β -decay properties of neutron rich Ag and Cd isotopes: new data from TETRA neutron detector

Dmitry Testov

Joint institute for Nuclear Research

Flerov Laboratory of Nuclera Reactions

141980 Dubna, Moscow region, Russia

Phone: (7-49621) 62-159 Telefax: (7-49621) 28-933 Telex: 911621 DUBNA SU E-mail: yuliam@jinr.ru

http://flerovlab.jinr.ru/flnr/

7 June 2014

Experimental :

Results T

Beta decay of neutron rich nuclei

Dmitry Testov OMUS:::Alushta-2014

Beta delayed (multi) neutron emission

Beta delayed (multi) neutron emission

ALTO(ISOL)

Detectors with ³He filled counters

As can be seen, the cross-section is much larger for thermal neutrons (~ 0.0253 eV) than for fast neutrons (~ 1 MeV). Neutrons are born fast. Thus, to maximize the efficiency of the 3He tubes, the neutrons must be slowed (or moderated) to thermal energies. Neutron moderation is most often achieved via elastic scattering collisions with hydrogenous material. For this reason, ³He tubes are often embedded in high-density polyethylene (C_6H_{12}).

rt efficiency calibration

ALTO(ISOL)

Experimental set

Results Tha

Neutron detector TETRA

Zero energy threshold Zero cross-talk(multiplicity)

Perfect gamma separation

Easy in use/ geometry

High efficiency

Low internal background

	³ He detector	Scintillator
Neutron energy range	< 1.5 MeV	<20MeV
Neutron energy	no	yes
Threshold	0	~30÷300 keV
Cross talk	no	yes
Efficiency	30-60%	10-30%
Multiplicity	yes	?
Angl. correlation	yes	?
Time scale	μs	ns

D. Testov et al., Physics of Atomic Nuclei 72, 1 (2009)

Joint institute for Nuclear Research/Flerov Laboratory of Nuclera Reactions

OMUS:::Alushta-2014

Dmitry Testov

Smart efficiency calibration

M. Dakowski et al.,, Nucl. Instr&Meth. 113, 195 (1973)

$$\sum_{\nu=1}^{n} K_{n\nu} P_{\nu} = F_{n}, \quad n = 1, 2, ..., n_{max}$$

$$K_{n\nu} = \frac{\nu!}{n!(\nu - n)!} \varepsilon^n (1 - \varepsilon)^{\nu - n}$$

 $\begin{array}{l} \textbf{P}_{\nu} \text{ probability to emit } \nu \text{ neutron in a fission} \\ \textbf{F}_n \text{ probability to detect } n \text{ neutrons} \\ \textbf{K}_{vn} \text{ transmission coefficients} \\ \textbf{\epsilon} \text{ efficiency} \end{array}$

Smart efficiency calibration

M. Dakowski et al.,, Nucl. Instr&Meth. 113, 195 (1973)

$$\sum_{\nu=1}^{n} K_{n\nu} P_{\nu} = F_{n}, \quad n = 1, 2, ..., n_{max}$$

$$K_{n\nu} = \frac{\nu!}{n!(\nu-n)!} \varepsilon^n (1-\varepsilon)^{\nu-n}$$

 P_v probability to emit v neutron in a fission F_n probability to detect n neutrons K_w transmission coefficients

ε efficiency

 N_i number of events with $j \neq i$ neutrons emitted within N_{dec} :

$$N_{i} = N_{dec} * F_{i} = N_{dec} \sum_{\nu=i}^{\nu_{max}} \frac{\nu!}{i!(\nu-i)!} \varepsilon^{i} (1-\varepsilon)^{\nu-i} P_{\nu}$$

 \mathbf{N}_{dec} number of decays

N, number of events with i neutrons emitted within N,

$$\frac{N_i}{N_j} = \frac{F_i}{F_j} = f(\varepsilon)$$

Smart efficiency calibration

- M. Dakowski et al.,, Nucl. Instr&Meth. 113, 195 (1973)
- N_i number of events with $j \neq i$ neutrons emitted within N_{dec} :
- N_{dec} number of decays
- N, number of events with *i* neutrons emitted within N_{rter}

0,35

0.3

0.25

Results

Probability P, for 6

252Cf to emit

N neutrons

Smart efficiency calibration

- M. Dakowski et al., Nucl. Instr&Meth. 113, 195 (1973)
- **N**, number of events with $j \neq i$ neutrons emitted within **N**_{dec}:
- N., number of decays
- **N**, number of events with *i* neutrons emitted within **N**_{dec}

