1/22

#### **QCD EoS in hadron-quark continuity**

#### Toru Kojo (CCNU)



- TK, P.D. Powell, Y. Song, G. Baym
  - 1412.1108 [hep-ph], PRD91, 045043 (2015)
- TK, 1508.1108 [hep-ph], review in EPJA
- K. Fukushima & TK, 1509.1108, APJ817(2016)2
- TK, 1610.05486 [hep-ph], PLB769 (2017) 14
- Baym-Hatsuda-TK-Powell-Song-Takatsuka, (review) 1707.04966 [astro-ph]
- H.Zhang-D.Hou-TK-B.Qin, 1709.05654 [hep-th]

 Baym-Hatsuda-TK-Powell-Song-Takatsuka: a review, 1707.04966 [astro-ph]













## **Questions to be addressed**

1, Do we need 1<sup>st</sup> order P.T. to define quark matter?

2, The nature of gluons in quark matter?

3, The role of pairing effects on EoS?





## 1, NS and nuclear constraints

## 2, 3-window modeling, quark EoS

## 3, Summary & outlook



**M-R** relation & EoS



## **M-R** relation & EoS



## **M-R** relation & EoS



## Causality constraint on 2n<sub>0</sub>-5n<sub>0</sub> region





## Causality constraint on 2n<sub>0</sub>-5n<sub>0</sub> region

6/22



For softer - stiffer EoS  $\implies$  less freedom for  $2n_0$ -  $5n_0$  region

### Soft-Stiff v.s. Stiff-Stiff EoS

[more systematic analyses -> Han-Alford-Prakash 13]





**Soft-Stiff** v.s. **Stiff-Stiff** EoS

[more systematic analyses -> Han-Alford-Prakash 13]





**Soft-Stiff** v.s. **Stiff-Stiff** EoS

[more systematic analyses -> Han-Alford-Prakash 13]





• nuclear EoS at  $(1.5-2) n_0$  (beyond ChEFT)

• strength of 1<sup>st</sup> P.T. (weaker for smaller

#### 8/22

### Small R<sub>1.4</sub> & soft EoS @ 1-2 n<sub>0</sub>?

#### • Thermal X-rays analyses for NS radii :

- Suleimanov et al (2011) : > 13.9 km
- •Ozel & Freire (2015):  $10.6 \pm 0.6$  km •Steiner et al (2015):  $12.0 \pm 1.0$  km
- •Guillot et al. (2011) :  $9.1^{+1.3}_{-1.5}$  km •Steiner et al. (2015) : 12.0 ± 1.0

systematic uncertainties : distance to NS, atmosphere of NS, uniform T distributions,...



#### 8/22

### Small R<sub>1.4</sub> & soft EoS @ 1-2 n<sub>0</sub>?

#### • Thermal X-rays analyses for NS radii :

•Suleimanov et al (2011) : > 13.9 km •Guillot et al. (2011) : 9.1<sup>+1.3</sup><sub>-1.5</sub> km

•Ozel & Freire (2015):  $10.6 \pm 0.6$  km •Steiner et al (2015):

- $12.0 \pm 1.0$  km

systematic uncertainties : distance to NS, atmosphere of NS, uniform T distributions,...





### Small R<sub>1.4</sub> & soft EoS @ 1-2 n<sub>0</sub>?

#### • Thermal X-rays analyses for NS radii :

- Suleimanov et al (2011) : > 13.9 km
   Oral & Engine (2015) = 10.0 chose
- •Guillot et al. (2011) : 9.1<sup>+1.3</sup><sub>-1.5</sub> km
- •Ozel & Freire (2015): 10.6 ± 0.6 km •Steiner et al (2015): 12.0 ± 1.0 km

8/22

systematic uncertainties : distance to NS, atmosphere of NS, uniform T distributions,...



