Physics in BESIII experiment: New results and prospectives

I.Boyko

LNP seminar 6 Apr 2022

QCD experiments in LNP

I.Boyko

Location of IHEP in Beijing

I.Boyko

History

- BES: 1989-1993 (BEPC)
- BESII: 1998-2004
- **BESIII**: 2008-...

(BEPC) (BEPCII)

BES = BEijing Spectrometer BEPC = Beijing Electron-Positron Collider

BESIII collaboration

- About 500 members, 82 institutions, 17 countries
- 50 institutions from China, 9 rest of Asia, 17 Europe (incl. Dubna and Novosibirsk), 5 USA, 1 S.America

BEPCII storage rings

- Collision energy 2.0 – 4.95 GeV (design: 2.0-4.6)
- Achieved luminosity 1.0x10³³ cm⁻² s⁻¹ (design: 1.0x10³³)
- Energy spread 5x10⁻⁴
- No. of bunches
 93
- Total current
 0.91A
- Circumference
 237m

BESIII detector

CsI(Tl) calorimeter

BESIII general view

Inner tracker upgrade

- Inner part of the Main Drift Chamber suffers from aging
- Since 2015, a Cylindrical GEM chamber is under construction
- Similar to KLOE-2 CGEM

- Rate 10⁴ Hz/cm²
- $\sigma_{r\phi} \sim 130 \ \mu m$
- $\sigma_p/p=0.5\%@1GeV/c$

I.Boyko

World largest samples of J/ ψ , ψ (2S), ψ (3770), ψ (4040), ψ (4180), Y(4260), ...

R ratio

R-ratio for g-2 precision calculations

- $R = \sigma(ee \rightarrow hadrons) / \sigma(ee \rightarrow \mu\mu)$
- Sensitive to quark loop corrections to g-2

BESIII physics program

- Charmonium physics $(J/\psi,\psi',\psi'',\eta_c,\chi_{cJ})$
- Charmed hadrons (D, Λ_c)
- Exotic states (X,Y,Z)
- Light hadron spectroscopy
- Tau lepton physics
- R-scan (inclusive hadron yield)
- Baryon form-factors
- Searches for new physics

Statistics of scientific results

Papers

Talks

YEAR	CWR	EDITING	DONE	TOTAL	Talk per Year
2022 (3/12 Mo.)	13	8	3	24	
2021	1	3	74	78	80
2020	1	0	51	52	40
2019	0	0	45	45	0 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Intak

Zc states

First observation of a charged charmonium-like state

Z_c(3900)⁺

- An unambiguous peak of (π±J/ψ) mass observed in ee→π⁺π⁻J/ψ data
- M = 3899.0 ± 3.6 ± 4.9 MeV
- Γ = 46 ± 10 ± 20 MeV
- Most natural interpretation is a 4-quark state ccqq (tetraquark); other interpretations also possible

PWA of Zc(3900)

- Contributions from σ, f₀(980), f₂(1270) and f₀(1370) have been considered
- Spin-parity established to be 1^+ at more than 7σ level

Other Zc states

- In total, 4 charged and 4 neutral states have been observed at ~3900 and ~ 4020 MeV in decay modes $\pi\pi J/\psi$, πh_c , D*D and D*D*
- A natural hypothesis: we observe 2 doublets of charged and neutral partners

Summary on Zc decay modes

3900	MeV	4020 MeV		
charged	neutral	charged	neutral	
π±J/ψ	πºJ/ψ	π±h _c	π ⁰ h _c	
$M = 3899.0 \pm 6.1$	$M = 3894.8 \pm 2.3$	$M = 4022.9 \pm 2.8$	$M = 4023.9 \pm 4.4$	
$\Gamma = 46 \pm 22$	$\Gamma = 29.6 \pm 8.2$	$\Gamma = 7.9 \pm 3.7$	Γ = 7.9 (fixed)	
(D*D)±	(D*D) ⁰	(D*D*)±	(D*D*) ⁰	
$M = 3882.0 \pm 1.9$	M=3885.7 ± 10.2	$M = 4026.3 \pm 4.5$	$M = 4025.5 \pm 5.6$	
$\Gamma = 26.5 \pm 2.7$	Γ = 35 ± 19	$\Gamma = 24.8 \pm 9.5$	$\Gamma = 23.0 \pm 6.1$	

