Polarimetry with π^0 in the SPD

Inclusive π^0 production from pp interactions

Single Spin Asymmetry (SSA): $A_N^{\pi^0} \longrightarrow$ probes the spin structure of the proton.

In the early 70's was believed that SSA (A_N) was nearly vanishing in the framework of pQCD.

In 1991 the E704 experiment, with p^{\uparrow} at higher p_{\uparrow} values, extended the results on large $A_{\rm N}$.

 $A_{\rm N}$ nearly independent of \sqrt{s}

Extraction of A_N

- The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each ϕ bin.
- The invariant mass was fitted with a **polynomial** function for the background and a **normalized Gaussian** distribution representing the signal peak.

Settings

Geometry proposed by Oleg Gravishchuk at the SPD collaboration meeting, 14.12.2022 (*) (ECAL endcaps are located inside of RS)

(*) https://indico.jinr.ru/event/2616/contributions/14882/attachments/11631/19200/SPD_ECAL_12.12.2021_v_1.pdf

$$p + p \rightarrow \pi^0 + X$$

Pythia 8244

 $\sqrt{s} = 27 \; GeV, 10^8 \; \text{events}$ $E_{min}^{\gamma} = 400 \; \text{MeV}$ $0.9 \leq \eta \leq 4.1$ $p_{\mathrm{T}} > 0.5 \; \mathrm{GeV/c}$

Uniform distribution to smear the vertex in $\Delta Z = \pm 30 \ cm$

Gaussian smearing on E_{γ} according to the ECAL Endcap energy resolution: $\approx \frac{5.4\%}{\sqrt{E}}$ Minimum Bias

Invariant mass, right endcap, in $x_{\rm F}$ intervals, $\phi = [0^o - 360^o]$

Invariant mass, right endcap, in p_{T} intervals, $\phi = [0^{o} - 360^{o}]$

Azimuthal cosine modulation of π^0 yields in x_F intervals

Azimuthal cosine modulation of π^0 yields in p_T intervals

$A_{\rm N}$ in $x_{\rm F}$ intervals

Relative error for $A_{\rm N}$

Exp. E704

Pythia (1 hour)

By using the measured $A_{\rm N}$ from the E704 experiment at $\sqrt{s} = 19.4$ GeV, we can estimate the relative error of $\frac{\Delta A_N}{A_N}$ vs. x_F

 ΔA_N

🖌 Pythia

E704

$$\frac{\Delta A_N}{A_N} \sim \frac{\Delta P}{P}$$

 ΔA_N scaled to 1 hour of data-taking (Pythia and SPDRoot)

Relative of $A_{\rm N}$ error estimated for 1 hour

XE	$rac{\Delta A_N}{A_N}$ (%)				
~~F	Pythia (1h)				
0.0 -0.1	8.79				
0.1 -0.2	1.09				
0.2 -0.3	1.75				
0.3 -0.4	0.30				
0.4 -0.5	0.29				
0.5 -0.6	0.20				
0.6 -0.7	0.09				

The determination of the polarization is expected to be precise for $0.5 < x_F < 0.7$.

X_F

0.6

0.1

0.2

0.3

0.4

0.5

 $\frac{\Delta A_N}{A_N} \times 100\%$ 10²

10

10⁻¹

10⁻²

10⁻³

10⁻⁴

Estimated relative error of the polarization

- N [↓] (み)
$+ N^{\downarrow}(\phi)$

$$\frac{\Delta A_N}{A_N} \sim \frac{\Delta P}{P}$$

The error of the beam polarization in the experiment **E704** is estimated in **10%**, as reported in FERMILAB-Pub-91/15-E[E581,E704]

From pure Pythia we might define a beam polarization in SPD endcaps with a precision
$$\Rightarrow \frac{\Delta P}{P} \approx 0.1\%$$

Predicted for 2 minutes from Pythia $\Rightarrow \frac{\Delta P}{P} \approx 0.6\%$

