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Boltzmann-Gibbs (BG) theory is not universal because it only 
applies to systems in states of  thermodynamic equilibrium. 

Many anomalous natural, and social systems exist for which 
BG statistical concepts appear to be inapplicable 

Some of  them can be handled using the techniques of  Statistical 
Mechanics by introducing a more general entropy called the Tsallis 
(aka non extensive) entropy. 
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Non additive entropy: 𝑆"(A + B) = 𝑆"(A)+𝑆"(B)+(1-q) 𝑆"(A)𝑆"(B)

• Non extensive when there is no/local correlation 
among the elements. 

• Can be extensive when there exists (non-local) 
correlation for a special value of  𝑞 ≠ 1
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• Can be extensive when there is no/local correlation 
among the elements. 

• Can be non extensive when there exists (non-local) 
correlation

Additive entropy:	𝑆-.(A + B) = 𝑆/0 (A)+𝑆/0 (B). 

And the 𝑞 → 1	 Boltzmann − Gibbs 		Limit

4



So, the more appropriate term would be ‘Tsallis non additive’ 
entropy in stead of  ‘Tsallis non extensive entropy’.

Extremization of  the Tsallis non additive entropy gives rise 
to the q-exponential probability distribution which is a 
generalization of  the Boltzmann-Gibbs exponential 
distribution.
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𝑓 = 1 + 𝛽 𝑞 − 1 (E−μ) A/("CA)

And we can derive the corresponding Tsallis q-thermodynamics 
using the following form of  the Tsallis distribution function:

6

For systems with spatio-temporal fluctuation in temperature:

𝑞 − 1 =
𝛽/0

D − 𝛽/0 D

𝛽/0 D ; 								𝛽 = 𝛽/0

C. Tsallis, J. Stat. Phys 52, 479(1988)

G. Wilk and Z. Włodarczyk, Phys. Rev. Lett. 84, 2770(2000)

When temperature fluctuation dies down     f → fBoltzmann



7

Thermodynamically consistent: J. Cleymans & D. Worku, J. Phys. G 39, 025006(2012)
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Abstract. We expand the Tsallis distribution in a Taylor series of powers of (q − 1), where q is the Tsallis
parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse
momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. Af-
ter checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the
presence of collective flow up to the first order of (q−1). The formulae are compared with the experimental
data.

1 Introduction

It is now a standard practice to use the Tsallis distri-
bution [1] for describing the transverse momentum dis-
tributions at high energies. This has been pioneered by
the PHENIX and STAR Collaborations [2–4] at the Rela-
tivistic Heavy Ion Collider (RHIC) at BNL and by the AL-
ICE, ATLAS and CMS Collaborations [5–10] at the Large
Hadron Collider (LHC) at CERN. The Tsallis distribu-
tion is successful in explaining the experimental transverse
momentum distribution, longitudinal momentum fraction
distribution as well as rapidity distribution of hadrons off
the e+e− as well as p-p collisions [11–17]. The form of the
Tsallis distribution used in this paper has been described
in detail previously [18–21] and has the advantage of being
thermodynamically consistent. There is clear evidence for
a mild energy dependence of the parameters q and T [20].
Also, initially there were indications that the values ob-
tained for the parameters q and T were consistent with
each other for different particle species [17,19]. Different
conclusions have been reached in the literature [22–25],
albeit using slightly different formalisms and approaches,
and a more detailed analysis is still outstanding to prove
this beyond doubt.

2 Review of the main ingredients of the
model

For completeness we recall here the main ingredients.

a e-mail: Raghunath.Sahoo@cern.ch (corresponding author)

The relevant thermodynamic quantities can be written
as integrals over the following distribution function:

f =

[

1 + (q − 1)
E − µ

T

]

−
1

q−1

. (1)

It can be shown [19] that the entropy, S, particle number,
N , energy density, ϵ, and the pressure, P , are given by

S = −gV

∫

d3p

(2π)3
[fq lnq f − f ] , (2)

N = gV

∫

d3p

(2π)3
fq, (3)

ϵ = g

∫

d3p

(2π)3
E fq, (4)

P = g

∫

d3p

(2π)3
p2

3E
fq, (5)

where V is the volume and g is the degeneracy factor.
The function appearing in eq. (2) is often referred to

as q-logarithm and is defined by

lnq(x) ≡
x1−q − 1

1 − q
.

The first and second laws of thermodynamics lead to
the following two differential relations:

dϵ = T ds + µdn, (6)

dP = sdT + ndµ, (7)

where, s = S/V and n = N/V are the entropy and particle
number densities, respectively.
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It is seen that if we use fq in stead of f to define the
thermodynamic variables, the above equations satisfy the
thermodynamic consistency conditions which require that
the following relations to be satisfied:

T =
∂ϵ

∂s

∣

∣

∣

∣

n

, (8)

µ =
∂ϵ

∂n

∣

∣

∣

∣

s

, (9)

n =
∂P

∂µ

∣

∣

∣

∣

T

, (10)

s =
∂P

∂T

∣

∣

∣

∣

µ

. (11)

Equation (8), in particular, shows that the variable T
appearing in eq. (1) can indeed be identified as a ther-
modynamic temperature and is more than just another
parameter. It is straightforward to show that these rela-
tions are indeed satisfied [19].

Based on the above expressions the particle distribu-
tion can be rewritten, using variables appropriate for high-
energy physics as [18]

dN

dpT dy
=

gV

(2π)2
pT mT cosh y

(

1 + (q − 1)
mT cosh y − µ

T

)

−
q

q−1

. (12)

It can be shown that at central rapidity, y = 0, one can
obtain the transverse momentum distribution in terms of
the central rapidity density, dN/dy|y=0, as the volume de-
pendence can be replaced by a dependence on dN/dy|y=0

using

dN

dy

∣

∣

∣

∣

y=0

=
gV

(2π)2

[

1 + (q − 1)
m − µ

T

]

−
1

q−1

T 3

(2q − 3)(q − 2)
[

2 − (q − 2)

(

m − µ

T

)2

+ 2
m − µ

T

−2
µ

T
(2q − 3)

(

1 +
m − µ

T

)

+
µ2

T 2
(2q − 3)(q − 2)

]

. (13)

This leads to the following expression and generalizes
the expression given in [26] to non-zero values of the chem-
ical potential µ (see appendix A for an outline of the

derivation of eqs. (13) and (14)):

dN

dpT dy

∣

∣

∣

∣

y=0

=
pT mT

T

dN

dy

∣

∣

∣

∣

y=0

[

1 + (q − 1)
mT − µ

T

]

−
q

q−1

×
(2 − q)δ

(2 − q)d2 + 2dT + 2T 2 + 2µδ(T + d) + µ2δ(2 − q)

×
[

1 + (q − 1)
d

T

]
1

q−1

, (14)

where the abbreviations d ≡ m − µ and δ ≡ 3 − 2q have
been used.

In all fits to transverse momentum spectra, the pa-
rameter q turns out to be very close to 1 [20,21]. In fact,
the value of the non-extensive parameter q for high-energy
collisions is found to be 1 ≤ q ≤ 1.2 [11,27]. In the limit
where q is exactly 1, eq. (12) reduces to the standard ex-
ponential function appearing in the Boltzmann distribu-
tion. It is therefore useful to expand the above expressions
in a Taylor series in (q − 1) and see how the deviations
from a Boltzmann distribution develop. Such an expansion
has been considered previously in [28,29]. The present pa-
per develops a more systematic analysis than the previous
ones and considers a slightly different form of the Tsallis
distribution, having an extra power of q, because it is con-
sistent with basic thermodynamic relations.

The aim of this paper is to develop a Taylor expansion
of eq. (12) in (q − 1) based on the fact that (q − 1) ≪ 1
(see for example [30]). The conditions of validity of such
an expansion for pure Tsallis distribution (eq. (1)) is |1−
q|E/T < 1. Apart from this, up to first order in (q −
1) an additional condition |1 − q|(E/T )2 < 2 must be
satisfied [28]. The condition of validity for expansion up
to order (q − 1)2 term will be |1 − q|2(E/T )3 < 3. The
expansion to higher orders has also been considered in [31]
in the framework of an analysis of quasi-additivity for the
Tsallis entropy for different subsystems.

The Taylor expansion is useful as a mathematical tool
because it breaks the Tsallis distribution in a series of
(q − 1) containing powers of energy E. Now, the advan-
tage we get is, it will be easier to consistently include the
effect of flow on the Tsallis distribution just by making a
substitution E → pµuµ, for a collective four-velocity uµ of
particles with representative four-momentum pµ [32,33].

There have been earlier attempts to include the effect
of collectivity in the dynamics of the particles following
the Tsallis distribution in the form of Tsallis-Blast Wave
(TBW) formalism [22], or in refs. [32,34]. In all cases, an
ansatz of fluid four-velocity is taken and energy is replaced
by the scalar product pµuµ. The inclusion of flow inside
non-extensive statistics reduces the value of q [35] since
some degree of non-extensivity is shared by the dynam-
ics. Also, whenever we have an inhomogeneous thermody-
namic system, with regions having different temperatures
and exchanging heat with the bigger system, we can de-
fine an effective temperature Teff which is affected by en-
ergy transfer only when q ̸= 1 [36–38]. The variation of
effective temperature with q is seen in [39]. Another im-
portant observed phenomenon like mT scaling is affected
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Analytical Calculations of Tsallis Thermodynamic     
Variables:

Massless Massive

•Taylor’s Series 
approximation 

•Mellin-Barnes
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Analytical Calculations of Tsallis pressure in d 
space time dimension: m = 0

Pd= ∫ HIJKL
(DM)I

. 	 L

(AOP"QJRS )
KTUV
UV

W
X 	

Convergence of  the integration for p→ ∞	requires:	

𝑑 < AOP"
P"

⟹ 𝛿𝑞< A
HCA

In 4 dimension 𝛿𝑞< A
c
	or	𝑞 < d

c

; 	𝛿q=q-1

We see that the above obviously holds for δq ¼ 0, as the
q functions become, respectively, the natural logarithm and
the exponential function, where the latter is the argument of
the former, and the natural logarithm does not lay onto the
branch cuts as the exponential is always positive regardless
of the sign of X. However, when δq > 0, the nature of the
involved functions changes drastically. Thus, we see that
for Eq. (7) to hold, we need 1þ δqX > 0 so that both q-
power functions are single valued for noninteger values of
the respective powers. When δq > 0, this requirement
amounts to the condition that either Ep ≥ μ or m ≥ μ, or
else m < μ and δq < T=ðμ − EpÞ if Ep < μ.
Therefore, we see that in order to keep the q logarithm

statistically meaningful (as related to the entropy), we
basically need to restrict ourselves from asymptotically
dense systems or enforce a specific constraint on the δq
variable. We shall then assume all the necessary conditions
to be fulfilled throughout the rest of the paper. Notice that
the simpler case m ≥ μ is by far more common in most of
the practical situations. From now on, we will focus on that
situation unless probing the massless limit. However, we
point out that the analysis of our computations and results,
especially regarding the convergence regions for δq,
relevant to the case m < μ, can also be readily obtained.
Now, given the definitions (2), (3), (4), and (5), it is very

easy to show, using integration by parts, that these integrals
correspond to the physical quantities and, hence, must obey
the fundamental equation of thermodynamics,

ϵþ P ¼ Tsþ μn; ð8Þ

only if δq is constrained to be strictly smaller than 1=3. We
will come back later to this constraint on δq, as it will
explicitly appear when working out the analytic structures
of the corresponding integrals in the massless case.
Therefore, from now on, we shall keep in mind that the

consistency of the framework requires that we have 0 ≤
δq < 1=3 together with the above constraints on the
parameters, namely, the mass and the chemical potential
which we chose to be m ≥ μ. We point out that the latter is
consistent with most of the physical situations that are to be
encountered when applying the present results.
One can also show [34] that the use of fq instead of f in

order to define the thermodynamic variables leads to the
usual thermodynamic consistency conditions such as

T ¼ ∂ϵ
∂s

!!!!
n
; μ ¼ ∂ϵ

∂n
!!!!
s
; n ¼ ∂P

∂μ
!!!!
T
; s ¼ ∂P

∂T
!!!!
μ
: ð9Þ

From the first of the above equations, it is obvious that
the variable T appearing in Eq. (1) is a thermodynamic
temperature, hence, more than just another parameter.
Using the Tsallis distribution, the particle spectrum can

be written by means of more appropriate variables, e.g., in
the context of high-energy physics (HEP), as

dN
dpTdy

¼ gV
ð2πÞ2

pTmT cosh y

×
"
1þ δq

mT cosh y − μ
T

#−1þδq
δq
; ð10Þ

where pT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
and mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

p
are the

transverse momentum and the transverse mass, respec-
tively, with m being the bare mass.
Since the value of δq is usually quite close to 0 in HEP,

the Tsallis distribution can be Taylor expanded [27–29] to
yield analytical approximations of the Tsallis thermody-
namic variables. However, as previously mentioned, the
(too early) termination of the series implies a certain
number of constraints on the energy, the temperature,
and the δq values. This is, of course, due to the fact that
a Taylor expansion of such a function, around δq ≈ 0,
effectively amounts to a Taylor expansion around
δqðmT cosh y − μÞ=T ≈ 0 (see Ref. [28] for more details).
Another simplification is possible, in the massless limit,

where the Tsallis thermodynamic variables have been
found to be analytically computable (see Appendix A of
Ref. [37] for a detailed computation), and that will be the
subject of our discussion in Sec. IV. Before doing so, let us
summarize all of our results for the convenience of the
readers interested in direct applications.