### Small R<sub>1.4</sub> & soft EoS @ 1-2 n<sub>0</sub>?

• Thermal X-rays analyses for NS radii :

•Suleimanov et al (2011) : > 13.9 km •Guillot et al. (2011) : 9.1<sup>+1.3</sup><sub>-1.5</sub> km

•Ozel & Freire (2015):  $10.6 \pm 0.6$  km •Steiner et al (2015):  $12.0 \pm 1.0$  km

8/22

#### **Recent trends**: $R < \sim 13$ km, soft EoS @ 1-2n<sub>o</sub>

(although each of them is not free from systematic uncertainties)

Based on this, below we try to construct soft-stiff EoS

[No strong 1<sup>st</sup> order P.T; either crossover or weak 1<sup>st</sup> order]





## 1, NS and nuclear constraints

## 2, 3-window modeling, quark EoS

## 3, Summary & outlook



#### 3-window modeling (Masuda-Hatsuda-Takatsuka 12) few meson many-meson exchange Baryons overlap exchange (mobility --cf: Karsch-Satz '80) Quark Fermi sea structural change of hadrons nucleons only p<sub>F</sub> ~ 400 MeV (pQCD) ( 3-body ) n<sub>B</sub> ~ 100n<sub>o</sub> **5**n<sub>0</sub> ~ 2'n

#### 3-window modeling (Masuda-Hatsuda-Takatsuka 12) few meson many-meson exchange Baryons overlap exchange (mobility --cf: Karsch-Satz '80) Quark Fermi sea nucleons only structural change of hadrons p<sub>F</sub> ~ 400 MeV (pQCD) ( 3-body ) n<sub>R</sub> **Quark models Interpolated EoS APR 5**n<sub>0</sub> ~ 100n<sub>o</sub> ~ 2'n

11/22 3-window modeling : P vs  $\mu$ Quark **Extrapolated pressure Matter NOT trustable** (3-flavor) 5n<sub>0</sub> n<sub>B</sub>  $n_{\rm B} = 2n_{\rm O}$ **APR**  $M_N/3$ 

11/22 3-window modeling :  $\mathbf{P}$  vs  $\boldsymbol{\mu}$ Quark **Extrapolated pressure Matter NOT trustable** (3-flavor) 5**n**<sub>0</sub> n<sub>B</sub>  $n_{\rm B} = 2n_0$ Interpolated  ${\cal P}(\mu)=\sum^N b_m\mu^m$ **APR** m=0 $M_N/3$ Matching : up to  $2^{nd}$  order of derivatives at  $n_B = 2n_0$ Ŋŋ

### 12/22 **3-flavor** quark MF model : template **Effective Hamiltonian** (inspired by hadron & nuclear physics): $\mathcal{H}_{\text{eff}} \sim \bar{\psi} \left| -\mathrm{i}\vec{\alpha} \cdot \vec{\partial} + m \right| \psi + \mathcal{H}_{\text{NJL}}^{4\text{Fermi+KMT}}$ → change in *Dirac sea*, beyond *no-sea approximation* + $\mathcal{H}_{conf}^{3q \to B}$ will be *ignored* at $n_B > 5n_0$ mag. part + $\mathcal{H}_{OGE}$ - $H_{A,A'=2,5,7} \left( \bar{\psi} i \gamma_5 \lambda_A \tau_{A'} \psi_c \right)^2$ (cf: N- $\Delta$ splitting)

+  $g_V (\bar{\psi} \gamma_0 \psi)^2$  ~  $\omega$ -exchange (repulsive) + constraints ( charge neutrality, β- equilibrium, color-neutrality)

+  $\mathcal{H}_{nucl}$ 

**Goal:** NS constraints  $\rightarrow (G_s, H, g_V)_{@5-10n^{\circ}}$ 

#### 13/22

### minimal





#### 13/22

### minimal





#### *minimal* + *vector int*.





#### *minimal* + *vector int*.





#### *minimal* + *vector int*.





#### + color magnetic interaction

(in *MF*, effects appear as diquark condensate)





### + color magnetic interaction

(in *MF*, effects appear as diquark condensate)



 $\rightarrow$  overall shift of P( $\mu$ ) toward lower  $\mu$ 



#### + APR constraint at low density

(mimic confining effects)





