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Motivation

The ECAL reconstruction algorithm must:

* be fast enough to be used in the online filter

e separate clusters from no/y to reject background events
* be robust against ECAL miscalibrations

 (ideally) be interpretable

ECAL: ~25k cells - need parallelizable algorithms -
convolutional neural networks (CNN) is a natural choice



Convolutional neural networks
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Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical,

Gradient-based learning applied to document recognition, Y.Lecun et al. Facundo Bre et al.

 “Sliding” window (kernel), here 5x5 pixels; multiple kernels correspond to multiple features
* basic features in the first layers, more complex features in the latter layers

e for regression (continious output)/classification (discrete output), the final layer is flattened
and fed as input to multi-layer perceptron or more complicated networks

e optimizing weights in kernels though training and backpropagation

Understandable how to process one image. But how to select multiple images (clusters) in e.g. ECAL?
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1) Region proposal network: 2) Object detection network:
for each region, predict: proposals = Rol pooling (could be omitted?)

a) rough bounding box (could be omitted) predicts:

b) whether it's an object a) precise bounding box - energy, position
originally, “anchors” of different aspect ratio b) object class = PID
were used, but could be omitted postprocessing: non maximum suppresion

(to remove duplicate objects)

As a first step, try to use only PRN, but with PID and energy/position as outputs



Tests of the reconstruction layers

hit position
welghted average Ilnear

Convolutional layers and region selection replaced by simple search
of local maxima
Network setup:

N curons = [25(input), 50, 30, 10, 3/1(output: x/y/e)]

. Adam, Ir = 0.01, B=(0.9, 0.999), 1400 iterations : : ﬁ :
e« ~17k input 5x5 images, energies: 1,2,3,...,8 GeV, angles: [0,20]° -
e MSELoss for position, modified loss functlon for energy resolution: . -

taking into account energy resolution 4% @ 6%/sqrt(E)

* two options: 3 outputs (x/y/e) or 3 separate networks for x/y/e each bin = 1 cell

Performance compared to weigted average with linear or log.
welght§ (cutoff parameter for log.weighting optimized for each
energy



Performance of reconstruction network
Resolution in X(Y/Z/p) variable in terms of cell size
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Colums:

1) linear weighting

2) log.weighting

3) one network with 3 outputs
4) 3 separate networks



Performance of reconstruction network
Energy resolution

3 outputs in 1 network . 3 separate networks
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Conclusions and outlook

e Script to produce calorimeter array from SPDROOT
output was set up

e Training of a simple network works for photons under
small angles — the procedure works in general

* Next step: try implementing the CNN with common

conv layers and separate layers for PID and position
determination



