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● Motivation
– Predict the uncertainty of quantum fluctuation using FRG

● Introduction to the FRG method & our model 
– Ansatz Fermi gas model at finite temperature with a Yukawa coupling

– Wetterich equation at finite chemical potential, LPA, T=0,

● Results and comparison of the FRG results to other models
– Microscopic observables: phase structure & EoS at different approximations

– Macroscopic astrophysical compact star observables

● Aim: Comparison in the resolution of the recent measurements  

Outline
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EoS Application in    Constraints by
from exp & theory compact stars astropysical observations

NewCompStar Motivation
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● Observation: Considering a point charge, which polarizes 
the medium seems like point charge with a modified charge. 

● Basic idea: Due to the interaction, the measurable 
(effective) properties differs from the bare quantities. 

● Quantum corrections:

– Heisenberg uncertainty
high-energy reaction for a short time is allowed

– Pair production & annihilation 
bosonic propagator is modified due to the pair production

– Self-interaction
Interaction is a sum of many tiny- and self interaction

Motivation for FRG
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● It is hard to get effective action for an interacting field theory: 
e.g.: EoS for superdense cold matter (T→ 0 and finite μ)

● Taking into account quantum fluctuations using a scale, k

– Classical action, S=Γk→Λ in the UV limit, k → Λ

– Quantum  action,   Γ=Γk→0 in the  IR  limit, k → 0

● FRG Method

– Smooth transition from macroscopic to microscopic

– RG method for QFT

– Non-perturbative description

– Not depends on coupling

– BUT: Technically it is NOT simple

Motivation for FRG

Λ 0
scale, k
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Functional Renormalization Group (FRG)

k=Λ 
Classical action

k=0
Quantum 

fluctuations 
includedIntegration

Wetterich 
equation 

 FRG is a general non-perturbative method to determine the 
effective action of a system. 

 Scale dependent effective action (k scale parameter)
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Functional Renormalization Group (FRG)

Wetterich 
equation 

 FRG is a general non-perturbative method to determine the 
effective action of a system. 

 Scale dependent effective action (k scale parameter)

 Ansatz for the integration,

– not need to be perturbative

– scale-dependent coupling
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Functional Renormalization Group (FRG)

Wetterich 
equation 

 FRG is a general non-perturbative method to determine the 
effective action of a system. 

 Scale dependent effective action (k scale parameter)

 Regulator

– Determines the modes present on scale, k

– Physics is regulator independent
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Ansatz for the effective action: 

Ansatz: Interacting Fermi-gas model

Fermions : m=0,  Yukawa-coupling  generates mass 

Bosons: the  potential contains self interaction terms

We study the scale dependence of the potential only!!
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What does the ansatz exactly mean? 
LPA is based on the assumption that the contribution of these two 

diagrams are close. (momentum dependence of the vertices is suppressed)

This implies the following ansatz for the effective action:

Local Potential Approximation (LPA)

LPA
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Ansatz for the effective action: 

Interacting Fermi-gas at finite temperature

Bosonic part Fermionic part

Wetterich -equation
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Interacting Fermi-gas at zero temperature

We have two equations for the 
two values of the step function 
each valid on different domain

T=0 , µ≠0
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Interacting Fermi-gas at zero temperature

We have two equations for the 
two values of the step function 
each valid on different domain

Fermionic vacuum 
fluctuations and 
thermodynamic 
fluctuations cancel

T=0 , µ≠0
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Integration of the Wetterich-equaiton

1.) Fix the high scale  couplings in the theory 

2.) Integrate the equation 
which is valid outside of the 
fermi surface

3.) Calculate the initial 
conditions for the other 
equation inside the fermi 
surface

4.) Integrate the equation which is valid 
below the Fermi-surface
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BUT…

The boundary 
condition mix 
the k and gφ

To use the orginal method 
we need an initial 
condition which do not 
have this mixing 
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Solution: Need to transform the variables

We can transform the variables 
to make the quarter circle into a 
rectangle.

BUT now we have a well defined 
boundary condition too!
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 Coordinate transformation is required with:
– mapping the Fermi-surface to rectangle
– Keep the symmetries of the diff. eq.
– Circle-rectangle transformation:

 Transformation of the potential:
with boundary condition at the Fermi-surface, V0 

 Transformed Wetterich-eq:

 and the new boundary conditions:

Solution: Circle → Rectangle transformation
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 Solution is expanded in an orthogonal basis to accommodate the strict 
boundary condition in the transformed area

 The square root in the Wetterich-equation is also expanded: 

Where:

We use harmonic base: 

Solution of transformed Wetterich by an orthogonal system 

Expanded square root
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Result: The Effective Potential & Comparison
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Potential in one-loop 
approximation

Higher orders of the Taylor-
expansion for the square 
root converge fast where 
the potential is convex
→ coarse grained action

Solution changes only 
below Fermi-surface, since 
switch to another equation
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Result: The Effective Potential & Comparison
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Potential in one-loop 
approximation

Higher orders of the Taylor-
expansion for the square 
root converge fast where 
the potential is convex
→ coarse grained action

In the  concave part of the 
potential solution is slowly 
converges to a straight 
line, because the free 
energy (effective potential) 
must be convex from 
thermodynamical reasons 
→ Maxwell construction
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Result: Phase structure of interacting Fermi gas model

Scalar self interaction,
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Exact FRG solution counts all 
quantum fluctuations 
1-Loop approximation has only 
tree diagrams  
Mean Filed solution contains 
averaged effect of interactions

In the phase structure, FRG and 
1L are very similar if the LO has 
the strongest contribution.  