#### + APR constraint at low density

(mimic confining effects)



### M-R curves



## **Gluons** behind models

#### Statement :

To  $n_B \sim 5 - 10 n_{0,j}$  gluons should be as non-perturbative as in the vacuum

#### If NOT

- NJL parameters (at  $n_B \sim 5n_0$ ) : (G<sub>s</sub>, G<sub>v</sub>, H) << G<sub>s</sub><sup>vac</sup>
- The (gluonic) bag constant of O(<sup>1</sup>/<sub>QCD</sub><sup>4</sup>) must be included
- Too much strange quarks;  $m_s \sim 100 \text{ MeV}$

#### $\rightarrow$ Troubles with the 2M<sub>sun</sub> constraint











### **Crossover : aauae dvnamics**



## Speed of sound



### **Summary**

• Small NS radii &  $M_{max} \sim 2M_{sun}$  & causality

→ crossover or weak 1<sup>st</sup> order P.T. for hadron-quark transition

- Systematic uncertainties in radii estimates, but in near-future NICER and aLIGO will estimate R to 5-10% accuracy.
- Quark models inside hadrons may be extrapolated to 5-10n<sub>0</sub>.
   intermediate-short range correlations (chiral & color-magnetic int.)
- Crossover in hot QCD and dense QCD are likely different:

hot QCD: smooth,but rapid change from HRG to QGP picturedense QCD: smooth,strongly int. hadrons ~ strongly int. quarks

"quark-hadron duality" or "quarkyonic" (quark matter with non-pert. gluons)/





NICER, aLIGO, VIRGO,...

• How large is NS radius?

## How stiff EoS looks like in $P(\mu)$ curves



## *How stiff EoS looks like in P(μ) curves*



## *How stiff EoS looks like in P(μ) curves*



**Example of stiffening 1** 



**Example of stiffening 2** 



## "Pairing" can stiffen EoS



 $\rightarrow$  Softening at low n<sub>B</sub> & stiffening at high n<sub>B</sub>



#### 4/34

## Theoretical guides at N<sub>c</sub>=3

• 3-loop *pQCD* at large  $\mu_q$ 

[ Freedman-McLerran 78; Baluni 78 Kurkela-Romatschke-Vuorinen 09, ... ]

• large  $\alpha_s$  corrections at  $\mu_q < 1$  GeV

 $\rightarrow$  soft gluons important at n<sub>B</sub> < 100 n<sub>0</sub>



- Nuclear calculations (ChEFT+many-body) at small  $\mu_q$ 
  - reliable at n<sub>B</sub> ~ n<sub>0</sub>
     [Akmal et al. (APR) 98; Gandolfi et al. 12, ...]

• convergence problems :  $< V_{2-body} > \sim < V_{3-body} > \sim ...$ 

At n<sub>B</sub> > 2n<sub>0</sub> - hyperon softening, unless introducing ad hoc repulsion

• changes in hadron w.f. & Dirac sea negligible?

### Nuclear EoS : convergence ?

#### Many-body interaction (APR-A18+UIX case)

|                               | 2 –body int.                   |                            | <mark>3</mark> –body int.        |                             | <mark>4</mark> –body int. |
|-------------------------------|--------------------------------|----------------------------|----------------------------------|-----------------------------|---------------------------|
| n <sub>B</sub>                | $\langle v_{ij}^{\pi} \rangle$ | $\langle v_{ij}^R \rangle$ | $\langle V_{ijk}^{2\pi} \rangle$ | $\langle V^R_{ijk} \rangle$ | (our guess)               |
| n <sub>o</sub>                | -4.1                           | -29.9                      | 1.2                              | 4.5                         | small                     |
| 2 n <sub>0</sub>              | -25.1                          | -36.4                      | -17.4                            | 30.6                        | marginal                  |
| <mark>3</mark> n <sub>0</sub> | - 35.7                         | -44.7                      | - 34.1                           | 78.0                        | large                     |
| <b>4</b> n <sub>0</sub>       | - 52.2                         | -41.1                      | - 76.9                           | 160.3                       |                           |
|                               | grow rapidly !!                |                            |                                  |                             |                           |
|                               |                                |                            |                                  |                             |                           |