Estimation of π^0 yield in the ECAL endcap

SPD Physics & MC, 23.03.2022

Estimation of π^0 yield in the ECAL endcap

Cross Section

Historical overview

Measurement of $p + p \rightarrow \pi^0 + X$ and $p + \bar{p} \rightarrow \pi^0 + X$

Accelerator	Beam	Experiment	Paper year	√ <u>s</u> [GeV]	p_{T} [GeV/c]	Kinematic region	Observables
(CERN) ISR	p + p	Eggert et al.	1975	23.6 - 62.9	0.5 – 7.6		
		CCRS	1975	23.5 - 62.4	2.5 – 7.5		
		R806	1979	30.6 - 62.4	3 - 10		
		R807	1983	63	4.8 – 11.4		
(CERN) SPS	fixed p	NA24	1987	23.7	1.3 – 6.0		
		WA70	1988	22.9	4.0 - 6.5		
		UA6	1998	24.3	4.1 – 7.7		
(CERN) $Sp\bar{p}S$	$p + \bar{p}$	UA2	1982	540	1.5 – 4.4		
(FNAL) proton synchrotron	p + p $\bar{p} + p$ (fixed)	E268	1976	13.6 – 19.4	1.0 – 5.0		
		E704	1996	19.4	2.5 – 4.1		
(FNAL) Tevatron	fixed p	E706	2003	31.5, 38.7	1 - 10		
RHIC	p + p	PHENIX	2003	200	1 - 14	$ \eta < 0.35$	σ_{incl}
	p + p		2004	200	> 1	$3.4 < \eta < 4.0$	σ_{incl}, A_N
	p + p		2005	200	1 - 5	$ \eta < 0.35$	σ_{incl}, A_N
	p + p		2006	200	1 - 5	$ \eta < 0.35$	A_{LL}
	p + p		2007	200	0.5 - 20	$ \eta < 0.35$	σ_{incl}, A_{LL}
	p + p		2009	200	1 - 12	$ \eta < 0.35$	ΔG from A_{LL}
	p + p		2009	62.4	1 - 4	$ \eta < 0.35$	σ_{incl}, A_{LL}

Historical overview

Measurement of $p + p \rightarrow \pi^0 + X$ and $p + \bar{p} \rightarrow \pi^0 + X$

Accelerator	Beam	Experiment	Paper year	√ <u>s</u> [GeV]	Kinematic region p _T [GeV/c] p _T [GeV/c], x _F , η		Observables
	p + p		2003	200	$1 < p_{\rm T} < 3$ $0.2 < x_{\rm F} < 0.6$	forward	A_N
	p + p		2007	200	$3 < p_{\rm T} < 11, \ p_{\rm T} < 3$	$0.1 < \eta < 0.9$	A_{LL}
	p + p		2008	200	$1.2 < p_{\rm T} < 4,$ $0.3 < x_{\rm F} < 0.6$	$\eta \approx 3.7$	A_N
	p + p		2009	200	$p_{\rm T} > 1, x_{\rm F} > 0.2$	$2.5 < \eta < 4$	A_N
	p + p		2009	200	$1 < p_{\rm T} < 3.5, \ x_{\rm F} > 0.4$	$\eta \approx -4.1$	A_N
	p + p		2009	200	$3.7 < p_{\rm T} < 11$	$0 < \eta < 1$	σ_{incl}, A_{LL}
	p + p		2010	200	$0.35 < p_{\rm T} < 10$	$0 < \eta < 1$	σ_{incl}
	p + p		2014	200	$0.4 < x_{\rm F} < 0.75$	$\eta \approx 3.68$	σ_{incl}, A_N
	p + p		2014	200	$5 < p_{\rm T} < 12$	$0.8 < \eta < 2$	σ_{incl}, A_N
	p + p		2014	500	$2 < p_{\rm T} < 10$	$2.6 < \eta < 4.2$	A_N
	p + p		2016	510	$2 < p_{\rm T} < 10$	$2.6 < \eta < 4$	Δg from A_{LL}
	$p^{\uparrow} + p$ $\rightarrow p \pi^0 X$		2019	200	1 < <i>p</i> _T < 4	$2.65 < \eta < 3.9$	A_N
	1						