III. READY-TO-USE FORMULAS

A. Thermodynamic variables for m = 0 and μ= 0

Below we list the final results for the main thermody-
namic variables in the massless case and with vanishing
chemical potential. Those read

P ¼ gT4

6π2
1

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð11Þ

ϵ ¼ gT4

2π2
1

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð12Þ

s ¼ 2gT3

3π2
1

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð13Þ

n ¼ gT3

2π2
1

ð1 − δqÞð12 − δqÞ
: ð14Þ

All results are valid for 0 ≤ δq < 1=3, as required by the
consistency of the framework.

B. Thermodynamic variables for m = 0 and μ ≠ 0

Below we list the final results for the main thermody-
namic variables in the massless case, but with a finite
chemical potential. Those read

ANALYTIC RESULTS FOR THE TSALLIS … PHYSICAL REVIEW D 94, 094026 (2016)

094026-3
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Analytical Calculations of Tsallis Thermodynamic     
Variables: m ≠ 0

T
b

T
ma µ

== ;

K: Modified Bessel Functions

Pressure: Taylor’s series [up to O(q-1)]

T Bhattacharyya, J Cleymans, A Khuntia, P Pareek, R Sahoo EPJA 30, 52 no. 2 (2016)
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Fig. 5. The ratio of the particle density calculated to first order
in (q − 1) normalized to the particle density of a Boltzmann
gas as a function of the temperature for different values of the
parameter q. The mass is taken as being the pion mass. The
values of the parameter q are 1.01 for the dashed line, 1.08 for
the dot-(long)dashed line, 1.1 for the dot-(short)dashed line
and 1.15 for the dotted line.
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Fig. 6. The ratio of the energy density calculated to first order
in (q − 1) normalized to the energy density of a Tsallis gas
as a function of the temperature for different values of the
parameter q. The mass is taken as being the pion mass. The
values of the parameter q are 1.01 for the dashed line, 1.08 for
the dot-(long)dashed line, 1.1 for the dot-(short)dashed line
and 1.15 for the dotted line.

In fig. 6 we show the ratio of the energy density to first
order in (q − 1) to the full energy density as given by the
Tsallis distribution, (ϵB+(q−1)ϵ1)/ϵ for several values of q
indicated in the figure as a function of the temperature T .

Again, as noted previously for the particle density,
it can be seen that the expansion in (q − 1) is excel-
lent if (q − 1) = 0.01 but rapidly deviates from the full
Tsallis distribution for larger values of q. Also here, for
(q−1) ≈ 0.1 the deviations are of the order of 20% as can
be seen from fig. 6. For comparison we show in fig. 7, the
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Fig. 7. The ratio of the energy density calculated to first order
in (q−1) normalized to the energy density of a Boltzmann gas
as a function of the temperature for different values of the
parameter q.
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Fig. 8. The ratio of the pressure calculated to first order in
(q−1) normalized to the pressure of a Tsallis gas as a function
of the temperature for different values of the parameter q.

first-order expansion compared to the Boltzmann expres-
sion, (ϵB +(q−1)n1)/ϵB , as a function of the temperature
T for several values of the parameter q. As in the previous
case the deviations are most pronounced for small values
of the temperature. Finally, the pressure is given by

PB + (q − 1)P 1, (27)

PB =
ge

µ
T T 4a2K2(a)

2π2
, (28)

P 1 =
ge

µ
T T 4

4π2

[

a4K2(a) + 3a3K3(a)

− 2a3bK3(a) + a2b2K2(a) + 2a2bK2(a)
]

. (29)

In fig. 8 we show the ratio of the pressure to first or-
der in (q − 1) to the full pressure as given by the Tsallis
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Pressure: m≠ 0, 𝜇 ≠ 0	using	the	Mellin-Barnes representation

Angular integral, 
redefine p → k ≡ p/m 

Y X λ
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Abstract. We expand the Tsallis distribution in a Taylor series of powers of (q − 1), where q is the Tsallis
parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse
momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. Af-
ter checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the
presence of collective flow up to the first order of (q−1). The formulae are compared with the experimental
data.

1 Introduction

It is now a standard practice to use the Tsallis distri-
bution [1] for describing the transverse momentum dis-
tributions at high energies. This has been pioneered by
the PHENIX and STAR Collaborations [2–4] at the Rela-
tivistic Heavy Ion Collider (RHIC) at BNL and by the AL-
ICE, ATLAS and CMS Collaborations [5–10] at the Large
Hadron Collider (LHC) at CERN. The Tsallis distribu-
tion is successful in explaining the experimental transverse
momentum distribution, longitudinal momentum fraction
distribution as well as rapidity distribution of hadrons off
the e+e− as well as p-p collisions [11–17]. The form of the
Tsallis distribution used in this paper has been described
in detail previously [18–21] and has the advantage of being
thermodynamically consistent. There is clear evidence for
a mild energy dependence of the parameters q and T [20].
Also, initially there were indications that the values ob-
tained for the parameters q and T were consistent with
each other for different particle species [17,19]. Different
conclusions have been reached in the literature [22–25],
albeit using slightly different formalisms and approaches,
and a more detailed analysis is still outstanding to prove
this beyond doubt.

2 Review of the main ingredients of the
model

For completeness we recall here the main ingredients.

a e-mail: Raghunath.Sahoo@cern.ch (corresponding author)

The relevant thermodynamic quantities can be written
as integrals over the following distribution function:

f =

[

1 + (q − 1)
E − µ

T

]

−
1

q−1

. (1)

It can be shown [19] that the entropy, S, particle number,
N , energy density, ϵ, and the pressure, P , are given by

S = −gV

∫

d3p

(2π)3
[fq lnq f − f ] , (2)

N = gV

∫

d3p

(2π)3
fq, (3)

ϵ = g

∫

d3p

(2π)3
E fq, (4)

P = g

∫

d3p

(2π)3
p2

3E
fq, (5)

where V is the volume and g is the degeneracy factor.
The function appearing in eq. (2) is often referred to

as q-logarithm and is defined by

lnq(x) ≡
x1−q − 1

1 − q
.

The first and second laws of thermodynamics lead to
the following two differential relations:

dϵ = T ds + µdn, (6)

dP = sdT + ndµ, (7)

where, s = S/V and n = N/V are the entropy and particle
number densities, respectively.

V. THE PRESSURE FOR SYSTEMS WITH
MASSIVE PARTICLES

Unlike usual situations when applying MB techniques,
we will not keep the number of spatial dimensions arbitrary
as our integrals are defined to be convergent in the
physically acceptable range 0 ≤ δq < 1=3.
In the following, we shall always assume the above

constraint, consistent with the Tsallis statistics, to be true

(see Sec. II for more details). We also choose, for the sake
of argument, m ≥ μ—keeping in mind that situations with
bigger chemical potential than the mass can easily be
implemented as well.
We now turn toward the integral in Eq. (5), integrate

over the angular part, and perform the change of variable
p → k≡ p=m. Doing so, the expression for the massive
pressure can be rewritten as

P ¼ gm4

6π2

Z
∞

0
dk

"
k4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ×
1

½f1 − δq μ
Tgþ fδq m

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
g$

1þδq
δq

#

: ð31Þ

We then recall the MB contour integral representation (again, see [31], [32], and [30] for more details),

1

ðX þ YÞλ
¼

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

"
Γð−zÞΓðλþ zÞ

ΓðλÞ
Yz

Xλþz

#
; ð32Þ

valid here for ReðλÞ > 0 and ReðϵÞ ∈ ð−ReðλÞ; 0Þ. Notice that in the present case, λ has no imaginary part.
We can now apply the above formula to the δq-dependent denominator in (31), since ð1þ δqÞ=δq > 0 is fulfilled

given the previous assumptions. We do so with X ¼ δqm=T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, Y ¼ 1 − δqμ=T, and λ ¼ ð1þ δqÞ=δq, change the

order between the contour and the momentum integrals relying upon the convergence of the involved expressions, and
finally obtain

P ¼
gm4ðδq m

TÞ
−1þδq

δq

2π2Γð1þδq
δq Þ

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

"$
T − δqμ
δqm

%
z
Γð−zÞΓ

$
zþ 1þ δq

δq

% Z
∞

0
dk

"
k4

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
Þ
1þ2δq
δq þz

##
: ð33Þ

We now want to perform the momentum integral in (33).
We see that this integral introduces another parameter,
namely z, for which another constraint will be needed.
Given the constraint, which as previously seen naturally
introduces an upper bound δq < 1=3, we see that for the
above momentum integral to be convergent, we only
further need ReðzÞ ≥ 0. This new constraint clearly indi-
cates that for further performing the last z integral by
wrapping the contour onto one of the two sides of the real
axis, only one side will be allowed if we are not to
analytically continue prior to wrapping the contour—the
one for which ReðzÞ ≥ 0. Before wrapping the contour
then, we shall keep the parameters, especially δq, arbitrary,
in such a way that the momentum integral remains
convergent (basically, δq is kept far from δq ¼ 0). Then,
when the contour is wrapped, we will be able to relax this
arbitrary constraint.
In addition, unlike with usual MB representations, one of

our parameters, namely, δq, is present both as a power and
as a multiplicative factor that must control the convergence
of the series of residues when wrapping the contour to
explicitly compute the z integral. This last factual point
significantly complicates the use of this procedure, as it
effectively introduces a nontrivial restricted range of
validity for δq, within the physically acceptable range

0 ≤ δq < 1=3 if we are to obtain a closed-form expression
for the thermodynamic functions valid at least somewhere
in the physical range.
Within the usual MB procedures, as the dimension of the

space D is kept arbitrary, one can actually analytically
continue the integrand of the contour integral as a function of
D, prior to wrapping the contour onto the side which was
originally forbidden by the constraint on z, and obtain the
corresponding closed form in the complementary part of the
restricted range for δq. Note that if we do so, we could access
the originally forbidden δq region and obtain the corre-
sponding analytic result, only at the cost of not obtaining a
closed-form expression, as in the present case. Consequently,
as we choose not to keep the dimension arbitrary, we cannot
proceed in the usual manner. However, this does not mean
that we will not be able to access the complementary part of
the restricted range over δq and in the end obtain a set of
closed forms for the massive pressure within the whole
physical range for δq. To do so, in the forthcoming
subsection, we will have to analytically continue the final
closed result for the pressure—and not the integrand prior to
wrapping the contour—to the complementary δq region. In
this way, we will obtain a set of two formulas valid in two
different ranges within 0 ≤ δq < 1=3, which are both
complementary to each other.
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V. THE PRESSURE FOR SYSTEMS WITH
MASSIVE PARTICLES

Unlike usual situations when applying MB techniques,
we will not keep the number of spatial dimensions arbitrary
as our integrals are defined to be convergent in the
physically acceptable range 0 ≤ δq < 1=3.
In the following, we shall always assume the above

constraint, consistent with the Tsallis statistics, to be true

(see Sec. II for more details). We also choose, for the sake
of argument, m ≥ μ—keeping in mind that situations with
bigger chemical potential than the mass can easily be
implemented as well.
We now turn toward the integral in Eq. (5), integrate

over the angular part, and perform the change of variable
p → k≡ p=m. Doing so, the expression for the massive
pressure can be rewritten as

P ¼ gm4

6π2

Z
∞

0
dk

"
k4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ×
1

½f1 − δq μ
Tgþ fδq m

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
g$

1þδq
δq

#

: ð31Þ

We then recall the MB contour integral representation (again, see [31], [32], and [30] for more details),

1

ðX þ YÞλ
¼

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

"
Γð−zÞΓðλþ zÞ

ΓðλÞ
Yz

Xλþz

#
; ð32Þ

valid here for ReðλÞ > 0 and ReðϵÞ ∈ ð−ReðλÞ; 0Þ. Notice that in the present case, λ has no imaginary part.
We can now apply the above formula to the δq-dependent denominator in (31), since ð1þ δqÞ=δq > 0 is fulfilled

given the previous assumptions. We do so with X ¼ δqm=T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, Y ¼ 1 − δqμ=T, and λ ¼ ð1þ δqÞ=δq, change the

order between the contour and the momentum integrals relying upon the convergence of the involved expressions, and
finally obtain