$$< V_{N-body} > \sim c_N (n_B/n_0)^N$$

#### 19/22 Near future NS radius measurements

• NICER (2017~) :

timing analyses of hot spots

 $R \& M/R \rightarrow 5-10 \%$  accuracy



#### • aLIGO (2015~) : GWs from NS-NS mergers



tidal deformation of stars  $R \& M/R \rightarrow 5-10 \%$  accuracy

#### 14/22 GW from NS-NS mergers (0.1-10 (?) events / year)



## Hyper massive NS (HMNS)



 $\rightarrow$  stars of 2-3M<sub>sun</sub> can survive for ~10ms

#### Which density region is hot?



### **Hot EoS for post mergers**

Almost all GR simulations use hot nuclear EoS

[Shen-EoS (Shen et al.), SLy EoS (Lattimer-Swetsy), ...]

- Hot quark matter EoS (for n<sub>B</sub> > 5n<sub>0</sub>)
  - *Normal* quark matter

•

- *pQCD EoS* (gapless quarks & gapped gluons) [Kurkela-Vuorinen '16]
- **3-window EoS** (gapless quarks) [Masuda-Hatsuda-Takatsuka '15]

gapless quarks  $\rightarrow \Delta P(T) \sim p_F^2 T^2 (>> T^4)$ 

*This work*  $\rightarrow$  *Gapped* quark matter, *Color-Flavor-Locked* (CFL)

For 
$$T < \Delta$$
;  $\Delta P(T) \sim T^4 + ...$ 

neutrinos, photons, NG modes

#### 17/22 **NG mode contributions** (CFL color-super phase)

[Son-Stephanov 2000, Bedaque-Schafer 2002, ...]

#### setup consistent with T=0 NS descriptions

- explicit sym. breaking, mass & U<sub>A</sub>(1)
- neutrality conditions
- coexistence of chiral and diquark condensates
- keep "pa", "pp", "aa" contributions to be consistent with gap eq.



most NG modes > 50 MeV; light K; more massive at stronger coupling

### **Thermodynamics** (beyond low T regime)



NG bosons (bound states) pre-formed pairs (p-a, p-p, a-a pairs) decaying pairs (continuum) k very important to keep (see below)

#### The phase shift rep. of thermodynamic-potential :

[Beth-Uhlenbeck1939, Dashen-Ma-Bernstein 1969]

$$\Omega_X(T,\mu) = \int \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \left[ \omega + T \ln\left(1 - \mathrm{e}^{-\frac{\omega-\mu_X}{T}}\right) + T \ln\left(1 - \mathrm{e}^{-\frac{\omega+\mu_X}{T}}\right) \right] \frac{\partial \delta_X(\omega,\vec{q})}{\partial \omega}$$

$$\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\delta(\omega,\vec{q})}$$

full/free Green's function phase shift

## Constraint: Levinson's theorem $\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\delta(\omega,\vec{q})}$

19/22

Meaning: Total num. of states does not change by interactions

$$0 = \int_{0}^{\infty} dE \operatorname{Tr} \left[ \operatorname{Im} \mathcal{G} - \operatorname{Im} \mathcal{G}_{0} \right]$$
  
= 
$$\int_{0}^{\infty} dE \partial_{E} \operatorname{Tr} \left[ \operatorname{Im} \ln \mathcal{G}^{-1} / \mathcal{G}_{0}^{-1} \right]$$
  
= 
$$-\operatorname{Tr} \left[ \delta(\infty) - \delta(0) \right]$$
  
invariant  
$$\pi \cdot \left[ \int_{bound threshold for decay}^{bound threshold threshold for decay} \right]$$

