(d)}\left(r_{1234}, r_{234}, r_{24}, r_{4} ;\right. \\
& \left.\quad r_{234}-r_{1234}, r_{24}-r_{234}, r_{4}-r_{24}, r_{4}-r_{1234}, r_{4}-r_{234}, r_{24}-r_{1234}\right) \\
& +\kappa_{1234} \kappa_{324} \kappa_{42} I_{4}^{(d)}\left(r_{1234}, r_{234}, r_{24}, r_{2} ;\right. \\
& \left.\quad r_{234}-r_{1234}, r_{24}-r_{234}, r_{2}-r_{24}, r_{2}-r_{1234}, r_{2}-r_{234}, r_{24}-r_{1234}\right)+\ldots
\end{aligned}
$$

The full answer is almost 2 pages long

Functional reduction of the 5 and 6-point integrals

The I_{5} integral depending on 15 variables can be represented as a linear combination of 120 integrals, each of which depends on only 5 variables

$$
\begin{array}{r}
I_{5}^{(d)}\left(m_{i}^{2}, m_{j}^{2}, m_{k}^{2}, m_{l}^{2}, m_{r}^{2} ; m_{j}^{2}-m_{i}^{2}, m_{k}^{2}-m_{j}^{2}, m_{l}^{2}-m_{k}^{2}, m_{r}^{2}-m_{l}^{2}, m_{r}^{2}-m_{i}^{2}\right. \\
\left.m_{k}^{2}-m_{i}^{2}, m_{l}^{2}-m_{i}^{2}, m_{l}^{2}-m_{j}^{2}, m_{r}^{2}-m_{j}^{2}, m_{r}^{2}-m_{k}^{2}\right)
\end{array}
$$

where $m_{i}^{2}, m_{j}^{2}, m_{k}^{2}, m_{l}^{2}, m_{r}^{2}$ are ratios of polynomials in masses and kinematic invariants.

The I_{6} integral depending on 21 variables can be represented as a linear combination of 720 integrals, each of which depends on only 6 variables

General algorithm of the functional reduction

Final functional reduction formulae for the integrals $I_{2}^{(d)}, \ldots, I_{6}^{(d)}$ can be obtained by exploiting the following algorithm:

- write down the term

$$
\begin{equation*}
\kappa_{1 \ldots n} \kappa_{2 \ldots n} \ldots \kappa_{n-1 n} \quad I_{n}^{(d)}\left(m_{1}^{2}, m_{2}^{2}, \ldots m_{n}^{2} ; s_{12}, s_{23}, \ldots\right) \tag{10.1}
\end{equation*}
$$

- replace in the integral $s_{i j} \rightarrow m_{j}^{2}-m_{i}^{2} \quad(j>i)$
- replace in the integral $m_{1}^{2} \rightarrow r_{1 \ldots n}, m_{2}^{2} \rightarrow r_{2 \ldots n}, \ldots, m_{n}^{2} \rightarrow r_{n}$
- replace $\kappa_{i j \ldots} \rightarrow \frac{\partial r_{i j \ldots}}{\partial m_{i}^{2}}$
- generate n ! - 1 terms by symmetrizing the term (10.1) with respect to the indices $1,2, \ldots n$ and add all these terms to (10.1).

All steps are very straightforward and easily achieved with a computer program. This algorithm works perfectly for integrals $I_{2}^{(d)}, \ldots, I_{6}^{(d)}$. We verified numerically that it is also valid for integrals $I_{7}^{(d)}, I_{8}^{(d)}$. Notice that the number of terms in the final reduction formula for massless integrals is $n!/ 2$.

Conclusions

- Author provided a systematic approach for reducing a generic n-point one-loop integral with arbitrary masses and kinematic invariants to a linear combination of integrals that depend on n variables.
- The integrals depending on the MNV encountered at the last stage of the reduction were expressed in terms of multiple hypergeometric series depending on $\mathrm{n}-1$ dimensionless variables.
- Analytic results for integrals with the MNV can be derived by solving dimensional recurrence relations.
- Obtained representations of one-loop integrals can be helpful for deriv-
- ing $\varepsilon=(4-\mathrm{d}) / 2$ expansion of these integrals.

Thank you for your attention!