P ¼
gm4ðδq m

TÞ
−1þδq

δq

2π2Γð1þδq
δq Þ
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δqm

%
z
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$
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0
dk
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Þ
1þ2δq
δq þz

##
: ð33Þ

We now want to perform the momentum integral in (33).
We see that this integral introduces another parameter,
namely z, for which another constraint will be needed.
Given the constraint, which as previously seen naturally
introduces an upper bound δq < 1=3, we see that for the
above momentum integral to be convergent, we only
further need ReðzÞ ≥ 0. This new constraint clearly indi-
cates that for further performing the last z integral by
wrapping the contour onto one of the two sides of the real
axis, only one side will be allowed if we are not to
analytically continue prior to wrapping the contour—the
one for which ReðzÞ ≥ 0. Before wrapping the contour
then, we shall keep the parameters, especially δq, arbitrary,
in such a way that the momentum integral remains
convergent (basically, δq is kept far from δq ¼ 0). Then,
when the contour is wrapped, we will be able to relax this
arbitrary constraint.
In addition, unlike with usual MB representations, one of

our parameters, namely, δq, is present both as a power and
as a multiplicative factor that must control the convergence
of the series of residues when wrapping the contour to
explicitly compute the z integral. This last factual point
significantly complicates the use of this procedure, as it
effectively introduces a nontrivial restricted range of
validity for δq, within the physically acceptable range

0 ≤ δq < 1=3 if we are to obtain a closed-form expression
for the thermodynamic functions valid at least somewhere
in the physical range.
Within the usual MB procedures, as the dimension of the

space D is kept arbitrary, one can actually analytically
continue the integrand of the contour integral as a function of
D, prior to wrapping the contour onto the side which was
originally forbidden by the constraint on z, and obtain the
corresponding closed form in the complementary part of the
restricted range for δq. Note that if we do so, we could access
the originally forbidden δq region and obtain the corre-
sponding analytic result, only at the cost of not obtaining a
closed-form expression, as in the present case. Consequently,
as we choose not to keep the dimension arbitrary, we cannot
proceed in the usual manner. However, this does not mean
that we will not be able to access the complementary part of
the restricted range over δq and in the end obtain a set of
closed forms for the massive pressure within the whole
physical range for δq. To do so, in the forthcoming
subsection, we will have to analytically continue the final
closed result for the pressure—and not the integrand prior to
wrapping the contour—to the complementary δq region. In
this way, we will obtain a set of two formulas valid in two
different ranges within 0 ≤ δq < 1=3, which are both
complementary to each other.
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V. THE PRESSURE FOR SYSTEMS WITH
MASSIVE PARTICLES

Unlike usual situations when applying MB techniques,
we will not keep the number of spatial dimensions arbitrary
as our integrals are defined to be convergent in the
physically acceptable range 0 ≤ δq < 1=3.
In the following, we shall always assume the above

constraint, consistent with the Tsallis statistics, to be true

(see Sec. II for more details). We also choose, for the sake
of argument, m ≥ μ—keeping in mind that situations with
bigger chemical potential than the mass can easily be
implemented as well.
We now turn toward the integral in Eq. (5), integrate

over the angular part, and perform the change of variable
p → k≡ p=m. Doing so, the expression for the massive
pressure can be rewritten as

P ¼ gm4

6π2

Z
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0
dk

"
k4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ×
1

½f1 − δq μ
Tgþ fδq m
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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We then recall the MB contour integral representation (again, see [31], [32], and [30] for more details),

1

ðX þ YÞλ
¼

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

"
Γð−zÞΓðλþ zÞ

ΓðλÞ
Yz

Xλþz

#
; ð32Þ

valid here for ReðλÞ > 0 and ReðϵÞ ∈ ð−ReðλÞ; 0Þ. Notice that in the present case, λ has no imaginary part.
We can now apply the above formula to the δq-dependent denominator in (31), since ð1þ δqÞ=δq > 0 is fulfilled

given the previous assumptions. We do so with X ¼ δqm=T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, Y ¼ 1 − δqμ=T, and λ ¼ ð1þ δqÞ=δq, change the

order between the contour and the momentum integrals relying upon the convergence of the involved expressions, and
finally obtain

P ¼
gm4ðδq m

TÞ
−1þδq

δq

2π2Γð1þδq
δq Þ

Z
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ϵ−i∞
dz=ð2iπÞ

"$
T − δqμ
δqm

%
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$
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0
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k4
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
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Þ
1þ2δq
δq þz

##
: ð33Þ

We now want to perform the momentum integral in (33).
We see that this integral introduces another parameter,
namely z, for which another constraint will be needed.
Given the constraint, which as previously seen naturally
introduces an upper bound δq < 1=3, we see that for the
above momentum integral to be convergent, we only
further need ReðzÞ ≥ 0. This new constraint clearly indi-
cates that for further performing the last z integral by
wrapping the contour onto one of the two sides of the real
axis, only one side will be allowed if we are not to
analytically continue prior to wrapping the contour—the
one for which ReðzÞ ≥ 0. Before wrapping the contour
then, we shall keep the parameters, especially δq, arbitrary,
in such a way that the momentum integral remains
convergent (basically, δq is kept far from δq ¼ 0). Then,
when the contour is wrapped, we will be able to relax this
arbitrary constraint.
In addition, unlike with usual MB representations, one of

our parameters, namely, δq, is present both as a power and
as a multiplicative factor that must control the convergence
of the series of residues when wrapping the contour to
explicitly compute the z integral. This last factual point
significantly complicates the use of this procedure, as it
effectively introduces a nontrivial restricted range of
validity for δq, within the physically acceptable range

0 ≤ δq < 1=3 if we are to obtain a closed-form expression
for the thermodynamic functions valid at least somewhere
in the physical range.
Within the usual MB procedures, as the dimension of the

space D is kept arbitrary, one can actually analytically
continue the integrand of the contour integral as a function of
D, prior to wrapping the contour onto the side which was
originally forbidden by the constraint on z, and obtain the
corresponding closed form in the complementary part of the
restricted range for δq. Note that if we do so, we could access
the originally forbidden δq region and obtain the corre-
sponding analytic result, only at the cost of not obtaining a
closed-form expression, as in the present case. Consequently,
as we choose not to keep the dimension arbitrary, we cannot
proceed in the usual manner. However, this does not mean
that we will not be able to access the complementary part of
the restricted range over δq and in the end obtain a set of
closed forms for the massive pressure within the whole
physical range for δq. To do so, in the forthcoming
subsection, we will have to analytically continue the final
closed result for the pressure—and not the integrand prior to
wrapping the contour—to the complementary δq region. In
this way, we will obtain a set of two formulas valid in two
different ranges within 0 ≤ δq < 1=3, which are both
complementary to each other.
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Following the above procedure, and keeping in mind that we must have δq ≥ 0 such that the momentum integral does not
diverge before wrapping the contour on the right positive part of the real z axis, we obtain

P ¼ 3gm4

16π
3
2ðδq m

TÞ
1þδq
δq Γð1þδq

δq Þ

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

!"
T − δqμ
δqm

#
z
×
Γð−zÞΓðzþ 1þδq

δq ÞΓðz2 þ
1−3δq
2δq Þ

Γðz2 þ
1þ2δq
2δq Þ

$
; ð34Þ

where we recall that we must close the contour onto the
right side, keeping ReðzÞ ≥ 0. The need to close the
contour onto the right side, leads to an additional condition
for the power inside the integrand whose absolute value
must then be smaller than one if we are to obtain a
convergent subsequent series over residues. This further
constraint amounts to considering δq such that

δq >
T

mþ μ
; ð35Þ

given our choice m ≥ μ, and with the overall requirement
that δq still belongs to the physical region 0 ≤ δq < 1=3.
Wewill name (35) the upper δq region investigated in the

next subsection, its counter part being the lower δq region
which we will further investigate in the following sub-
section VB.
At last for now, we shall perform the change of variable

z → 2z and apply the so-called duplication formula to some
of the gamma functions, in order to simplify their argu-
ments. Doing so, Eq. (34) then becomes

P ¼
3gðδq m

2TÞ
−1þδq

δq

32π
5
2m4Γð1þδq

δq Þ

Z
ϵþi∞

ϵ
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T − δqμ
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#
2z
×

1

Γðzþ 1
2 þ
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ð36Þ

× Γð−zÞΓ
"
1

2
− z

#
Γ
"
zþ 1þ δq

2δq

#
Γ
"
1

2
þ zþ 1þ δq

2δq

#
Γ
"
z − 2þ 1þ δq

2δq

#$
; ð37Þ

a representation which will be used for closing the contour
to the right side for which ReðzÞ ≥ 0 in the subregion of
0 ≤ δq < 1=3 for which (35) is fulfilled and, of course,
given the previous assumptions on the mass and the
chemical potential.
Notice that we should then encounter two distinct series

of residues from the poles of Γð−zÞ and Γð1=2 − zÞ,

respectively, when closing the contour onto the right side
as will be detailed in the next subsection.

A. Pressure in the upper q region

Closing the contour onto the right side in (37) and further
simplifying the integrand, the resulting series representa-
tion for the pressure turns to be

PU ¼
gm4ðδq m

2TÞ
−1þδq

δq

32π
5
2Γð1þδq

δq Þ

X∞

k¼0
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Γ
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3
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#$
; ð38Þ

valid in the upper δq region (35) of 0 ≤ δq < 1=3, given the previous assumptions on m and μ.
Finally, the above series representation admits the following closed form, which we “aesthetically improved”,

PU ¼ gm4

16π
3
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δqm

#1þδq
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3

2
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; ð39Þ

ANALYTIC RESULTS FOR THE TSALLIS … PHYSICAL REVIEW D 94, 094026 (2016)

094026-7

Following the above procedure, and keeping in mind that we must have δq ≥ 0 such that the momentum integral does not
diverge before wrapping the contour on the right positive part of the real z axis, we obtain
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where we recall that we must close the contour onto the
right side, keeping ReðzÞ ≥ 0. The need to close the
contour onto the right side, leads to an additional condition
for the power inside the integrand whose absolute value
must then be smaller than one if we are to obtain a
convergent subsequent series over residues. This further
constraint amounts to considering δq such that

δq >
T

mþ μ
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given our choice m ≥ μ, and with the overall requirement
that δq still belongs to the physical region 0 ≤ δq < 1=3.
Wewill name (35) the upper δq region investigated in the

next subsection, its counter part being the lower δq region
which we will further investigate in the following sub-
section VB.
At last for now, we shall perform the change of variable

z → 2z and apply the so-called duplication formula to some
of the gamma functions, in order to simplify their argu-
ments. Doing so, Eq. (34) then becomes

P ¼
3gðδq m

2TÞ
−1þδq

δq

32π
5
2m4Γð1þδq

δq Þ

Z
ϵþi∞

ϵ
2−i∞

dz=ð2iπÞ
!"

T − δqμ
δqm

#
2z
×

1

Γðzþ 1
2 þ

1þδq
2δq Þ

ð36Þ

× Γð−zÞΓ
"
1

2
− z

#
Γ
"
zþ 1þ δq

2δq

#
Γ
"
1

2
þ zþ 1þ δq

2δq

#
Γ
"
z − 2þ 1þ δq

2δq

#$
; ð37Þ

a representation which will be used for closing the contour
to the right side for which ReðzÞ ≥ 0 in the subregion of
0 ≤ δq < 1=3 for which (35) is fulfilled and, of course,
given the previous assumptions on the mass and the
chemical potential.
Notice that we should then encounter two distinct series

of residues from the poles of Γð−zÞ and Γð1=2 − zÞ,

respectively, when closing the contour onto the right side
as will be detailed in the next subsection.

A. Pressure in the upper q region

Closing the contour onto the right side in (37) and further
simplifying the integrand, the resulting series representa-
tion for the pressure turns to be
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valid in the upper δq region (35) of 0 ≤ δq < 1=3, given the previous assumptions on m and μ.
Finally, the above series representation admits the following closed form, which we “aesthetically improved”,
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for m	≥ 𝜇
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Energy density, pressure are part of the energy-momentum tensor of 
the medium. 

evolution of the medium is dictated by the hydrodynamic equation 
which involves the energy momentum tensor. 

This equation may involve transport coefficients like shear  and bulk 
viscosities as the  inputs. 

Also, there is evolution of the heavy particles (e.g. charm/bottom quarks 
produced very early in high energy collisions) 
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Heavy particle transport inside the medium of (coloured) 
light particles:  test particle problem in plasma physics.

Heavy quarks are clean probes to study the coloured 
Medium because: they are produced very early, witnesses 
the whole evolution and is not a part of the medium being 
studied.