Discovery of strange charmonium

- ee $\rightarrow K^+(D_sD^*)$
- M=3983 ± 3 GeV
- $\Gamma = 13 \pm 5$

PRL 126, 102001 (2021)

Physics in **BESIII**

XYZ states

XYZ states

I.Boyko

XYZ states

- An energy scan was performed in the energy domain of XYZ states
- Total 9.0 fb⁻¹ data have been collected
 - Of them, 8.2 fb⁻¹ from a dedicated XYZ-scan
 - Additional 0.8 fb⁻¹ from earlier scans
- Collision energy between 3.77 and 4.60 GeV

I.Boyko

$ee \rightarrow \pi^+\pi^- J/\psi$

- Two resonant structures are observed:
 - Y(4260)? M = 4222.0 \pm 3.1 \pm 1.4, Γ = 44.1 \pm 4.3 \pm 2.0 MeV
 - $Y(4360)? M = 4320.0 \pm 10.4 \pm 7$, $\Gamma = 101.4 \pm 25 \pm 10 MeV$
- Precision on Y(4260) improved
- Y(4360): first observation in $ee \rightarrow \pi^+\pi^- J/\psi$
 - Seen in $ee \rightarrow \pi^+\pi^-\psi'$ by Belle and BaBar

- Two resonances observed:
 - Y(4220): M = 4218.0 ± 5 ± 0.9, Γ = 66 ± 12 ± 0.4 MeV
 - Y(4390): M = 4391.5 ± 6.8 ± 1.0, Γ = 139.5 ± 20 ± 0.6 MeV
- Inconsistent with Y(4260)^{PDG}, Y(4360), ψ(4415)
- Y(4220) consistent with the structure observed in $ee \rightarrow \omega \chi_{c0}$

- Again, 2 resonances observed:
 - Y(4220): M = 4224.8 ± 5.6 ± 4, Γ = 72.3 ± 9.1 ± 0.9 MeV
 - Y(4390): M = 4400.1 \pm 9.3 \pm 2.1, Γ = 181.7 \pm 16.9 \pm 7.4 MeV
- Y(4220) consistent with $\pi^+\pi^-h_c$, $\pi^+\pi^-J/\psi$, ee $\rightarrow \omega\chi_{c0}$
- Y(4390) consistent with $\pi^+\pi^-h_c$

I.Boyko

- BESIII results are consistent with 3 Y-states
- Masses: 4220, 4320, 4390
- Reported by other
 experiment 4260, 4360, 4415 were mis-interpretation
 Physics in BESIII

Baryonic form-factors

$\Lambda_{\rm C}$: the lightest charmed baryon

- Belle data can be described by a Y(4660) resonance
 M = 4652.5 ± 3.4 MeV
- BESIII data show flat cross-section down to the threshold
- There is some tension between BESIII and Belle data

Lambda form-factor

- At BESIII it is possible to measure cross-section down to the threshold energy (just 1 MeV above!)
- Like for Λ_C , BESIII observes a threshold enhancement
- BESIII results marginally consistent with BaBar, but not with the theoretical description

The ppbar threshold

Steep rise of ppbar cross-section is observed by CMD and BaBar
BESIII scan down to 2000 MeV confirms the observations (see next slide)

Oscillations of ppbar and nnbar form-factor

BESIII confirms the periodic oscillations of the effective formfactor as a function of ppbar relative momentum and discovers the same effect for nnbar

Effect is observed on top of energy dependence predicted by dipole model An explanation is proton-antiproton rescattering at ~1 fm distances

I.Boyko

Charmonia baryonic decays (2)