G.G. Barnafoldi: CSQCD 2017, Dubna 26

Result: Comparison of MF, 1L, & FRG-based EoS

Mean Filed is the stiffest

1-Loop approximation  

Exact FRG solution softest

Chemical Potential, μ [MeV] 
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Result: Comparison of MF, 1L, & FRG-based EoS

MF is 25% stiffer than the FRG

1L is 10% stiffer than the FRG    

Exact FRG solution softest
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Result: Comparison to other EoS models

Compare FRG to SQM3, GNH3, WFF1
– Overlap with SQM3 at high ε 
– Cutoff, εCut  is also higher
– Approximations differ slightly
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Compare FRG to 1L and MF
– Compressibility:

– Compression modulus

– The difference between the
models is about ~10%

Result: Comparison of compressibility in the models
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Result: Test in a Compact Star

 Compare FRG EoS to SQM3, GNH3 →  TOV result: density function

Compare FRG to 1L and MF
– Soft FRG make biggest star
– High-ε part is similar for all
– Difference: ~5% (.1 M and .5 km) 

FRG to SQM3, GNH3
– FRG: small stars 1.4M  and 8 km
– Other models: larger radii and less 

central density 
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Result: Test in a Compact Star

 Compare FRG EoS to SQM3, GNH3, WFF1 →  TOV result on M(R) diagram 

MeanField calculation
1-Loop Approximation
FRG result
GNH3 Glendening, Astph. J. 293, 470 (1985)
SQM3 Prakash et al, PRD52, 661 (1995)
WFF1 Wiringa et al PRC 38, 1010 (1988)

Compare FRG to 1L and MF
– Soft FRG make biggest star
– High-ε part is similar for all
– Difference: ~5% (.1 M and .5 km) 

FRG to SQM3, GNH3, WFF1
– Small stars 1.4 M  and 8 km
– Overlap with SQM3 at high ε 
– Interaction (ω) will increase
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Result: Test in a Compact Star
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Test: Can we test this by observations? 

 Compare Compactness by FRG, MF, 1L, SQM3, and WFF1 EoS  
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 Compare different  
EoS results on M(R) 
diagram: MF & FRG

 Maximal relative 
differences are also 
plotted 
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The summary of uncertainties 

● The magnitude of the uncertainties of (astro)physical observables

● Microscopical 
observables are 
maximum: 10-25%

● Macroscopical 
astrophysical ones 
are maximum: 5-10%   

● Measurement resolution 
limit is about: 10%

Observable Max theory uncertainty (%)

Potential, U(φ) < 25%    

Phase diagram (g
c
) < 25%    

EoS p(μ),p(ε) < 25%     

Compressibility < 10%     

ε(R) ~   5%    

M(R) diagram
<  10% (M)
<    5% (R)

Compactness
< 10% (M)
<   5% (R)
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● Uncertainties were tested in the FRG-framework

– Effect of the quantum fluctuations in comparison to MF & 1L 

– One-component Fermi gas with a simple Yukawa-like coupling

● Uncertainties were determined in 

– Microscopical level (EoS, phases, compressibility): 10-25%

– Macroscopical astrophysical level (M,R,compactness): 5-10%

● Resolution of observations (based on NICER)

– We are almost there: ~10% uncertainties

To take away...
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● New perspectives on Neutron Star Interiors

– Date: 9-13 October, 2017

– ECT*, Trento, Italy

– Web: http://www.ectstar.eu/node/2230

● 17th Zimányi Winter School 2017

– Date: 4-8  December 2017

– Wigner Research Centre for Physics & THOR 

Budapest, Hungary

– Web: http://zimanyischool.kfki.hu/17/

Some related events
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● FRG method were used to obtain the effective potential for

– One-component Fermi gas with a simple Yukawa-like coupling

– Concave part of the potential converges slowly to a line → Maxwell construction 

– Convex part of the potential → Coarse Grained action

– Chiral phase transition is reproduced →  Order depends on the applied approximation

● EoS can be compared to other ones, close to the SQM3 (Prakash, 1995)

– Softness depends on the approximation (FRG → 1L → MF)

– MF differs 25%, 1L differs 10% from the exact FRG solution, slight evolution at high ε  

– Simple model → Relative small compact stars M< 1.4 M, and R< 8 km

– Size (both mass and radius) sensitive to quantum fluctuations (5% effect)

● Based on FRG method, now we can have a technique to make:

– An effective model for the hardly accessible part of the phase diagram (T=0, finite μ, high ρ) 

Summary

http://www.ectstar.eu/node/2230
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Advertisement:

● THOR EU COST Action CA15213
● Theory of Hot Matter and Relativistic Heavy Ion 

Collisions
http://thor-cost.eu

● NewCompStar EU COST Action MP1304 
● Theory of Compact Stars (ending 2017)

http://compstar.uni-frankfurt.de

● PHAROS EU COST Action CA16214
● The multi-messenger physics and astrophysics of 

neutron stars
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Result: Comparison to other EoS models

 Compare FRG EoS to SQM3, GNH3, WFF1 

http://thor-cost.eu/
http://compstar.uni-frankfurt.de/
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