𝐻𝑄 �⃗�, 𝐸L + 𝐿𝑄/𝑔 �⃗�, 𝐸" → 𝐻𝑄 �⃗�r, 𝐸Lr + 𝐿𝑄/𝑔 �⃗�r, 𝐸"r



15

Evolution of the heavy quark distribution inside Quark
Gluon Plasma which can be created in high energy 
/highly dense environment of hadrons is dictated by the 
Boltzmann Transport Equation (BTE) and the relative 
change in the distribution can be related to the experimental 
observables
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Boltzmann Transport equation

𝑝s𝜕s𝑓u = 𝐶[𝑓u]

fa is a power law distribution for incoming probe particle

C 𝑓z{|z ≔ ~dynamics	�phase	space	 ≔ ⋯(𝑓ur 𝑓�r − 𝑓u𝑓� … ]
�

�

�

�

𝑓ur𝑓�r − 𝑓u𝑓� = 𝑒{�� ��� O�� ��
� } − 𝑒{�� �� O�� �� }
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Abstract

Starting from the basic prescriptions of the Tsallis’ nonextensive thermostatistics, i.e., generalized entropy and normalized
q-expectation values, we study the relativistic nonextensive thermodynamics and derive a Boltzmann transport equation
that implies the validity of the H -theorem where a local nonextensive four-entropy density is considered. Macroscopic
thermodynamic functions and the equation of state for a perfect gas are derived at the equilibrium.  2002 Elsevier Science
B.V. All rights reserved.

PACS: 05.20.Dd; 05.70.Ln; 05.90.+m; 25.75.-q

1. Introduction

Recently, there is an increasing evidence that the
generalized nonextensive statistical mechanics, pro-
posed by Tsallis [1], can be considered as the more
appropriate basis of a theoretical framework to deal
with physical phenomena where long-range interac-
tions, long-range microscopic memories and/or fractal
space–time constraints are present (cf. [1] for details).
A considerable variety of physical applications involve
a quantitative agreement between experimental data
and theoretical models based on Tsallis’ thermostatis-
tics [2]. In particular there is a growing interest to high
energy physics applications of nonextensive statistics.
Several authors outline the possibility that experimen-
tal observations in relativistic heavy-ion collisions can
reflect nonextensive features during the early stage of

E-mail address: alavagno@polito.it (A. Lavagno).

the collisions and the thermalization evolution of the
system [3–7].
The basic aim of this Letter is to study the nonex-

tensive statistical mechanics formalism in the rela-
tivistic regime and to investigate, through an appro-
priate relativistic Boltzmann equation, the nonequi-
librium and the equilibrium thermodynamics rela-
tions.

2. Basic assumptions in nonextensive
thermostatistics

Let us briefly review some basic assumptions of
the nonextensive thermostatistics that will be useful in
view of the relativistic extension.
Starting point of the Tsallis’ generalization of the

Boltzmann–Gibbs statistical mechanics is the intro-
duction of a q-deformed entropy functional defined,

0375-9601/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(02)00964 -7
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q Boltzmann Transport equation

𝑝s𝜕s𝑓� = 𝐶"[𝑓]

𝐶"[𝑓] ≔ ~dynamics	�phase	space	 ≔ ⋯ℎ"(𝑓ur 𝑓�r) − ℎ"(𝑓u𝑓� … ]
�

�

�

�

𝑓ur𝑓�r − 𝑓u𝑓� ⟹ ℎ"(𝑓ur𝑓�r) − ℎ"(𝑓u𝑓�) = 𝑒"
{��V ��� O��V ��

� } − 𝑒"{��V �� O��V �� }

𝑓� = 𝑓"(𝑥, 𝑝) = 1 + 𝛽(𝑥) 𝑞 − 1 (E−μ) "/("CA)
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BTE q-BTE

Evolving
distribution

Evolution of power law test particle 
distribution

Evolution of Tsallis test particle 
distribution raised to the Tsallis 
parameter q

Collision 
term

Product of two single particle 
distribution functions 

≔ 𝑓u 𝑓�
= 𝑒{�� �� O�� �� }

two particle distribution function
which takes care of the correlation 

∶= ℎ"(𝑓u𝑓�) 
	= 𝑒"{��V �� O��V �� }
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	ℎ"(𝑓u𝑓�)

2

II. FORMALISM

A. Non Linear Boltzmann Transport Equation

To begin with, we will outline the derivation of NLBTE
following [33]. Within the Tsallis statistical mechanics
framework (also called the Non Extensive (NE) frame-
work), the particle four flow can be defined as:

NNE
µ

= c

Z
d3p

p0
p
µ

f̃NE(x, p) (1)

where fNE is the non extensive version of the phase space
distribution of the probe particle with four momentum
p at the space time point x; and f̃NE =

�
fNE

�
qT
, where

qT is the Tsallis parameter. The 0-th component of NNE
µ

gives the thermodynamically consistent particle number
density per degree of freedom (times a constant c > 0)
in the Tsallis statistics [39]. From Eq. (2), we can form
a scalar quantity

�NNE =

Z

�3
�

Z

�3
p

d3�
µ

d3p

p0
pµf̃NE(x, p) (2)

where d3�
µ

is the element of a time like three surface
and �3� is a small element situated at x. We can ex-
plain �NNE as the net flow passing through a segment of
�3� with momentum range �3p around p. Considering
collisions among the particles, the net flow through �3�
can be written as [40]:

pµ@
µ

f̃NE(x, p) =

✓
@

@t
+

p

Ep
.
@

@x
+ F.

@

@p

◆
f̃NE(x, p)

= CNE (3)

where Ep is the energy of the incoming particle (heavy
quark) and CNE is the non extensive collision term. Eq.
(3) is the desired kinetic equation and is called the non
linear Boltzmann transport equation .

Assuming that the change in the distribution function
is due to the binary collisions only, the non extensive
collision term CNE in the NEBTE is given by [33]- [38]:

CNE =
1

2E
p

Z
d3q

(2⇡)3
d3q0

(2⇡)3
d3p0

(2⇡)3
|M |2(2⇡)4

�4(p+ q � p
0
� q

0
)⇥⇥

hNE(f
NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(4)

where p(q) is the incoming four momentum and
p0(q0) is the outgoing four momentum. The quantity
hNE(f

NE(x, p0), fNE(x, q0)) represents the two particle
distribution function [32] with four momenta p0 and q0

at the same space time point x ⌘ (x, t). The function
hNE can be defined in the following way:

hNE(fa, fb) = ExpNE [logNE(fa) + logNE(fb)] (5)

In the conventional Boltzmann transport equation hNE

is replaced by the product of the two distribution func-
tions and this replacement can be done under the as-
sumption of the ‘molecular chaos’. To find how the modi-
fied collision term looks like, we define the following quan-
tities:

• the three momentum transfer k = p�p

0
= q

0
�q,

which is the spatial part of the four momentum
transfer k = p� p0 = q0 � q ;

• the non extensive exponential as well as the non
extensive logarithm function:

ExpNE(x) = (1� �q x)�
1
�q ; logNE(x) =

1� x��q

�q

(6)

where �q = qT � 1 > 0

Using the definitions in Eq. (6), Eq. (5) can be ex-
panded in a series of �q:
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f
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) log (f
b

) +O
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�q2
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(7)

whose first term gives back the original Boltzmann trans-
port equation obtained using the ‘molecular chaos hy-
pothesis’. Also, we note that the Tsallis non extensive
parameter �q acts as the correlation between the two dis-
tribution functions. Hence, hNE(fa, fb) can be thought of
as the two-particle distribution which can be expressed
as the product of two single particle distributions added
to the correlation; and of course

lim
�q!0

hNE(fa, fb) = f
a

f
b

(8)

Defining,

�̂[..] =
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p
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� q
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)[..] (9)

and

DNE =
⇥
hNE(f

NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(10)

2

II. FORMALISM

A. Non Linear Boltzmann Transport Equation

To begin with, we will outline the derivation of NLBTE
following [33]. Within the Tsallis statistical mechanics
framework (also called the Non Extensive (NE) frame-
work), the particle four flow can be defined as:

NNE
µ

= c

Z
d3p

p0
p
µ

f̃NE(x, p) (1)

where fNE is the non extensive version of the phase space
distribution of the probe particle with four momentum
p at the space time point x; and f̃NE =

�
fNE

�
qT
, where

qT is the Tsallis parameter. The 0-th component of NNE
µ

gives the thermodynamically consistent particle number
density per degree of freedom (times a constant c > 0)
in the Tsallis statistics [39]. From Eq. (2), we can form
a scalar quantity

�NNE =

Z

�3
�

Z

�3
p

d3�
µ

d3p

p0
pµf̃NE(x, p) (2)

where d3�
µ

is the element of a time like three surface
and �3� is a small element situated at x. We can ex-
plain �NNE as the net flow passing through a segment of
�3� with momentum range �3p around p. Considering
collisions among the particles, the net flow through �3�
can be written as [40]:

pµ@
µ

f̃NE(x, p) =

✓
@

@t
+

p

Ep
.
@

@x
+ F.

@

@p

◆
f̃NE(x, p)

= CNE (3)

where Ep is the energy of the incoming particle (heavy
quark) and CNE is the non extensive collision term. Eq.
(3) is the desired kinetic equation and is called the non
linear Boltzmann transport equation .

Assuming that the change in the distribution function
is due to the binary collisions only, the non extensive
collision term CNE in the NEBTE is given by [33]- [38]:

CNE =
1

2E
p

Z
d3q

(2⇡)3
d3q0

(2⇡)3
d3p0

(2⇡)3
|M |2(2⇡)4

�4(p+ q � p
0
� q

0
)⇥⇥

hNE(f
NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(4)

where p(q) is the incoming four momentum and
p0(q0) is the outgoing four momentum. The quantity
hNE(f

NE(x, p0), fNE(x, q0)) represents the two particle
distribution function [32] with four momenta p0 and q0

at the same space time point x ⌘ (x, t). The function
hNE can be defined in the following way:

hNE(fa, fb) = ExpNE [logNE(fa) + logNE(fb)] (5)

In the conventional Boltzmann transport equation hNE

is replaced by the product of the two distribution func-
tions and this replacement can be done under the as-
sumption of the ‘molecular chaos’. To find how the modi-
fied collision term looks like, we define the following quan-
tities:

• the three momentum transfer k = p�p

0
= q

0
�q,

which is the spatial part of the four momentum
transfer k = p� p0 = q0 � q ;

• the non extensive exponential as well as the non
extensive logarithm function:

ExpNE(x) = (1� �q x)�
1
�q ; logNE(x) =

1� x��q

�q

(6)

where �q = qT � 1 > 0

Using the definitions in Eq. (6), Eq. (5) can be ex-
panded in a series of �q:

hNE(fa, fb) =

(
1� �q

 
1� f��q

a

�q
+

1� f��q

b

�q

!)� 1
�q

= f
a

f
b

+ �q f
a

f
b

log (f
a

) log (f
b

) +O
�
�q2
�

(7)

whose first term gives back the original Boltzmann trans-
port equation obtained using the ‘molecular chaos hy-
pothesis’. Also, we note that the Tsallis non extensive
parameter �q acts as the correlation between the two dis-
tribution functions. Hence, hNE(fa, fb) can be thought of
as the two-particle distribution which can be expressed
as the product of two single particle distributions added
to the correlation; and of course

lim
�q!0

hNE(fa, fb) = f
a

f
b

(8)

Defining,

�̂[..] =
1

2E
p

Z
d3q

(2⇡)3
d3q0

(2⇡)3
d3p0

(2⇡)3
|M |2(2⇡)4

⇥�4(p+ q � p
0
� q

0
)[..] (9)

and

DNE =
⇥
hNE(f

NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(10)

𝑒"(x)

With the definitions of the q exponential

and the q logarithm function

𝑙𝑛"(x)

2

II. FORMALISM

A. Non Linear Boltzmann Transport Equation

To begin with, we will outline the derivation of NLBTE
following [33]. Within the Tsallis statistical mechanics
framework (also called the Non Extensive (NE) frame-
work), the particle four flow can be defined as:

NNE
µ

= c

Z
d3p

p0
p
µ

f̃NE(x, p) (1)

where fNE is the non extensive version of the phase space
distribution of the probe particle with four momentum
p at the space time point x; and f̃NE =

�
fNE

�
qT
, where

qT is the Tsallis parameter. The 0-th component of NNE
µ

gives the thermodynamically consistent particle number
density per degree of freedom (times a constant c > 0)
in the Tsallis statistics [39]. From Eq. (2), we can form
a scalar quantity

�NNE =

Z

�3
�

Z

�3
p

d3�
µ

d3p

p0
pµf̃NE(x, p) (2)

where d3�
µ

is the element of a time like three surface
and �3� is a small element situated at x. We can ex-
plain �NNE as the net flow passing through a segment of
�3� with momentum range �3p around p. Considering
collisions among the particles, the net flow through �3�
can be written as [40]:

pµ@
µ

f̃NE(x, p) =

✓
@

@t
+

p

Ep
.
@

@x
+ F.