Experimental se

Results T

Thank you

Experimental setup

D. Testov et al., World Sci., Conf. Proc. 47, 365 (2013)

Results: ^{123–125}Ag, ¹²⁶Cd

Dmitry Testov OMUS:::Alushta-2014

Comparison to priviously quated

	T _{1/2} , [s]	method	P _n , [%]	comment
¹²³ Ag	0.295(17)	n	0.60(25)	present
	0.272(24)	b	1.0(5)	MSU, [1]
¹²⁴ Ag	0.246(18)	n	-	present
	0.187(14)	b	1.3(9)	MSU, [1]
	0.172(5)	n	-	ISOLDE, [4]
	0.170(30)	γ	-	TRISTAN, [2]
	0.540(8)	n	-	TRISTAN, [3]
¹²⁵ Ag	0.263(17)	n	-	present
	0.166(7)	n	-	ISOLDE, [4]
¹²⁶ Cd	0.534(30)	n	0.04(1)	present
	0.600(30)	γ		Studvik, [5]
	0.510(10)	γ	-	OSIRIS, [6]
	0.506(15)	γ		TRISTAN, [7]

[1] F.Montes, A.Estrade, P.T. Hosmer et al., Phys. Rev. C 73 035801 (2006)

- [2] John C. Hill, F.K. Wohn, Z. Berant Phys. Rev. C 29 1078 (1984)
- [3] P. L. Reeder, R. A. Warner, and R. L. Gill Phys. Rev. C 27 3002 (1983)
- [4] V.N.Fedoseyev, Y.Jading, O.C.Jonsson Z.Phys.A 353 9 (1995)
- [5] H.Göktürk, B. Ekström E.Lund and B. Fogelberg Z.Phys.A 324 117 (1986)
- [6] G. Rudstam, P. Aagaard, P. Hoff et al., Nucl. Instr&Meth. 186, 365 (1981)
- [7] M. L. Gartner and J. C. Hill, Phys. Rev. C 18, 1463 (1978)

Comparison to priviously quated

	T _{1/2} , [s]	method	P _n , [%]	comment
¹²³ Ag	0.295(17)	n	0.60(25)	present
	0.272(24)	b	1.0(5)	MSU, [1]
¹²⁴ Ag	0.246(18)	n	-	present
	0.187(14)	b	1.3(9)	MSU, [1]
	0.172(5)	n	-	ISOLDE, [4]
	0.170(30)	γ (-	TRISTAN, [2]
	0.540(8)	n	-	TRISTAN, [3]
¹²⁵ Ag	0.263(17)	n	-	present
	0.166(7)	n	-	ISOLDE, [4]
¹²⁶ Cd	0.534(30)	n	0.04(1)	present
	0.600(30)	γ	-	Studvik, [5]
	0.510(10)	γ	-	OSIRIS, [6]
	0.506(15)	γ		TRISTAN, [7]

[1] F.Montes, A.Estrade, P.T. Hosmer et al., Phys. Rev. C 73 035801 (2006)

- [2] John C. Hill, F.K. Wohn, Z. Berant Phys. Rev. C 29 1078 (1984)
- [3] P. L. Reeder, R. A. Warner, and R. L. Gill Phys. Rev. C 27 3002 (1983)
- [4] V.N.Fedoseyev, Y.Jading, O.C.Jonsson Z.Phys.A 353 9 (1995)
- [5] H.Göktürk, B. Ekström E.Lund and B. Fogelberg Z.Phys.A 324 117 (1986)
- [6] G. Rudstam, P. Aagaard, P. Hoff et al., Nucl. Instr&Meth. 186, 365 (1981)
- [7] M. L. Gartner and J. C. Hill, Phys. Rev. C 18, 1463 (1978)

ALTO(ISOL)

Results

Thank you!

SEMINAR REFRESHMENTS!

Nothing says "We are confident this seminar will be intellectually stimulating for you" like a table full of things to help you stay awake.

Thank you!

A Guide to Academic Relationships

	Same department, different field	=	"Colleague"
	Same topic, different field	=	"Collaborator"
	Same field, different topic	=	Conference Buddy
	Different field, different topic	=	Who cares?
MAM (D) 2013	Same field, same topic	=	Bitter Enemy (a.k.a. also "Collaborator")
JORGE C	WWW. PHDCOM	ICS.	LOM

Dmitry Testov OMUS:::Alushta-2014