- Again, negative angular parameter is observed in $J/\psi \rightarrow \Sigma\Sigma$
- Not the case for ψ' decays and for non-Σ final states
- LO QCD predicts positive α in all cases
- More sophisticated theoretical model are necessary to explain the observations

Charm decays

D meson measurements

- Clean decay modes (tag side) of D⁺/D⁰/Ds are selected around D-meson invariant mass
- The second meson is reconstructed from the remaining particles (signal side)

I.Boyko

- Nsig = 137 ± 27
- $B[D^+ \rightarrow \tau^+ \nu] = (1.21 \pm 0.24_{stat}) \times 10^{-3}$
 - $R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)}$ SM: R = 2.66 ± 0.01 BESIII: R = 3.21 ± 0.64

I.Boyko

- $Nsig = 4800 \pm 120$
- $B[Ds^+ \rightarrow \tau^+ \nu] = (5.27 \pm 0.15)\%$

 $R \equiv \frac{\Gamma(D^+ \rightarrow \tau^+ \nu)}{\Gamma(D^+ \rightarrow \mu^+ \nu)} \qquad \begin{array}{c} \mathsf{SM:} & \mathsf{R} = 9.75 \pm 0.01 \\ & \mathsf{BESIII:} \ \mathsf{R} = 9.72 \pm 0.37 \end{array}$

I.Boyko

Light hadron spectroscopy

Search for glueball (Igor Denisenko Ph.D.)

- Отобрано 182972 события (см. доп. слайды)
- Фон от других распадов J/ψ оценивается с помощью инклюзивного набора МКсобытий и составляет 0.3 %.

- Изобарная модель
- Резонансы параметризованы с помощью формулы Брейта-Вигнера
- В случае К*(892)[±] и К₂*(1430)[±]

$$\Gamma(s_m, J_a) = \frac{\rho_J(s_m)}{\rho_J(M_a^2)} \Gamma_a,$$

$$\rho_J(s_m) = \frac{2q}{\sqrt{s_m}} \frac{q^{2J}}{F^2(q^2, r, J)}.$$

- Аппроксимация методом наибольшего правдоподобия
- Основной критерий включения или не включения резонанса в ПВА аппроксимацию теорема Вилка

$$\mathrm{NLL} = -\sum_{i} \ln \frac{\omega_{i} \epsilon_{i}}{\int \epsilon \omega d\Phi} = -\sum_{i} \ln \frac{\omega_{i}}{\int \epsilon \omega d\Phi} + const$$

Search for glueball (Igor Denisenko Ph.D.)

J/ ψ → K⁺K⁻ π^{0} @ BESIII: ПВА аппроксимация II

- Широкий вклад в 3⁻ К[±]π⁰ парциальных волнах
- В решение включены состояния уменьшающие NLL более чем на 40
- Систематические ошибки включают неопределенности, связанные с построением ПВА аппроксимации и с качеством МК-моделирования работы детектора
- Нет указаний на существование X(1575)
- Для дальнейшего это решение считается основным