@

@p

◆
f̃NE(x, p)

= CNE (3)

where Ep is the energy of the incoming particle (heavy
quark) and CNE is the non extensive collision term. Eq.
(3) is the desired kinetic equation and is called the non
linear Boltzmann transport equation .

Assuming that the change in the distribution function
is due to the binary collisions only, the non extensive
collision term CNE in the NEBTE is given by [33]- [38]:

CNE =
1

2E
p

Z
d3q

(2⇡)3
d3q0

(2⇡)3
d3p0

(2⇡)3
|M |2(2⇡)4

�4(p+ q � p
0
� q

0
)⇥⇥

hNE(f
NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(4)

where p(q) is the incoming four momentum and
p0(q0) is the outgoing four momentum. The quantity
hNE(f

NE(x, p0), fNE(x, q0)) represents the two particle
distribution function [32] with four momenta p0 and q0

at the same space time point x ⌘ (x, t). The function
hNE can be defined in the following way:

hNE(fa, fb) = ExpNE [logNE(fa) + logNE(fb)] (5)

In the conventional Boltzmann transport equation hNE

is replaced by the product of the two distribution func-
tions and this replacement can be done under the as-
sumption of the ‘molecular chaos’. To find how the modi-
fied collision term looks like, we define the following quan-
tities:

• the three momentum transfer k = p�p

0
= q

0
�q,

which is the spatial part of the four momentum
transfer k = p� p0 = q0 � q ;

• the non extensive exponential as well as the non
extensive logarithm function:

ExpNE(x) = (1� �q x)�
1
�q ; logNE(x) =

1� x��q

�q

(6)

where �q = qT � 1 > 0

Using the definitions in Eq. (6), Eq. (5) can be ex-
panded in a series of �q:

hNE(fa, fb) =

(
1� �q

 
1� f��q

a

�q
+

1� f��q

b

�q

!)� 1
�q

= f
a

f
b

+ �q f
a

f
b

log (f
a

) log (f
b

) +O
�
�q2
�

(7)

whose first term gives back the original Boltzmann trans-
port equation obtained using the ‘molecular chaos hy-
pothesis’. Also, we note that the Tsallis non extensive
parameter �q acts as the correlation between the two dis-
tribution functions. Hence, hNE(fa, fb) can be thought of
as the two-particle distribution which can be expressed
as the product of two single particle distributions added
to the correlation; and of course

lim
�q!0

hNE(fa, fb) = f
a

f
b

(8)

Defining,

�̂[..] =
1

2E
p

Z
d3q

(2⇡)3
d3q0

(2⇡)3
d3p0

(2⇡)3
|M |2(2⇡)4

⇥�4(p+ q � p
0
� q

0
)[..] (9)

and

DNE =
⇥
hNE(f

NE(x, p0), fNE(x, q0))

�hNE(f
NE(x, p), fNE(x, q))

⇤
(10)

We can show
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Space averaging: BTE

We intend to average over the space dependence which comes 
through the probe particle distribution and will work with the 
momentum distribution only. We assume the medium to be 
homogeneous and the net external force on the system to be 
zero.

For BTE, the averaging is trivial because the space dependent 
part (the incoming particle distribution) factorizes out
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Space averaging: q BTE

For q BTE, space averaging is not so trivial ritual as the 
space dependent part, because of the correlation, is now 
intertwined with the homogeneous medium distribution

For details see: T Bhattacharyya and J Cleymans arXiv: 1707.08425
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BTE q-BTE

Space 
averaging

Space dependent part factorizes out No factorization because of 
correlation

Small 
momentum 
transfer limit

Expansion for small momentum 
transfer           linear Fokker-Planck           

equation        

Inputs:            linear Fokker-Planck 
drag/diffusion

Expansion for small momentum 
transfer           non linear Fokker-

Planck equation        

Inputs:            non linear Fokker-
Planck drag/diffusion
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So, we take the small momentum transfer limit and compare 
with the form of the non linear Fokker Planck equation given 
below: 

��Q
�z
= −�[��,V�Q]

�L�
+ �

�L�
 �[/��,V�Q

KJUV]
�L�

G Wolschin, Phys. Lett. B 569, 67(2003), A. Lavagno Braz. Jour. of  Phys. 35, 516 (2005) 
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5

C. The Non Linear Fokker Planck Transport
Coe�cients

Expanding the r.h.s. of the Eq. (17) in the Taylor’s
expansion for small k we get,

�̂DNE ⇡ �̂fNE
p R1

p,q +
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h
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(20)

For, R2
p,q =

�
fNE
p

�
�q R1

p,q

The r.h.s. of Eq. (20) can be equated with the Non

Extensive Fokker Planck Equation (NEFPE) in the mo-
mentum space which is given by
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(21)

This form of NEFPE has been used in the Refs. [48],
[49]. Comparing the single and double derivative terms
in the Eqs. (20, 21), we get the following expressions for
the non-extensive Fokker-Planck drag (A) and di↵usion
coe�cients (B):
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ij
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2
ki kj R2
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(22)

The longhand expressions for the above two non ex-
tensive quantities are given below. Also, for comparison,
we tabulate their extensive counterparts [15], too.

1. Non Extensive
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2. Extensive
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ANE
i

and BNE
ij

depend only on the vector p and we can
write them as a combination of the Kronecker’s delta �

ij

and p:
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Hence, ANE, BNE
? and BNE

|| can be written as:
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Utilising the notation used in Eq. 22, we express ANE,
BNE

? and BNE
|| in the following way:

Non linear Fokker Planck transport coefficients are given by:

𝐴�,"

𝐵� ,"
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4

We can write down the space average of f̃NE in the following form (for chemical potential µ=0):
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Where the following definitions are used
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⇣(3) = 1.20205.... is the zeta function, � = 0.57721... is the Euler-Mascheroni constant,  (i)s are the poly gamma
functions and 5F4 is the gauss hypergeometric function.

After getting the space averaged momentum distribu-
tion of the heavy quarks we will perform the space aver-

aging of the collision term; and while doing so we replace
p0 = p� k; q0 = q + k
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where Gp, q = � log(g3,p, q) + log(g2,p) + � and

 
c�1 =  (0)(c� 1)3 + 6 (0)(c� 1) (1)(c� 1) + 2 (2)(c� 1) + 4⇣(3) (19)

The approximate equalities in Eqs. (15, 17) come when
we assume that the Tsallis parameters characterizing the
momentum distributions of the probe particle (momenta
p and p0) and the medium particle (momenta q and q0) are

almost same with �q which characterizes the correlation
between them. We reserve the study of the more general
case for future.
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⇣(3) = 1.20205.... is the zeta function, � = 0.57721... is the Euler-Mascheroni constant,  (i)s are the poly gamma
functions and 5F4 is the gauss hypergeometric function.
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The approximate equalities in Eqs. (15, 17) come when
we assume that the Tsallis parameters characterizing the
momentum distributions of the probe particle (momenta
p and p0) and the medium particle (momenta q and q0) are

almost same with �q which characterizes the correlation
between them. We reserve the study of the more general
case for future.
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where Gp, q = � log(g3,p, q) + log(g2,p) + � and
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The approximate equalities in Eqs. (15, 17) come when
we assume that the Tsallis parameters characterizing the
momentum distributions of the probe particle (momenta
p and p0) and the medium particle (momenta q and q0) are

almost same with �q which characterizes the correlation
between them. We reserve the study of the more general
case for future.
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In the limit q→ 1, {                } → f(q) (medium particle 
distribution) and we get back the linear Fokker Planck 
transport coefficients 

3

the collision term CNE can be written as:
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B. Space Averaging

At this stage, we would like to average the distribution
functions over the space and will work with the momen-
tum space distribution function only. While doing so,
we will assume that the phase space distribution of the
heavy quarks (given by fNE(x, p) or fNE(x, p0)) can be
inhomogeneous but that of the medium particles (given
by fNE(x, q) or fNE(x, q0)) is independent of x. Also, we
assume that the external force F = 0. After space av-
eraging and putting v = p/Ep, Eq. (3) can be written
as:
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assuming that v
x

, v
y

, v
z

are not the functions of x. Now,
the distribution function is symmetric in x and it van-
ishes at x, y, z = ±1 1; and so we are left with the
following equation.

@

@t
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p (13)

where fNE
p and DNE

p are the space averages of the func-

tions f̃NE and DNE. Hence, with the help of the Eq. (13)
we can study the evolution of the momentum distribution
of the heavy quarks produced due to very early hard pro-
cesses and carrying out the random motion in a medium
of light quarks and gluons. Remembering the fact that
the genesis of the heavy quarks is due to the hard pro-
cesses, their momentum distribution can be characterised
by a power law distribution, the Tsallis distribution in
the present case [41]. Now, we know that the Landau
Kinetic Approximation (LKA) (k ! 0, which essentially
means that the step size of the heavy quark carrying out
the momentum space random motion in the medium is
vanishingly small [42]) of the collision term in the exten-
sive BTE gives rise to the linear Fokker-Planck Trans-
port Coe�cients [15] like drag and di↵usion. A similar
approach can be taken to derive the expressions for the
NLFPTC (or non extensive Fokker-Planck transport co-
e�cients) using Eqs. (5, 6, 11).

The space averaging of the non extensive collision term
involves the knowledge of the spatial and the temporal
variation of temperature which essentially gives rise to
the spatial and the temporal variation of the collision
term. Here we use the temperature profile used in [43].

T (x; t) =
T
p

(t)
1 + Exp

⇢
a(t)

✓p
x

2+y

2+z

2

r0(t)
� 1

◆�� (14)

for the parameters T
p

, a and r0 > 0. The temperature
profile makes the phase space distribution vanish at in-
finity. Hence, with the help of the temperature profile in
Eq. (14), we are now ready to perform the space averag-
ing ritual. For the extensive case, the distribution of the
probe particle and that of the medium come as a prod-
uct and hence, the space averaging is relatively simpler
to perform. Now we have a non-trivial interplay between
the two distribution functions.
For calculating the space averages of f̃NE and DNE

in the non extensive case we employ the Mellin-Barnes
contour integration technique which has earlier been used
in Ref. [44] to calculate Tsallis thermodynamic variables.
For more details of this technique we refer to [45], [46]
and [47]. Also, here we quote the main results and the
details of the calculation is deferred to the Appendix for
the interested reader.

1
These are determined by the temperature profile we choose here.

And arise due to the space averaging using the following 
temperature profile:

	ℛL,"A ,ℛL,"D
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�q ! 0, i.e. when there exists no correlation between the
probe and the medium particles. From Figs. (1, 2), we
can ascertain that with decreasing �q values R1

p,q and

R2
p,q both approach f(q). For �q = 0.001 they are very

close to f(q). Reducing the correlation further will re-
sult in the exact overlap. This proves that the modified
expressions for the Fokker-Planck drag and di↵usion co-
e�cients give back the linear Fokker-Planck transport
coe�cients when there exists no correlation between the
probe particle and the medium.

III. RESULTS AND DISCUSSION

In our calculation we use 1.3 GeV and 4.2 GeV as the
charm and bottom quark masses respectively. The pa-
rameter values characterizing the temperature profile in
Eq. (14) are [43]: T

p

= 290 MeV, a = 5.99 and r0 = 7.96
fm. While the medium temperature T

q

is taken to be 350
MeV for the Figs. 3, 5 and 7, the incoming momenta are
taken to be 5 GeV for Figs. 4, 6, 8. Also, while generat-
ing Figs. 3-8, we put �q = 0.01 as the correlation between
the probe and the medium. In the calculations, we have
considered only the heavy quarks elastically scattering
with light quarks and gluons of the medium. The colli-
sional matrix element has been taken from [50]. The ra-
diative Fokker-Planck drag and di↵usion coe�cients can
be evaluated following the technique delineated in [25].
This we reserve for our future work. In the plots of the
Fokker-Planck transport coe�cients we show both the
(widely studied) extensive as well as the non-extensive
cases for sake of comparison. The temperature variation
of the collisional extensive transport coe�cients can be
compared with those from [25] and they show more or
less similar results. It is interesting to see that when we
introduce a correlation between the heavy quark and the
light quark/gluon in the medium at the same space time
point, the transport coe�cients increase. This can be
attributed to the modification of the phase space due to
correlation.

There is a huge increase in the values of the non exten-
sive transport coe�cients. For charm or bottom quarks,
travelling through a medium of 350 MeV temperature
with 10 GeV momentum, the non extensive drag coef-
ficient and the non extensive transverse di↵usion coe�-
cient are ⇠ 3 times more than their extensive counter-
part. The corresponding factor is ⇠ 2.5 for the parallel
di↵usion coe�cient. Also, the heavy quark non exten-
sive drag increases with the momentum as opposed to
the trend shown by its extensive counterpart.