#### **Phase shifts & Levinson's theorem**

20/22

$$\Omega_{X}(T,\mu) = \int \frac{\mathrm{d}\vec{q}}{(2\pi)^{3}} \int \frac{\mathrm{d}\omega}{2\pi} \left[ \omega + T \ln\left(1 - \mathrm{e}^{-\frac{\omega-\mu_{X}}{T}}\right) + T \ln\left(1 - \mathrm{e}^{-\frac{\omega+\mu_{X}}{T}}\right) \right] \left( \frac{\partial \delta_{X}(\omega,\vec{q})}{\partial \omega} \right)$$

$$\pi \int_{\substack{\text{Levinson's theorem theore$$

#### Pressure from low E and high E cancel one another; taming a meson (diquark) gas at high T

### Phase shift $\delta(k_0, k) : e.g. \pi$ -channel

21/22

particle-hole, particle-antiparticle



particle-particle, hole-hole



## Discussion : Bag constant ?

23/25

 $P_{NJL} @ 5 n_0 \rightarrow only 200 - 400 \text{ MeV fm}^{-3}$ 



Together with  $G_V \sim H \sim G_s^{vac}$ , we claim :

Gluons should remain non-perturbative to  $n_B \sim 5-10 n_0$ 

## **Discussion : Bag constant ?**

**Def:** 
$$\mathcal{B} \equiv \epsilon_{pert}^{vac} - \epsilon_{full}^{vac} \sim \Lambda_{\rm QCD}^4 > 0$$

Energy gain by non-pert. effects ;

e.g.) ChSB in Dirac sea, gluon condensation, ...

 $\begin{array}{ll} \textit{If } \mu \textit{ is large enough :} & (\text{ softening }) \\ \hline \\ \text{-Loss of non-pert. effects} \rightarrow & \left\{ \begin{array}{c} \epsilon_{\text{matter}} \rightarrow & \epsilon_{\text{matter}} + \mathcal{B} \\ P_{\text{matter}} \rightarrow & P_{\text{matter}} - \mathcal{B} \end{array} \right. \end{array}$ 

NJL takes into account the vac. contributions only partially;

it *misses* contributions from *gluonic* one,  $B_q$ 

# 23/25 **Discussion 3: Hyperon problems ?**

How did we avoid hyperon softening ?

• 
$$\mu_B^{th}$$
 for strangeness :   
 $\mu_B \sim 3M_s \sim 1.5 \text{ GeV}$  (quark picture)  
 $\mu_B \sim \mu_A, \mu_{\Sigma} \sim 1.1-1.2 \text{ GeV}$  (hadron picture)  
(uds, uus,...)

• A quark w.f. for a baryon (e.g. Isgur-Kahl)



# 24/25 **Discussion 3: Hyperon problems ?**

• Quark descriptions of hadronic matter :



How to put hyperons ??

- $M_{\Lambda,\Sigma}$  at *low P* is *rejected* by quark Pauli blocking on (u,d)
- $M_{\Lambda,\Sigma}$  at high P avoid the blocking, but is energetic

[Note: this argument becomes *more powerful* at *higher n<sub>B</sub>*]

## Several branches

#### Confined, but chiral symmetric matter (many papers ...)

• have been challenged by many model calculations [Glozman et al. 2007, ....]

\_\_\_\_\_

(chiral sym. broken only locally)

- Confined, *inhomogeneous* chiral SSB (still ongoing ...)
  - Skyrme crystals, ...
  - Chiral density wave (1-D periodic structure) [Carignano-Nickel-Bubbala]
  - Quarkyonic Chiral Spirals
     [TK-Hidaka-Fukushima
     -McLerran-Pisarski-Tsvelik 09-11]
     Interweaving Chiral Spirals
     [TK-Hidaka-Fukushima
     -McLerran-Pisarski-Tsvelik 09-11]

#### Reinterpretation of Hadron-Quark Continuity

- Original proposal : Schafer-Wilczek
- CSC in quarkyonic matter & NS context
   [Fukushima-TK '15]

## **GW159014 : the discovery of GWs**



#### **Frequency spectrum**

13/34

GR simulations, Hotokezaka et al. 2016