			$K^{\pm}\pi^0$ channels			
J^{PC}	PDG	$M({ m MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	b(%)	$b^{+(-)}(\%)$	ΔNLL
1-	$K^{*}(892)^{\pm}$	$893.6 {\pm} 0.1^{+0.2}_{-0.3}$	$46.7 {\pm} 0.2 {}^{+0.1}_{-0.2}$	$93.4 {\pm} 0.4 {+}^{+1.8}_{-5.8}$	$42.5{\pm}0.1^{+0.5}_{-1.7}$	-
1-	$K^{*}(1410)^{\pm}$	1380*	176*	$0.26{\pm}0.04$	0.11 ± 0.02	80
1-	$K^{*}(1680)^{\pm}$	1677*	205*	0.20 ± 0.03	0.08 ± 0.01	56
2^{+}	$K_2^*(1430)^{\pm}$	$1432.7 {\pm} 0.7 {}^{+2.2}_{-2.3}$	$102.5{\pm}1.6^{+3.1}_{-2.8}$	$9.4{\pm}0.1{}^{+0.8}_{-0.5}$	$4.2{\pm}0.1^{+0.3}_{-0.2}$	
2^{+}	$K_{2}^{*}(1980)^{\pm}$	$1868 {\pm} 8^{+40}_{-57}$	$272 {\pm} 24 {}^{+50}_{-15}$	$0.38 {\pm} 0.04 {}^{+0.22}_{-0.05}$	$0.15 \!\pm\! 0.02 ^{+0.08}_{-0.02}$	192
3-	$K_3^*(1780)^{\pm}$	1781*	203*	$0.16 {\pm} 0.02$	0.07 ± 0.01	105
4+	$K_4^*(2045)^{\pm}$	$2090 {\pm} 9^{+11}_{-29}$	$201 {\pm} 19^{+57}_{-17}$	$0.21{\pm}0.02^{+0.10}_{-0.05}$	$0.09 {\pm} 0.01 {}^{+0.04}_{-0.02}$	212
3-	non-resonant	=.75		$\sim 1.5\%$	$\sim 0.6\%$	629
			K^+K^- channel			
J^{PC}	PDG	$M({ m MeV}/c^2)$	$\Gamma({ m MeV/c^2})$	b(%)	$\Delta \ln L$
1		$1651 \pm 3^{+16}_{-6}$	$194{\pm}8^{+15}_{-7}$	$1.83 {\pm} 0$	$.11^{+0.19}_{-0.17}$	796
1		$2039 {\pm} 8^{+36}_{-18}$	$193 \pm 23^{+25}_{-27}$	0.23 ± 0	$.04^{+0.07}_{-0.06}$	102

I.Boyko

Search for glueball (Igor Denisenko Ph.D.)

$J/\psi \rightarrow \gamma PP$. Парциальные ширины рождения резонансов

Наилучшая оценка $M_G = (1865 \pm 25^{+10}_{-30}) \,\mathrm{MeV}$ $\Gamma_G = (370 \pm 50^{+30}_{-20}) \,\mathrm{MeV}$

Непертурбативный подход	Работа	Предсказания массы глюбола (МэВ)
Unquenched LQCD	JHE1210, 170(2012)	1795±60
Инстантонные вычисления	PLB577,61(2003)	~1980
Уравнение Дайсона-Швингера и Бете- Солпетера	EPJC80,1077(2020)	1850±130
Дуальные модели	PRD104,034016(2021)	~1920

Парциальная ширина рождения $B_{J/\psi \to \gamma G} = (5.8 \pm 1.0) \times 10^{-3}$

Решеточные вычисления (PRL110, 021601 (2013))

$$B_{J/\psi \to \gamma G} = (3,8 \pm 0.9) \times 10^{-3}$$

I.Boyko

Cross-section of e+e- $\rightarrow \eta \pi + \pi -$

Two η decay channels are used: $\eta \rightarrow 2\gamma$ and $\eta \rightarrow 3\pi^0 \rightarrow 6\gamma$ Dalitz plots for $\sqrt{s} = 2126.55 \text{ MeV}$

The dominant components: $e+e- \rightarrow \rho\eta$ and $e+e- \rightarrow a_2 \pm \pi^{\mp}$

Cross-section of e+e- $\rightarrow \eta \pi + \pi -$

Data show resonance-like behavior near the our energy threshold of 2 GeV We plan to extend our measurement using ISR method with higher energy data

Physics of τ -leptons

Precision measurement of Mτ

• $M\tau = 1776.91 \pm 0.12 \pm 0.12$

- As good as the rest of the world
- PDG: 1776.86±0.12
- BESIII systematics: mostly the statistics of energy calibration runs

Physics of charmonium

Inclusive J/ψ production

- Goals:
- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e+e- annihilation);
- Clarify the contribution of the color octet channel in the range of \sqrt{s} below the J/ ψ cc threshold (~6 GeV): the color-octet LDMEs are non-zero if σ >10 pb at \sqrt{s} = 4.6 ~ 5.6 GeV (Eur. Phys. J. C (2017) 77: 597);
- Test if unknown channels/states exist.

