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Correlations and bound states  
in nuclear matter 



Outline 
•  Clustering in low-density nuclei and nuclear matter. Nonequilibrium 

and equilibrium, Zubarev approach 
•  Equation of state: quantum statistical approach to nuclear systems   

at finite temperatures and subsaturation densities,                       
bound states, spectral function, quasiparticle concept 

•  Light quasiparticles: self-energy and Pauli blocking, Continuum 
correlations, cluster virial expansion, correlated matter 

•  Dynamical response 
•  Heavy elements, thermodynamic instability, pasta structures 
•  Neutron star crust 
•  HIC: chemical constants, symmetry energy 
•  Transport codes, Mott effect and in-medium cross sections, 

relevance of the equilibrium EoS. Light cluster production at NICA 
 

 



Symmetric nuclear matter: Phase diagram 



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Equilibrium and non-equilibrium 

D.N. Zubarev, V.G. Morozov, and G. Ropke, Statistical Mechanics of Nonequilibrium Processes (1996) 
D.N. Zubarev, V.G. Morozov, I.P. Omelyan, and M.V. Tokarchuk, Theoret. Math. Phys. 96, 997 (1993) 
G. Ropke and H. Schulz, Nucl. Phys. A 477, 472 (1988) 

Statistical operator 

Extended von Neumann equation 



Many-particle theory 



Many-particle theory 



Different approximations 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 



Quasiparticle picture: RMF and DBHF 

C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006)  
But: cluster formation 
Incorrect low-density limit 



Quasiparticle approximation for nuclear matter 

Klaehn et al., PRC 2006 

But: 
cluster  
formation 

Incorrect 
low-density  
limit 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

from S. Typel 



Ideal mixture of reacting nuclides 

mass number A, 
charge ZA, 
energy EA,ν,K, 
ν internal quantum number, 
~K center of mass momentum 

Chemical equilibrium, mass action law, 
Nuclear Statistical Equilibrium (NSE) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

medium effects 

bound state formation 



Effective wave equation  
for the deuteron in matter 
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In-medium two-particle wave equation in mean-field approximation 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of the deuteron binding energy 

G.R., NP A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 
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Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz,Debye) 
 
• Inclusion of excited states and continuum correlations, 
   correct virial expansions 

• Bose-Einstein condensation, phase instabilities 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

Generalized Beth-Uhlenbeck  
formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

medium effects 

bound state formation 

continuum contribution 



Deuteron-like scattering phase shifts 
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Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,
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p (T, µn, µp) =
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bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as
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⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
⇤3

e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
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Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

Generalized Beth-Uhlenbeck  
formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium 
phase space occupation by all bound states 
in-medium correlations,  
quantum condensates 



Cluster virial expansion for nuclear matter 
within a quasiparticle approach 

G.R., N. Bastian, D. Blaschke, T. Klaehn, S. Typel, H. Wolter, NPA 897, 70 (2013) 

Generating functional 

Avoid double counting 

Generalized Beth-Uhlenbeck approach 



Equation of state: chemical potential  

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. 
QS calculation compared with RMF (thin) and NSE (dashed).  
Insert: QS calculation without continuum correlations (thin lines).  
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Symmetric matter: free energy per nucleon 

Dashed lines: no continuum correlations 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 5 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

G. R., PRC 92, 054001 (2015) 



Pauli blocking in symmetric matter 
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Fermi liquid and clustering  
isothermal compressibility  

incompressibility 

thermodynamic potential 



Dynamic structure factor  

wave number dependent density fluctuation   

static structure factor  

baryon density  

incompressibility 



response function χ(q, ω)  

thermodynamic density-density Green function  

fluctuation-dissipation theorem  



Approximations 

Matsubara Green function 

Feynman diagrams 

real time non-equilibrium Green functions  

 



Noninteracting Fermi-gas 

polarization loop 

isothermal compressibility  



Quasiparticle approximation 
Hartree-Fock approximation 



Two-particle correlations 

cluster decomposition of the self-energy  

Beth-Uhlenbeck formel 

cluster propagator 



Cluster decomposition of the 
polarization function 



Heavier clusters? 
In principle, clusters with arbitrary A should be considered. 
 
Clusters with 4 < A <12 :  weakly bound, no significant contributions 
 
Heavy clusters: Thomas-Fermi model,  
 
Region of thermodynamic instability: Pasta structures  



Light Clusters and Pasta Phases in 
Warm and Dense Nuclear Matter  

Sidney S. Avancini et al., arXiv:1704.00054 



Light Clusters and Pasta Phases in 
Warm and Dense Nuclear Matter  

Sidney S. Avancini et al., 
 arXiv:1704.00054 



Light clusters and pasta phases 
in core-collapse supernova matter 

H. Pais, S. Chiacchiera, C. Providencia, PRC 91, 055801 (2015) 

Pressure as function of density, Yp=0.3, T=4 MeV / 8 MeV. 
With and without pasta, including or not clusters. TF - Thomas-Fermi, 
CP – coexisting-phases method, CLD – compressible liquid drop 



Nuclear matter phase diagram 

Core collapse supernovae 

T. Fischer et al., 
 ApJS 194, 39 (2011) 

Thermodynamic 
parameters: 
 
baryon density nB 
 
temperature T 

electron fraction Ye  



Nuclear matter phase diagram 

Exploding 
supernova 

T. Fischer et al., 
arXiv 1307.6190 



Neutron star masses 

inferred mass distributions  
for the different populations of neutron stars.  