IV. SUMMARY, CONCLUSION AND
OUTLOOK

To summarize, we have calculated the Fokker-Planck
drag and di↵usion coe�cients of heavy quarks (charm

FIG. 5. Variation of the extensive and non extensive parallel
di↵usion coe�cient with momentum of the incoming heavy
quark. The dotted (black) line represents the non-extensive
for the charm quark and the dashed (red) line represents that
for the bottom quark. The dot-dashed (blue) line and the
solid (green) lines are the extensive drag coe�cients for the
charm and the bottom quark respectively.

FIG. 6. Variation of the extensive and non extensive parallel
di↵usion coe�cients with temperature of the medium. The
dotted (black) line represents the non-extensive drag for the
charm quark and the dashed (red) line represents that for
the bottom quark. The dot-dashed (blue) line and the solid
(green) lines are the extensive drag coe�cients for the charm
and the bottom quark respectively.

and bottom) traversing through a medium of quarks and
gluons and interacting elastically with them. The novelty
of this work lies in the introduction of the correlation of
the incoming heavy quarks with the medium particles.
We observe that the transport coe�cients are substan-
tially modified when we introduce correlation. Also, in
the vanishing correlation limit we get back the extensive
transport coe�cients.

fm
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FIG. 1. Variation of R1
p,q and f(q) (red/solid) with q

(momenta of the medium particles). R1
p,q gradually ap-

proaches f(q) with decreasing �q values: i) �q = 0.05
(green/dotted), ii) �q = 0.01 (magenta/dotdashed), iii) �q =
0.001 (brown/dashed)
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We evaluate the transport coe�cients in Eq. 27 using
the standard techniques [15].

FIG. 2. Variation of R2
p,q and f(q) (red/solid) with q

(momenta of the medium particles). R2
p,q gradually ap-

proaches f(q) with decreasing �q values: i) �q = 0.05
(green/dotted), ii) �q = 0.01 (magenta/dotdashed), iii) �q =
0.001 (brown/dashed)
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FIG. 3. Variation of the extensive and non extensive drag co-
e�cients with momentum of the incoming heavy quark. The
dotted (black) line represents the non-extensive drag for the
charm quark and the dashed (red) line represents that for
the bottom quark. The dot-dashed (blue) line and the solid
(green) lines are the extensive drag coe�cients for the charm
and the bottom quark respectively.

FIG. 4. Variation of the extensive and non extensive drag
coe�cients with temperature of the medium. The dotted
(black) line represents the non-extensive drag for the charm
quark and the dashed (red) line represents that for the bot-
tom quark. The dot-dashed (blue) line and the solid (green)
lines are the extensive drag coe�cients for the charm and the
bottom quark respectively.

D. Non Linear Fokker Planck Transport
Coe�cients to Linear Fokker Planck Transport

Coe�cients

Comparing Eqs. (23, 24) it is clear that to get back the
extensive Fokker Planck transport coe�cients from the
non extensive ones, the functions R1

p,q and R2
p,q should

reduce to f(q) (= Exp(�q/T ), the momentum space
medium particle distribution with medium temperature
T ) and we expect this reduction to take place in the limit
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proaches f(q) with decreasing �q values: i) �q = 0.05
(green/dotted), ii) �q = 0.01 (magenta/dotdashed), iii) �q =
0.001 (brown/dashed)
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We evaluate the transport coe�cients in Eq. 27 using
the standard techniques [15].

FIG. 2. Variation of R2
p,q and f(q) (red/solid) with q

(momenta of the medium particles). R2
p,q gradually ap-

proaches f(q) with decreasing �q values: i) �q = 0.05
(green/dotted), ii) �q = 0.01 (magenta/dotdashed), iii) �q =
0.001 (brown/dashed)

FIG. 3. Variation of the extensive and non extensive drag co-
e�cients with momentum of the incoming heavy quark. The
dotted (black) line represents the non-extensive drag for the
charm quark and the dashed (red) line represents that for
the bottom quark. The dot-dashed (blue) line and the solid
(green) lines are the extensive drag coe�cients for the charm
and the bottom quark respectively.
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FIG. 4. Variation of the extensive and non extensive drag
coe�cients with temperature of the medium. The dotted
(black) line represents the non-extensive drag for the charm
quark and the dashed (red) line represents that for the bot-
tom quark. The dot-dashed (blue) line and the solid (green)
lines are the extensive drag coe�cients for the charm and the
bottom quark respectively.

D. Non Linear Fokker Planck Transport
Coe�cients to Linear Fokker Planck Transport

Coe�cients

Comparing Eqs. (23, 24) it is clear that to get back the
extensive Fokker Planck transport coe�cients from the
non extensive ones, the functions R1

p,q and R2
p,q should

reduce to f(q) (= Exp(�q/T ), the momentum space
medium particle distribution with medium temperature
T ) and we expect this reduction to take place in the limit
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�q ! 0, i.e. when there exists no correlation between the
probe and the medium particles. From Figs. (1, 2), we
can ascertain that with decreasing �q values R1

p,q and

R2
p,q both approach f(q). For �q = 0.001 they are very

close to f(q). Reducing the correlation further will re-
sult in the exact overlap. This proves that the modified
expressions for the Fokker-Planck drag and di↵usion co-
e�cients give back the linear Fokker-Planck transport
coe�cients when there exists no correlation between the
probe particle and the medium.

III. RESULTS AND DISCUSSION

In our calculation we use 1.3 GeV and 4.2 GeV as the
charm and bottom quark masses respectively. The pa-
rameter values characterizing the temperature profile in
Eq. (14) are [43]: T

p

= 290 MeV, a = 5.99 and r0 = 7.96
fm. While the medium temperature T

q

is taken to be 350
MeV for the Figs. 3, 5 and 7, the incoming momenta are
taken to be 5 GeV for Figs. 4, 6, 8. Also, while generat-
ing Figs. 3-8, we put �q = 0.01 as the correlation between
the probe and the medium. In the calculations, we have
considered only the heavy quarks elastically scattering
with light quarks and gluons of the medium. The colli-
sional matrix element has been taken from [50]. The ra-
diative Fokker-Planck drag and di↵usion coe�cients can
be evaluated following the technique delineated in [25].
This we reserve for our future work. In the plots of the
Fokker-Planck transport coe�cients we show both the
(widely studied) extensive as well as the non-extensive
cases for sake of comparison. The temperature variation
of the collisional extensive transport coe�cients can be
compared with those from [25] and they show more or
less similar results. It is interesting to see that when we
introduce a correlation between the heavy quark and the
light quark/gluon in the medium at the same space time
point, the transport coe�cients increase. This can be
attributed to the modification of the phase space due to
correlation.

There is a huge increase in the values of the non exten-
sive transport coe�cients. For charm or bottom quarks,
travelling through a medium of 350 MeV temperature
with 10 GeV momentum, the non extensive drag coef-
ficient and the non extensive transverse di↵usion coe�-
cient are ⇠ 3 times more than their extensive counter-
part. The corresponding factor is ⇠ 2.5 for the parallel
di↵usion coe�cient. Also, the heavy quark non exten-
sive drag increases with the momentum as opposed to
the trend shown by its extensive counterpart.

IV. SUMMARY, CONCLUSION AND
OUTLOOK

To summarize, we have calculated the Fokker-Planck
drag and di↵usion coe�cients of heavy quarks (charm
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FIG. 5. Variation of the extensive and non extensive parallel
di↵usion coe�cient with momentum of the incoming heavy
quark. The dotted (black) line represents the non-extensive
for the charm quark and the dashed (red) line represents that
for the bottom quark. The dot-dashed (blue) line and the
solid (green) lines are the extensive drag coe�cients for the
charm and the bottom quark respectively.

FIG. 6. Variation of the extensive and non extensive parallel
di↵usion coe�cients with temperature of the medium. The
dotted (black) line represents the non-extensive drag for the
charm quark and the dashed (red) line represents that for
the bottom quark. The dot-dashed (blue) line and the solid
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and bottom) traversing through a medium of quarks and
gluons and interacting elastically with them. The novelty
of this work lies in the introduction of the correlation of
the incoming heavy quarks with the medium particles.
We observe that the transport coe�cients are substan-
tially modified when we introduce correlation. Also, in
the vanishing correlation limit we get back the extensive
transport coe�cients.
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�q ! 0, i.e. when there exists no correlation between the
probe and the medium particles. From Figs. (1, 2), we
can ascertain that with decreasing �q values R1

p,q and

R2
p,q both approach f(q). For �q = 0.001 they are very

close to f(q). Reducing the correlation further will re-
sult in the exact overlap. This proves that the modified
expressions for the Fokker-Planck drag and di↵usion co-
e�cients give back the linear Fokker-Planck transport
coe�cients when there exists no correlation between the
probe particle and the medium.

III. RESULTS AND DISCUSSION

In our calculation we use 1.3 GeV and 4.2 GeV as the
charm and bottom quark masses respectively. The pa-
rameter values characterizing the temperature profile in
Eq. (14) are [43]: T

p

= 290 MeV, a = 5.99 and r0 = 7.96
fm. While the medium temperature T

q

is taken to be 350
MeV for the Figs. 3, 5 and 7, the incoming momenta are
taken to be 5 GeV for Figs. 4, 6, 8. Also, while generat-
ing Figs. 3-8, we put �q = 0.01 as the correlation between
the probe and the medium. In the calculations, we have
considered only the heavy quarks elastically scattering
with light quarks and gluons of the medium. The colli-
sional matrix element has been taken from [50]. The ra-
diative Fokker-Planck drag and di↵usion coe�cients can
be evaluated following the technique delineated in [25].
This we reserve for our future work. In the plots of the
Fokker-Planck transport coe�cients we show both the
(widely studied) extensive as well as the non-extensive
cases for sake of comparison. The temperature variation
of the collisional extensive transport coe�cients can be
compared with those from [25] and they show more or
less similar results. It is interesting to see that when we
introduce a correlation between the heavy quark and the
light quark/gluon in the medium at the same space time
point, the transport coe�cients increase. This can be
attributed to the modification of the phase space due to
correlation.

There is a huge increase in the values of the non exten-
sive transport coe�cients. For charm or bottom quarks,
travelling through a medium of 350 MeV temperature
with 10 GeV momentum, the non extensive drag coef-
ficient and the non extensive transverse di↵usion coe�-
cient are ⇠ 3 times more than their extensive counter-
part. The corresponding factor is ⇠ 2.5 for the parallel
di↵usion coe�cient. Also, the heavy quark non exten-
sive drag increases with the momentum as opposed to
the trend shown by its extensive counterpart.

IV. SUMMARY, CONCLUSION AND
OUTLOOK

To summarize, we have calculated the Fokker-Planck
drag and di↵usion coe�cients of heavy quarks (charm

FIG. 5. Variation of the extensive and non extensive parallel
di↵usion coe�cient with momentum of the incoming heavy
quark. The dotted (black) line represents the non-extensive
for the charm quark and the dashed (red) line represents that
for the bottom quark. The dot-dashed (blue) line and the
solid (green) lines are the extensive drag coe�cients for the
charm and the bottom quark respectively.
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FIG. 6. Variation of the extensive and non extensive parallel
di↵usion coe�cients with temperature of the medium. The
dotted (black) line represents the non-extensive drag for the
charm quark and the dashed (red) line represents that for
the bottom quark. The dot-dashed (blue) line and the solid
(green) lines are the extensive drag coe�cients for the charm
and the bottom quark respectively.

and bottom) traversing through a medium of quarks and
gluons and interacting elastically with them. The novelty
of this work lies in the introduction of the correlation of
the incoming heavy quarks with the medium particles.
We observe that the transport coe�cients are substan-
tially modified when we introduce correlation. Also, in
the vanishing correlation limit we get back the extensive
transport coe�cients.
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FIG. 7. Variation of the extensive and non extensive trans-
verse di↵usion coe�cient with the momentum of the incom-
ing heavy quark. The dotted (black) line represents the non-
extensive transverse di↵usion for the charm quark and the
dashed (red) line represents that for the bottom quark. The
dot-dashed (blue) line and the solid (green) lines are the ex-
tensive transverse di↵usion coe�cients for the charm and the
bottom quark respectively.

FIG. 8. Variation of the extensive and non extensive
transverse di↵usion coe�cients with the temperature of the
medium. The dotted (black) line represents the non-extensive
transverse di↵usion for the charm quark and the dashed (red)
line represents that for the bottom quark. The dot-dashed
(blue) line and the solid (green) lines are the extensive trans-
verse di↵usion coe�cients for the charm and the bottom quark
respectively.