- So far, measurements only done at $\sqrt{s} = 10.6$ GeV:
- 2.5 ± 0.3 pb (BaBar)
- 1.5 ± 0.2 pb (Belle)
- 1.9 ± 0.2 pb (CLEO)

LDMÈs $< O^{H}_{n} >$ determined from experimental data.

Inclusive J/ψ production

- **Data:** $\mathscr{L} = 20 \text{ fb}^{-1}, \sqrt{s} = 3.8 4.7 \text{ GeV}$
- Signal: ee $\rightarrow J/\psi + X$, $J/\psi \rightarrow \mu + \mu$ -,
- Prompt J/ψ originates from sources other than known decays or initialstate radiation (ISR).
- Major background sources:
 - inclusive decays of $\psi(3686)$ and $\chi_{cJ},$ (J = 1, 2) to J/ ψ + X
 - ISR return to the J/ψ and ψ(3686) resonances.
- The preliminary result for the prompt inclusive J/ψ production in the range 4.5 - 4.7 GeV is:

σ = 13.2 ± 2.1_{stat} ± 3.4_{syst} pb

• Analysis status: internal review of the BESIII collaboration to obtain permission to publish the results.

I.Boyko

Branching fraction of $J/\psi \rightarrow \phi \eta$

- The existing measurements of $B(J/\psi \rightarrow \phi \eta)$ are ambiguous (PDG-2021);
- We plan to use the precise measurements of the $B(J/\psi \rightarrow \phi \eta)$ to improve the estimation of the mixing angle between the strong and electromagnetic amplitudes in the analysis of the energy dependence of e+e- $\rightarrow \phi \eta$ cross-section in the scan data around the J/ ψ peak.

Formulas of cross section for lineshape fit of $e^+e^- \rightarrow \phi\eta$ $\sigma_{\text{born}}(s) = |\mathcal{A}_{cont.} + \mathcal{A}_{\gamma} + \mathcal{A}_{3g}|^2 = \frac{\sigma_0}{s^2} \left| 1 + \frac{3/\alpha \sqrt{s \Gamma_e \Gamma_\mu}}{(s - M^2) + i \sqrt{s \Gamma}} \cdot (1 + Ae^{i\varphi}) \right|^2 \times \left[\frac{|P|}{\sqrt{s}} \right]^3$ where $\sigma_0 = \frac{4\pi \alpha^2 s}{3} \cdot \frac{Br(J/\psi \rightarrow \phi\eta)}{Br(J/\psi \rightarrow \mu\mu)} \cdot \frac{1}{|1 + Ae^{i\varphi}|^2} \left[\frac{\sqrt{s}}{|P|} \right]^3$

I.Boyko

Branching fraction of $J/\psi \rightarrow \phi \eta$

- **Data:** 448M ψ(3686) 2009 and 2012
- Channel: $\psi(3686) \rightarrow \pi + \pi J/\psi, J/\psi \rightarrow \phi \eta, \phi \rightarrow K + K -, \eta \rightarrow \gamma \gamma$
- We need to use data in which there is no mixing of $J/\psi \rightarrow \phi \eta$ and $e+e- \rightarrow \phi \eta$.
- A good description of the invariant mass of K+K- is obtained only under the assumption of interference $J/\psi \rightarrow \phi \eta$ with other processes decaying to the same final state.
- The preliminary result for M(K+K-) < 1.08 GeV/c2 is: B(J/ψ→φη) = (8.52 + 0.37/- 0.43stat ± 0.14syst)·10⁻⁴
- **Analysis status:** internal review of the BESIII collaboration to obtain permission to publish the results.

Commentions with services

	Comparise	in with previous measuremen
3	BES2	$(8.99\pm0.18\pm0.89) imes10^{-4}$
	DM2	$(6.4\pm0.4\pm1.1) imes10^{-4}$
	MARK-III	$(6.61 \pm 0.45 \pm 0.78) imes 10^{-4}$
	PDG2020	$(7.4 \pm 0.8) \times 10^{-4}$

Future plans?