F. Ozel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016) 



Neutron star radii 

F. Ozel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016) 



Neutron star radii 

Bogdanov et al., Ap. J. 831, 184 (2016) 

Chandra, 
NICER  
(Neutron-star Interior  
Composition Explorer) 
 
X7, X5 in 47 Tuc 
9.9 – 11.2 km for  
M/M⊙ = 1.5 

mass – radius relation for neutron stars: observation and theories  



Mass – radius relation 

The astrophysically inferred (a) EoS and (b) mass-radius (M-R) relation  
corresponding to the most likely triplets of pressures that agree with all  
of the neutron-star radius and low-energy nucleon–nucleon scattering data  
and allow for an M > 1.97-M⊙ neutron-star mass. 
 The light blue bands show the range of pressures and the M-R relations  
that correspond to the region of the (P1, P2, P3) parameter space  
in which the likelihood is within e−1 of its highest value. Around 1.5 M⊙,  
this inferred EoS predicts radii in the range of 9.9–11.2 km 

F. Ozel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016) 

(b) (a) 



Neutron matter, RMF-DD2 
consistent equations of state: pressure and internal energy density 
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Neutron matter, RMF-DD2 
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Density of neutron star crust 



Heavy clusters  

B. K. Sharma et al., arxiv: 1506.00375  

low density region 
 
nuclei (Fe, Ni) 
 
screening of the 
Coulomb repulsion: 
Debye 
Wigner-Seitz cell 
 
large neutron numbers 
at increasing density 

outer crust 

until neutron drip: 
unbound neutrons 



EOS, outer crust 

B. K. Sharma et al., arxiv: 1506.00375  

low density: 
heavy nuclei 
 
 
pressure 
as function  
of density 

neutron drip: 
nB = 2.62 x 10-4 fm-3 

experiments 



Inner crust: pasta structures 



EoS: inner crust 

B. K. Sharma et al., arxiv: 1506.00375  

formation 
of structures: 
 
(droplet: nuclei) 
rod 
slab 
tube 
bubble 
 
lower energy 



EOS at low densities from HIC 

chemical constants 
Yields of clusters from HIC: p, n, d, t, h, α  

inhomogeneous, 
non-equilibrium 



Symmetry energy 
Heavy-ion collisions, spectra of emitted clusters, 
temperature (3 - 10 MeV), free energy 

S. Kowalski et al., 
PRC 75, 014601  
(2007) 



Symmetry energy: low density limit 
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K. Hagel et al.,  Eur. Phys. J. A (2014) 50: 39 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 



Mott effect, in-medium cross section  

C. Kuhrts, PRC 63,034605 (2001) 



Equilibrium correlations and 
transport codes 

Important: Mott effect 
 
Minor effects:  
in medium cross sections 
 
Missing: inclusion of alphas 
 
Correlated continuum, 
correlated medium 
 
Freeze-out and local   
thermodynamic equilibrium 
 
single-particle quantum kinetic  
equations and correlations 
 
Equilibrium solution? C. Kuhrts, PRC 63,034605 (2001) 



AMD (Akira Ono) 



A cluster in medium & Clusterized 
nuclear matter 

 

from A. Ono 





Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Summary 
•  Quantum statistical approach: light clusters with in-medium 
quasiparticle energies. The Pauli blockiing is strongly depending on 
temperature T. Mott effect: bound states merge with the continuum 
 
•  The influence of continuum correlations (clusters) at increasing 
densities requires detailed investigations. 
-  Continuum correlations contribute to the symmetry energy (density 

dependent virial coefficients). 
-  The blocking of bound states is modified because of correlations in 

the medium (α matter). 
 
•  Dynamical response. Collective excitations, transport phenomena 

•  Relevant for HIC (freeze-out, transport theory) and astrophysics 
(supernova explosions: larger clusters (A>4), pasta structures) 
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Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Pauli blocking, correlated medium 

effective occupation numbers 

In-medium Schroedinger equation 

effective Fermi distribution 

effective temperature 

G. Roepke, PRC 92,054001 (2015) 

blocking by all nucleons 





Vaporized nuclei and nuclear matter  



Neutron drip line 

CERN Courier 

masses (binding energies) of neutron rich nuclei: ISOLDE experiment (CERN)   

experimental masses and mass models are input for the equation of state, 
the composition, and the structure of neutron stars 



Various transport theories  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Boltzmann equation 

•  Relevant observables: single particle distribution function (classical, 
quantal) 

•  collisions 
•  Entropy 
•  Equilibrium solution 
•  Conservation of kinetic energy 
•  Time-dependent Green functions 
•  Spectral function 
•  quasiparticles 

Transport codes, systems in non-equilibrium,  
Mott effect and in-medium cross sections,  
relevance of the equilibrium EoS. 

 



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light clusters and symmetry energy 

         K. Hagel et al.Eur. Phys. J. A (2014) 50: 39 
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α cluster in astrophysics 

Crust of neutron 
stars 

Protons in droplets 
(heavy nuclei) 
 
α-cluster outside, 
at the surface, 
condensate?	


S. Typel, GSI 



Core-collapse supernovae 

Density.  
 
electron fraction, and 
 
temperature profile 
 
of a 15 solar mass supernova 
at 150 ms after core bounce 
as function of the radius. 
 
Influence of cluster formation  
on neutrino emission  
in the cooling region and 
on neutrino absorption 
in the heating region ? 
K.Sumiyoshi et al., 
Astrophys.J. 629, 922 (2005) 



Composition of supernova core 

K.Sumiyoshi, 
G. R., 
PRC 77, 
055804 (2008) 

Mass fraction X  
of light clusters  
for a post-bounce  
supernova core 