In the present calculations, we have considered the col-
lisional processes only. As already mentioned, radiative
scattering processes will also be important particularly
in the high momentum region. Treatment of the radia-
tive processes (heavy quark scattering with light quark
to emit single gluon is one such example) can be treated
following the techniques outlined in [25] and we reserve

the work for future.
Combining drag and the stopping power dE/dx (en-

ergy loss per unit time time divided by the particle speed)
we can define a relativistically invariant quantity [13]
and hence the present calculation can directly lead to
the calculation of the stopping power in the ambience
of fluctuating temperature. Also, using the non exten-
sive transport coe�cients we can try to solve the non
linear Fokker-Planck equation to find the evolution of
the incoming heavy quark distribution. The ratio of
the final distribution to the initial distribution can be
compared with the experimentally observed nuclear sup-
pression factor (RAA) of heavy quarks. The results can
be compared/contrasted with the results obtained in the
earlier works in this direction in the Refs. [41], [51].

APPENDIX: MELLIN-BARNES CONTOUR
INTEGRATION IN SPACE AVERAGING
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We then recall the MB contour integral representation,
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valid here for Re (c) > 0 and Re (✏) 2 (�Re(c), 0).
Here, c > 0 is a real number. With X = g1,p, Y =
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✓
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◆
we apply Eq. 29 to Eq. 28 and reverse

the order of the contour integration and the space inte-
gration to get,
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where r̃ = a(c + z)r/r0, and for the convergence of the
space integration z > 0, given that a, r, r0, c > 0.
Now, the contour integration introduces another con-
straint which demands that g1,p/g2,p < 1 which is not
the case for the values of a, r0 and c used here. Hence,
we wrap the integration contour in the left hand side
so that the contributions from the poles at the negative
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dashed (red) line represents that for the bottom quark. The
dot-dashed (blue) line and the solid (green) lines are the ex-
tensive transverse di↵usion coe�cients for the charm and the
bottom quark respectively.
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transverse di↵usion for the charm quark and the dashed (red)
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(blue) line and the solid (green) lines are the extensive trans-
verse di↵usion coe�cients for the charm and the bottom quark
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In the present calculations, we have considered the col-
lisional processes only. As already mentioned, radiative
scattering processes will also be important particularly
in the high momentum region. Treatment of the radia-
tive processes (heavy quark scattering with light quark
to emit single gluon is one such example) can be treated
following the techniques outlined in [25] and we reserve

the work for future.
Combining drag and the stopping power dE/dx (en-

ergy loss per unit time time divided by the particle speed)
we can define a relativistically invariant quantity [13]
and hence the present calculation can directly lead to
the calculation of the stopping power in the ambience
of fluctuating temperature. Also, using the non exten-
sive transport coe�cients we can try to solve the non
linear Fokker-Planck equation to find the evolution of
the incoming heavy quark distribution. The ratio of
the final distribution to the initial distribution can be
compared with the experimentally observed nuclear sup-
pression factor (RAA) of heavy quarks. The results can
be compared/contrasted with the results obtained in the
earlier works in this direction in the Refs. [41], [51].
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the case for the values of a, r0 and c used here. Hence,
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FIG. 5. Variation of drag coefficient with pT for T = 200 MeV.

the charm and bottom quarks at a temperature T = 200 MeV.
The momentum dependence is weak. For nonzero quark
chemical potential the value of the drag increases; however,
the nature of the variations remains the same. In Fig. 6 the
temperature variation of the drag coefficient is plotted for both
zero and nonzero quark chemical potentials. Qualitatively, the
inverse of the drag coefficient gives the magnitude of the
relaxation time. Therefore, the present results indicate that
a system with a fixed temperature achieves equilibrium faster
for nonzero µ. In Fig. 7 the diffusion coefficients are plotted as
a function of pT for T = 200 MeV. The diffusion coefficient
for nonzero µ is higher compared to the case of vanishing
µ. The same quantity is displayed in Fig. 8 as a function of
temperature. In the present work we confine µ = 0. Recently
the heavy quark momentum diffusion coefficient has been
computed [39] at next to leading order within the the ambit
of hard thermal loop approximations. For T ∼ 400 MeV our
momentum-averaged pQCD value of the diffusion coefficient
is comparable to the value obtained in Ref. [39] in the leading
order approximation for the same set of inputs (e.g., strong
coupling constant and same number of flavors).

The inverse of the drag coefficient gives an estimate of the
thermalization time scale. Results obtained in the present work
indicate that heavy quarks are unlikely to attain thermalization
at RHIC and LHC energies [40].

The total amount of energy dissipated by a parton depends
on the path length it traverses through the plasma. Each
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FIG. 7. Variation of diffusion coefficient with pT for T =
200 MeV.

parton traverses a different path length, which depends on the
geometry of the system and on the point where it is produced.
The probability that a parton is created at a point (r,φ) in
the plasma depends on the number of binary collisions at that
point, which can be taken as [21]

P (r,φ) = 2
πR2

(
1 − r2

R2

)
θ (R − r), (12)

where R is the nuclear radius. A parton created at (r,φ) in the
transverse plane propagates a distance L =

√
R2 − r2sin2φ −

rcosφ in the medium. In the present work we adopt the
following averaging procedure for transport coefficients. For
the drag coefficient (γ ),

% =
∫

rdrdφP (r,φ)
∫ L/v

dτγ (τ ), (13)

where v is the velocity of the propagating partons. The
quantity % appears in the solution of the FP equation (see
Ref. [20] for details). Similar averaging has been done for the
expression involving diffusion coefficients to take into account
the geometry of the system.

Using the drag and diffusion coefficients as inputs we solve
the FP equation with the following parametrization of the
initial momentum distribution of the charm quarks generated
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Probing quark gluon plasma properties by heavy flavors

Santosh K. Das, Jan-e Alam,* and Payal Mohanty
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The Fokker-Planck (FP) equation has been solved to study the interaction of nonequilibrated heavy quarks with
the quark gluon plasma expected to be formed in heavy ion collisions at Relativistic Heavy Ion Collider energies.
Solutions of the FP equation have been convoluted with the relevant fragmentation functions to obtain the D

and B meson spectra. Results are compared with experimental data measured by the STAR Collaboration. It is
found that the present experimental data cannot distinguish pT spectra obtained from the equilibrium versus the
nonequilibrium charm distributions. Data at lower pT may play a crucial role in making the distinction between
the two. The nuclear suppression factor RAA for nonphotonic single-electron spectra resulting from semileptonic
decays of hadrons containing heavy flavors has been evaluated using the present formalism. It is observed that
the experimental data on the nuclear suppression factor of nonphotonic electrons can be reproduced within this
formalism by enhancing the perturbative QCD cross sections by a factor of 2, provided that the expansion of the
bulk matter is governed by the velocity of sound cs ∼ 1/

√
4. The ideal-gas equation of state fails to reproduce

the data even with enhancement of the perturbative QCD cross sections by a factor of 2.

DOI: 10.1103/PhysRevC.80.054916 PACS number(s): 12.38.Mh, 24.85.+p, 25.75.Nq

I. INTRODUCTION

Nuclear collisions at Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) energies are aimed
at creating a phase of matter where the properties are governed
by quarks and gluons [1]. This phase of matter, composed of
mainly light quarks and gluons, is called quark gluon plasma
(QGP). Study of the bulk properties of QGP is a field of
great contemporary interest and the heavy flavors, namely,
charm and bottom quarks, play a crucial role in such studies.
Because they are produced in the early stage of collisions,
they are not part of the bulk properties of the system and their
thermalization time scale is longer than that of light quarks
and gluons and, hence, can retain the interaction history more
effectively.

The successes of the relativistic hydrodynamical model
[2,3] in describing the host of experimental results from the
RHIC [4] indicate that thermalization may have taken place
in the system of quarks and gluons formed after nuclear
collisions. The strong final-state interaction of high-energy
partons with the QGP, that is, the observed jet quenching [5,6]
and the large elliptic flow (v2) [7,8], in Au + Au collisions
at RHIC energy indicate the possibility of fast equilibration.
On the one hand, experimental data indicate an early thermal-
ization time, ∼0.6 fm/c [9]; on the other hand, perturbative
QCD (pQCD)-based calculations give a thermalization time of
∼2.5 fm/c [10] (see also Ref. [11]). The gap between these two
time scales suggests that nonperturbative effects play a crucial
role in achieving thermalization. It has also been pointed out
that the instabilities [12–15] may drive the system toward faster
equilibrium. Two pertinent issues regarding equilibration are
addressed here: (i) Do the heavy quarks achieve equilibrium?
and (ii) If they do, can the equilibrium be maintained during
expansion of the system? The second issue is addressed first.

*jane@veccal.ernet.in

We make the rather strong assumption that the heavy
quarks produced initially are in thermal equilibrium and
check whether they can maintain equilibrium during the entire
evolution processes by comparing their scattering rates with
the expansion rate of the matter. This issue is addressed
with different equations of state (EOS), which affect the
expansion rate. If the heavy quarks are unable to maintain
equilibrium, then analysis of the transverse momentum of
mesons carrying heavy flavors cannot be done using the
thermal phase space distribution. The analysis will require
nonequilibrium statistical mechanical treatment. We solve the
Fokker-Planck (FP) equation [16–23] to address this issue, as
discussed later.

The pQCD calculations indicate that the heavy quark
thermalization time τ

Q
i is longer [19] than that of the

light quark and gluon thermalization scale τi . Gluons may
thermalize before up and down quarks [18,24]; in the present
work we assume that the QGP is formed at time τi . Therefore,
the interaction of the nonequilibrated heavy quark (Q) with
the equilibrated QGP for the time interval τi < τ < τ

Q
i can be

treated within the ambit of the FP equation; that is, the heavy
quark can be thought of as executing Brownian motion in the
heat bath of QGP during the said interval of time. The solution
of the FP equation can be used to study pT spectra of heavy
mesons in the spirit of the blast-wave method.

In the next section we address the issues of thermalization
in a rapidly expanding system. The results indicate that
heavy quarks cannot maintain equilibrium at RHIC and LHC
energies during the entire evolutionary history of the QGP.
This demands treatment of the problem within the framework
of nonequilibrium statistical mechanics, which is discussed in
Sec. III. Section IV is devoted to a summary and conclusions.

II. THERMALIZATION IN AN EXPANDING SYSTEM

We consider a thermally equilibrated partonic system of
quarks, antiquarks, and gluons produced in relativistic heavy

0556-2813/2009/80(5)/054916(8) 054916-1 ©2009 The American Physical Society
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Summary and conclusion

Broadly, with the help of Tsallis Statistics we discussed about the inputs 
to study the evolution of a medium and that of a probe particle passing 
through that medium when correlation is present.

Analytical calculation of the thermodynamic variables of hot and dense 
‘ideal’ massive and massless Tsallis gas

Computing drag/diffusion coefficients of heavy quarks correlated with 
the medium particles
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Drag and diffusion are substantially modified in presence of 
correlation

In dense system, we expect increase in the transport 
coefficients 
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𝑞 − 1 =
1
𝐶 ;	𝑇A = 𝑇𝑒C

§
¨

Systems (temp T1) connected to a finite heat bath (temp T, 
entropy S, heat capacity C):
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STATISTICAL FIELD THEORY OF A NONADDITIVE SYSTEM

A. I. Olemskoi,∗ O. V. Yushchenko,† and A. Yu. Badalyan†

Based on quantum field methods, we develop a statistical theory of complex systems with nonadditive

potentials. Using the Martin–Siggia–Rose method, we find the effective system Lagrangian, from which

we obtain evolution equations for the most probable values of the order parameter and its fluctuation am-

plitudes. We show that these equations are unchanged under deformations of the statistical distribution

while the probabilities of realizing different phase trajectories depend essentially on the nonadditivity pa-

rameter. We find the generating functional of a nonadditive system and establish its relation to correlation

functions; we introduce a pair of additive generating functionals whose expansion terms determine the set

of multipoint Green’s functions and their self-energy parts. We find equations for the generating functional

of a system having an internal symmetry and constraints. In the harmonic approximation framework, we

determine the partition function and moments of the order parameter depending on the nonadditivity

parameter. We develop a perturbation theory that allows calculating corrections of an arbitrary order to

the indicated quantities.

Keywords: nonadditivity parameter, generating functional, partition function

1. Introduction

Statistical physics is known to be based on the assumption of phase space intermixing [1], [2]. In
accordance with this assumption, a given volume evolves rapidly shrinking in one dimension and expanding
in other dimensions, after some time acquiring such a branched form that its points can be found in any
finite domain of the phase space. Additionally assuming that the number of the degrees of freedom is
infinite, we pass from the intermixing hypothesis to the Gibbs distribution, which implies the additivity of
thermodynamic potentials. The following conditions must then be satisfied [3]:

• The kinetic condition: The intermixing occurs exponentially fast (this ensures a well-developed chaotic
structure and requires that the highest Lyapunov exponent be positive).