Future Physics Programme of BESIII

IHEP-Physics-Report-BESIII-2020-4-7

Published in Chinese Physics C 44, 040001 (2020)

	5.4	Summ	ary	7					
в	iblio	graphy	14	a					
6	Exc	xotic Decays and New Physics							
	6.1	6.1 Introduction							
	6.2	Rare	locays of charmonia and charmed hadrons	6					
		6.2.1	Weak decays of charmonia states	6					
		6.2.2	Rare radiative and rare leptonic $D_{(a)}$ decays	8					
	6.3	Symmetry test in hyperon decays							
		6.3.1	Probing CP asymmetry in hyperon doesys	ġ					
		6.3.2	Constraint on BNV from $\Lambda - \overline{\Lambda}$ oscillation	6					
		6.3.3	More symmetry violation in hyperon decays	7					
	6.4	Charg	ed Lepton Flavor (Number) Violation decays	8					
		6.4.1	Decays of $J/\psi, \psi(3686) \rightarrow l_1 l_2, l_1 l_2 \gamma$	a -					
		6.4.2	$\chi_c(\eta_c) \rightarrow l_1 l_2$ via photon tagging in $\psi(3686) \rightarrow \gamma \chi_c(\eta_c)$	3					
		6.4.3	(radiative) Leptonic decays of $D^0 \rightarrow l_1 l_2, \gamma l_1 l_2$	4					
		6.4.4	CLFV and LNV D _(*) decays with light mesons	5					
	6.5	Search	es for light (invisible) NP particles	ä					
		6.5.1	Physics of the Dark Sector	5					
		6.5.2	(radiative) Invisible decays of charmonia	8					
		6.5.3	Invisible decays of D mesons	8					
		6.5.4	Invisible decays of light mesons	9					
	6.6	Off-res	ionance searches	ġ					
		6.6.1	Rare charm production: $e^+e^- \rightarrow D^*(2007)$	a					
		6.6.2	Dark photon and dark Higgs searches	1					
		6.6.3	Axion-Like particles	2					
		6.6.4	Searches for fractionally charged particles	2					
в	iblio	graphy	18	5					
7	Sur	mary	19	3					
в	iblio	graphy	19	7					
1	Ack	nowiede	rements 19	8					
		and a strong							

Contents

Biblic Abstract vii 4 12 1 Introduction 1 Introduction I.1 Motivation I.2 The DESIII detector and its nggrades I.2.1 Uggrade of ETOF I.2.2 Uggrade of ETOF I.2.3 Uggrade of Inner MIC with a CCEM inner tracker I.2.3 Uggrade of Inner Chamber with an improved inner MIC Intervention 4.2 1.3 BEPCII upgrades 12 43 Bibliography 15 6.4 4.5 2 Light Hadron Physics 17 2.2.1 Clochalle 2.2.2 Hybrids 1.2.1 Chiodalle 18 2.2.2 Hybrids 22 2.3 Multispurks 32 2.3 Baryon spectroscopy 36 2.4 BESIII amplitude analysis 77 2.5 Other physics opportunities 38 2.5.1 Light musor decays 36 2.5.2 Prospects 39 4.6 Biblic 5 Cł 5.1 Bibliography 99 3 Charmonium Physics Charmonium Paysos 37 3.2 Charmonium States Bolow Open Charm Threshold 41 1.2.1 The Theoretical Francework 41 1.2.2 Results with the Current ψ(3686) Data Set 42 3.2 Results with the Current ψ(3686) Data Set 42 3.3 Current With the Cur 5.3

	3.3.3	Possibilities for XYZ Data Taking
	3.3.4	Comparisons with Other Experimenta
3.4	Summ	nary of Data Remainments
3,0110	sgrapmy	63
R	volues.	QCD and 7 Physics 67
4.1	Intro	furtion
4.2	BESI	II measurements related to precision variables $(q-2)_s$ and $\alpha_{em}(s)$, . (8)
	4.2.1	The anomalous magnetic moment of the muon, $(g-2)_{\sigma}$. (8)
	4.2.2	The running of the electromagnetic fine structure constant, $a_{im}(s) = 72$
	4.2.3	Measurement of exclusive hadronic channels via ISR
	4.2.4	Inclusive R sean data
	4.2.5	Measurements of meson transition form factors
4.3	Baryo	on form factors
	4.3.3	Permalien
	4.3.2	State of the art
	433	Prospects with BRSUI 91
6.4	Frage	execution function
4.5	т phi	uies at BESHI
	4.5.1	Measurement of the 7 mass 96
	4.5.2	Some 7-physics topics at BESIII
	4.5.3	Measurement of branching fraction of $\psi(3686) \rightarrow \tau^+ \tau^-$
	4.5,4	Mass measurement for some hadrons
	4.5.5	Elisension
4.6	Eelat	tvo phaso in voctor charmonium daenys
-4.7	Study	of $\phi(2170)$ with the energy scan method
4.8	Pras	eeta
iblic	graphy	100
Ch	iorm n	hydrs 110
61	Interes	functions 110
1.9	730(87	and D ¹ physics [91]
	5.21	Lentric decays 121
	522	Semilentonic decas
	523	Chantam-correlated measurements of D ² hadronic deeves
	5.2.4	Impact on CKM moust concents 115
	5.95	CP vielation and D mining 117
	5.2.6	CFT violation in charm mixing
	5.2.7	Absolute measurement of hadronic decare
5.3	Chan	ned baryons 141
	5.3.1	AJ physics [41
	5.1.2	Prospects in A1 physics (42)
	5.3.3	X, and E, physics
	5.3.4	The EM structure of charmod baryons

I.Boyko

Nearest plans

- Currently we are collecting data at 3770
 MeV (D⁺D⁻ and D⁰D⁰ production).
- The plan is to run for 1 year from now. The DD statistics will be (at least) tripled.
- For 2024, a collider upgrade is proposed to reach 5.6 GeV in 2025.

Plan to measure the charm fragmentation function

Fig. 1: Invariant mass of cc pair in proton-proton collisions at 27 GeV at SPD simulated with Pythia8.

- Measurement of open charm production is an important part of the NICA/SPD physics program.
- At NICA ccbar will be produced with 4-8 GeV invariant mass. Charm fragmentation function is essentially unknown in this energy domain.
 - We plan to use $5fb^{-1}$ of BESIII data at 4.0-4.95 GeV to measure the low-energy the fragmentation function in the inclusive reaction $ee \rightarrow c+cbar+X$
 - Both transverse and longitudinal FF are accessible

Summary

- With its excellent detector and huge statistics, BESIII is now the world leader in the energy domain of charm and charmonium
- Hundreds of "routine" measurements have been performed improving the world average precision by factors 3-10
- A number of ground breaking discoveries have been made which change completely our understanding of the matter structure
- JINR team contribution is very much visible in the collaboration (see also tomorrow NTS)
- Collider upgrade is planned and many new results are expected

Spare slides

Structures at the pp threshold

- M(X) = 1832 ± 32 MeV
- Γ(X) = 13 ± 40 MeV
- $J^{PC} = 0^{-+}$
- $B(J/\psi \rightarrow \gamma X) = (9.0 \pm 1.5) \times 10^{-5}$ I.Boyko Pl

- BESIII observed quite a number of structures right below the pp threshold
- Recent increase of J/ψ statistics (1.3B → 10B) will be extremely useful to clarify the situation

$\Lambda_{\rm C}$ polar angle distribution

- Can be parameterized by $1 + \alpha_{\Lambda c} \cos^2 \theta$
- Form-factor ratio given by: $|G_E/G_M|^2(1-\beta^2) = (1 \alpha_{\Lambda c})/(1 + \alpha_{\Lambda c})$