• The dynamical condition: All forces, including those responsible for a microscopic memory, are short
range (the stochastic process is then Markovian).

• The geometric condition: The phase space has the standard properties: continuous, smooth, Eu-
clidean, etc.

Numerous systems with a nonadditive behavior have recently been found. These include ferromagnets,
spin glasses, two-dimensional electron plasma in a turbulent regime, systems with anomalous Levi diffusion,
granulated systems, solid bodies subject to ion bombardment, gravitational systems, solar neutrinos, black
holes, elementary particles colliding at high energies, quantum systems with entanglement, and many

∗Deceased.
†Sumy State University, Sumy, Ukraine, e-mail: yushchenko@phe.sumdu.edu.ua.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 3, pp. 444–466, March, 2013. Original
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Following are Tsallis thermodynamic     
variables for m = 0, µ ≠ 0

P ¼ gT4

6π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð15Þ

ϵ ¼ gT4

2π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð16Þ

s ¼ gT3

6π2
ð4 − μ

T − δq μ
TÞð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð12 − δqÞð13 − δqÞ
; ð17Þ

n ¼ gT3

2π2
ð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð12 − δqÞ
: ð18Þ

Again, all results are valid for 0 ≤ δq < 1=3 as required by
the consistency of the framework, and this time the addi-
tional constraint δq < T=μ needs to be supplemented
(which happens to guarantee the absence of branch cuts,
given the δq power functions containing ratios of the
combination δqμ=T).

C. Pressure for m ≠ 0 and μ ≠ 0 in the
upper δq region

Below we display the final result for the full pressure in
the massive case, with a finite chemical potential, evaluated
in the upper δq region,

PU ¼ gm4

16π
3
2

!
T

δqm

"1þδq
δq

"
Γð1−3δq2δq Þ
Γð1þ2δq

2δq Þ
× 2F1

!
1þ δq
2δq

;
1 − 3δq
2δq

;
1

2
;

!
δqμ − T
δqm

"
2
"

þ 2

!
δqμ − T
δqm

"
×
Γð1−2δq2δq Þ
Γð1þδq

2δq Þ
× 2F1

!
1þ 2δq
2δq

;
1 − 2δq
2δq

;
3

2
;

!
δqμ − T
δqm

"
2
"#

; ð19Þ

which is valid for 0 ≤ δq < 1=3, required by the consistency of the framework, and δq > T=ðmþ μÞ by the convergence of
the Gauss hypergeometric functions.

D. Pressure for m ≠ 0 and μ ≠ 0 in the lower δq region

Below we display the final result for the full pressure in the massive case, with a finite chemical potential, evaluated in the
lower δq region,

PL ¼ gm4

π
3
2

!
T=2

T − μδq

"1þδq
δq
# δq2ð2 − δqÞΓð 1δqÞ
ð1 − 3δqÞð1 − 2δqÞð1 − δqÞΓð2þδq

2δq Þ

$

× 2F1

!
1þ 2δq
2δq

;
1þ δq
2δq

;
2 − δq
2δq

; 1 −
!

δqm
T − μδq

"
2
"
; ð20Þ

which is valid for 0 ≤ δq < 1=3 required by the consis-
tency of the framework and δq ≤ T=ðmþ μÞ by the
convergence of the Gauss hypergeometric function.

IV. THERMODYNAMIC VARIABLES IN THE
MASSLESS LIMIT

Let us define a more general integral, encompassing all
variables in the massless limit present in the literature, and
reproducing Eqs. (2), (3), (4), and (5), by

Iðα; βÞ≡ g
Z

d3p
ð2πÞ3

pβ−2

½1þ δq p−μ
T &

α
δq
; ð21Þ

where, here, α and β are nothing but just handy variables,
with the former being set to either 1þ δq or 1 at the end in
order to recover the thermodynamic variables.
The above integral is built to converge, in three dimen-

sions, upon some constraints on the various parameters.

Those encompass the fact that the integrand shall only
assume real values and the usual infrared and ultraviolet
convergence conditions. The conditions for the massless
case turn to be

1þ ReðβÞ > 0; ReðαÞ > 0; ð22Þ

T > δqμ; δq <
ReðαÞ

1þ ReðβÞ
; ð23Þ

for which we see that the first two are trivially accom-
plished, given the actual relevant set of integrals we wish to
compute. The last two, on the other hand, are not trivial at
all. Given the usual α and β values we are interested in, e.g.,
some combinations of α ¼ 1þ δq; 1 and β ¼ 2, 3, we see
that δqmust indeed be bounded at least by δq < 1=3, as we
previously mentioned. This being said, the remaining
constraint on the T and μ parameters is either not needed
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Kondo cloud of single heavy quark in cold and dense matter

Shigehiro Yasui1, ⇤

1Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

The Kondo e↵ect is a universal phenomena observed in a variety of fermion systems containing a
heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely
high density, I study the Kondo e↵ect by color exchange in quark matter containing a single heavy
(charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo
e↵ect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the
mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present
that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section
for the light quark and the heavy quark, and discuss its e↵ect to the finite size quark matter.

PACS numbers: 12.39.Hg,21.65.Qr,12.38.Mh,72.15.Qm

Introduction.— Heavy (charm or bottom) quarks play
the important role for studying the properties of nuclear
matter and quark matter, whose dynamics is governed
by Quantum Chromodynamics (QCD). They are good
probes, because (i) due to their heavy masses [1], the
heavy quark dynamics would be less a↵ected by light
quarks, and (ii) the heavy-quark symmetry for heavy fla-
vor and spin makes the dynamics simple and provides
a systematic understanding of spectroscopy and reac-
tion [2, 3]. However, the impurity particle injected as
a “probe” sometimes happens to cause a drastic changes
of the medium properties. The Kondo e↵ect is one of the
well-known examples, as a few number of impurity par-
ticles can change the thermodynamic and transportation
properties of the medium [4–6]. In this article, I discuss
the Kondo e↵ect in quark matter at low temperature and
high density, called the QCD Kondo e↵ect [7–10]. The
QCD Kondo e↵ect will be useful to study of high density
matter, because heavy quarks can be produced by ini-
tial gluon dynamics in relativistic heavy ion collisions in
accelerator facilities such as GSI-FAIR [11] and J-PARC
and/or by high energy neutrino reactions in interior cores
of neutron stars [10].

Historically, the Kondo e↵ect was discovered to explain
the logarithmic enhancement of electric resistance of met-
als containing a few magnetic (spin) impurities at low
temperature [12]. Kondo found that the spin-exchange
(non-Abelian) interaction between the conducting elec-
trons and the spin impurities strongly enhances the ef-
fective interaction in low-energy scattering leading to the
Landau pole and changes the system into the strong cou-
pling one. There, not only the non-Abelian interaction,
but also the Fermi surface (degenerate state in general)
and the loop e↵ect (virtual creation of particle-hole pairs)
are important. So far, many theoretical methods to ana-
lyze the Kondo e↵ect have been developed [4–6], and the
Kondo e↵ect is now recognized as a prototype of strong
coupling problems in condensed matter systems [13–19].

The Kondo e↵ect is possible to exist the nuclear/quark
matter containing heavy hadrons (e.g. D̄, D̄

s

, B, B

s

mesons) [7, 20, 21], or heavy quarks (c, b quarks) [7–

10] as heavy impurity particles, although their energy
scales are di↵erent from the electron systems in labora-
tory [22]. In the strong interaction, in fact, several types
of non-Abelian interaction are present: the spin exchange
with SU(2) symmetry (e.g. for D̄

s

, D̄⇤
s

mesons) and the
isospin exchange with SU(2) symmetry (e.g. for a D̄

meson) in nuclear matter, and the color exchange with
SU(3) symmetry (e.g. for a c quark) in quark matter.
The Fermi surface and the loop e↵ect exists naturally in
nuclear/quark matter at low temperature. Hence, the
condition for realizing the Kondo e↵ect is satisfied.
The Kondo e↵ect in nuclear/quark matter provides us

with basic knowledge for heavy hadron/quark dynam-
ics: (i) heavy-hadron–nucleon (heavy-quark–light-quark)
interaction, (ii) modification of impurity properties by
medium and (iii) change of nuclear/quark matter by im-
purity e↵ect [23].
In the present study, I discuss the QCD Kondo e↵ect

in quark matter. So far, there have been perturbative
analyses [7–9], and recently a non-perturbative study has
been performed by the mean-field approximation for the
ground state [10] [24]. The mean-field approach is sim-
ple, but it provides us with understanding the essential
properties of the Kondo e↵ect [25–30]. In this study, I
consider the situation that there is a single heavy quark
in quark matter, and apply the mean-field approach to
study the ground state.
In the mean-field approach, I define the Kondo cloud

by the condensate with light quark  and the heavy quark
 , i.e. the light-hole–heavy-quark condensate h ̄ i and
the light-quark–heavy-antiquark condensate h ̄ i in the
color singlet channel [10]. The formation of the conden-
sate makes the system energetically stable. The Kondo
cloud is analogous to the chiral condensate h ̄ i such
that a pair of antiquark and quark forms a condensate in
QCD vacuum [31, 32]. In Ref. [10], by using the color cur-
rent interaction between two quarks, it was demonstrated
that the Kondo cloud is realized in quark matter at low
temperature and high density, where the uniformity of
spatial distribution of heavy quarks was supposed for an
ideal situation. In this study, considering a single heavy
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Derivation of nonlinear Fokker-Planck equations by means of approximations
to the master equation

Evaldo M. F. Curado1,* and Fernando D. Nobre1,2,†
1Centro Brasileiro de Pesquisas Fı́sicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro—RJ, Brazil
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Nonlinear Fokker-Planck equations !FPEs" are derived as approximations to the master equation, in cases of
transitions among both discrete and continuous sets of states. The nonlinear effects, introduced through the
transition probabilities, are argued to be relevant for many real phenomena within the class of anomalous-
diffusion problems. The nonlinear FPEs obtained appear to be more general than some previously proposed !on
a purely phenomenological basis" ones. In spite of this, the same kind of solution applies, i.e., it is shown that
the time-dependent Tsallis’s probability distribution is a solution of both equations, obtained either from
discrete or continuous sets of states, and that the corresponding stationary solution is, in the infinite-time limit,
a stable solution.

DOI: 10.1103/PhysRevE.67.021107 PACS number!s": 05.20.!y, 05.40.Fb, 05.40.Jc, 66.10.Cb

I. INTRODUCTION

The master equation is one of the most important equa-
tions in statistical physics, with a wide range of applicability;
essentially, it governs the dynamics of Markov processes,
which are stochastic processes with a very limited memory
of previous events #1,2$. The time evolution of a system of
stochastic variables is characterized by transitions between
the various realizations of these variables, in such a way that
the probability of finding the system in a given state changes
in time until it reaches a steady state, in which transitions do
not produce changes in the probablity distribution. The mas-
ter equation specifies how this probability distribution
evolves in time due to such transitions between states.
For a system described in terms of discrete stochastic

variables, the master equation for the probability P(n ,t) of
finding the system in a state characterized by the variable n
at time t, is given by

%P!n ,t "
%t " &

m"!'

'

#P!m ,t "wm ,n! t "!P!n ,t "wn ,m! t "$ ,

!1.1"

where wk ,l(t) represents the transition probability rate from
state k to state l #i.e., wk ,l(t)(t is the probability for a tran-
sition from state k to state l to occur during the time interval
t→t#(t]. The master equation may be written also for the
case of a continuous stochastic variable x,

%P!x ,t "
%t "!

!'

'

dx!#P!x!,t "w!x!"x "!P!x ,t "w!x"x!"$ ,

!1.2"

where w(y "z) represents the transition rate from state y to
state z.

By choosing conveniently the transition rates, both forms
of the master equation #Eqs. !1.1" and !1.2"$ lead, under cer-
tain approximations #1,2$, to the linear Fokker-Planck equa-
tion !FPE",

%P!x ,t "
%t "!

%#F!x "P!x ,t "$
%x #D

%2P!x ,t "
%x2

, !1.3"

where D is a constant !usually known as the diffusion con-
stant" and F(x) represents an external force. For the case of
discrete stochastic variables, the FPE above may be obtained
from Eq. !1.1", if one considers a random walk in which the
step size is given by (; defining

wk ,l!(""!
1
(

)k ,l#1F!k("#
D

(2 !)k ,l#1#)k ,l!1",

!1.4"

and taking the limit (→0 #2$, one gets Eq. !1.3". In the
continuous case #Eq. !1.2"$, if one defines y"x!!x and the
transition rate

w!x"x#y ""*1!x ,y "#*2!x ,y "D , !1.5"

where

*1!x ,y ""# F!x "

(2 if 0+y+!2( ,

0 otherwise

!1.6a"

and

*2!x ,y ""# 1

2!6(3 if !!6(+y+!6( ,

0 otherwise,
!1.6b"
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