Bayesian Analysis of Hybrid EoS Based on Astrophysical Observational Data

Alexander Ayriyan¹ D. Alvares^{2,3}, D. Blaschke^{3,4} and H. Grigorian^{1,5}

¹Laboratory of Information Technologies, JINR
 ²Instituto de Física, Universidad Autónoma de San Luis Potosí
 ³Bogoliubov Laboratory for Theoretical Physics, JINR
 ⁴Institute for Theoretical Physics, University of Wroclaw
 ⁵Department of Theoretical Physics, Yerevan State University

June 4, 2014

A. Ayriyan. III Scientific Conference-School ALUSHTA'14 BA of Hybrid EoS Based on Astrophysical Observational Data

・ロト (周) (E) (E) (E) (E)

Qualification and Classification of EoS

- Estimation of different models of EoS from observational constraints
- Applying Bayesian Analysis for the estimation
- Finding suggestions for observation which could be most selective for the models of EoS

▲□ → ▲ □ → ▲ □ → □ □ → ○ ○ ○

Neutron Star Structure

Credit: Dany Page

A. Ayriyan. III Scientific Conference-School ALUSHTA'14 BA of Hybrid EoS Based on Astrophysical Observational Data

Laboratory of Information Technologies

・ロト (周) (E) (E) (E) (E)

Mass and Radius Constraints Gravitational Binding Energy Constraint Totaly

Observational Constraints

Mass and Radius Constraints

Radius and maximum mass constraints are given from PSR J0437-4715 [1] and PSR J0348+0432 [2] correspondingly.

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

formation

:hnologies

Mass and Radius Constraints Gravitational Binding Energy Constraint Totaly

Observational Constraints

Gravitational Binding Energy Constraint

A constraint on the gravitational binding energy is taken from the neutron star B in the binary system J0737-3039 (B) [3].

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

formation chnologies

Mass and Radius Constraints Gravitational Binding Energy Constraint Totaly

Observational Constraints

Three Statistically Independent Constraints

- A radius constraint from the nearest millisecond pulsar PSR J0437-4715 [1].
- A maximum mass constraint from PSR J0348+0432 [2].
- A constraint on the gravitational binding energy from the neutron star *B* in the binary system PSR J0737-3039 (B) [3].

・ロト (周) (E) (E) (E) (E)

Tolman–Oppenheimer–Volkoff equations

TOV equations

$$\begin{cases}
\frac{dm(r)}{dr} = C_1 \epsilon r^2 \\
\frac{dm_B(r)}{dr} = C_1 n_B m_N \frac{r^2}{(1 - 2C_2 m/r)} \\
\frac{dp(\epsilon, r)}{dr} = -C_2 \frac{(\epsilon + p)(m + C_1 p r^3)}{r(r - 2C_2 m)}
\end{cases}$$
(1)

Constants

$$C_1 = 1.11269 \cdot 10^{-5} \frac{M_{\odot}}{\mathrm{km}^3} \frac{\mathrm{fm}^3}{\mathrm{MeV}}$$
 $C_2 = 1.4766 \frac{\mathrm{km}}{\mathrm{M}_{\odot}}$ (2)

A. Ayriyan. III Scientific Conference-School ALUSHTA'14 BA of Hybri

Mass–Radius plot

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

EoS Models Formulation of the Problem Calculation of Probabilities

formation

:hnologie:

EoS Parametrization

Hybrid EoS

$$\begin{aligned} p(\epsilon) &= p^{I}(\epsilon) \Theta(\epsilon_{c} - \epsilon) + p^{I}(\epsilon_{c}) \Theta(\epsilon - \epsilon_{c}) \Theta(\epsilon_{c} - \epsilon + \Delta \epsilon) + \\ p^{II}(\epsilon) \Theta(\epsilon - \epsilon_{c} - \Delta \epsilon) , \end{aligned}$$

Motivation

where $p^{l}(\epsilon)$ is given by a pure hadronic EoS (here well known model of APR), and $p^{ll}(\epsilon)$ represents the high density nuclear matter [4] used here as quark matter given in the bag-like form.

Bag-Like Form of QM EoS

$$p^{\prime\prime}(\epsilon) = c_{QM}^2 \epsilon - B,$$

where c_{QM}^2 is the squared speed of sound in quark matter and *B* is the bag constant.

> Results Conclusions Motivation

EoS Models Formulation of the Problem Calculation of Probabilities

EoS Parametrization

Motivation

EoS Models Formulation of the Problem Calculation of Probabilities

EoS Parametrization

Hybrid EoS Pareameters

$$400 \le \epsilon_c \left[\frac{MeV}{fm^3} \right] \le 1000 \quad : \quad \epsilon_c(k) \qquad k = 1 \dots N_1 = 10$$
$$0 \le \gamma = \frac{\Delta \epsilon}{\epsilon_c} \le 1 \quad : \quad \gamma(l) \qquad l = 1 \dots N_2 = 10$$
$$0.3 \le c_{QM}^2 \le 1 \quad : \quad c_{QM}^2(m) \qquad m = 1 \dots N_3 = 10$$

Vector of Parameters

$$\pi_{i} = \overrightarrow{\pi} \left(\epsilon_{c}(k), \gamma(l), c_{\text{QM}}^{2}(m) \right),$$

$$i = 1 \dots N$$
 (here $N = \prod_{q=1}^{3} N_q$) and $i = N_1 \times N_2 \times k + N_2 \times l + m$

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

formation chnologies

EoS Models Formulation of the Problem Calculation of Probabilities

Qualification of EoS Set from Observation

Motivation

Goal

To find the set π_i corresponding to an EoS and thus a sequence of configurations which contains the most probable one based on the given constraints using BA (calculate of *a posteriori* probabilities of π_i).

Unification of a priori probabilities

 $P(\pi_i) = 1$ for $\forall i$.

A. Ayriyan. III Scientific Conference-School ALUSHTA'14 BA of Hybrid EoS Based on Astrophysical Observational Data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Results Conclusions Motivation EoS Models Formulation of the Problem Calculation of Probabilities

Calculation of Probabilities

Probability of Corresponding to Radius Constraint for π_i

 $P(E_B | \pi_i) = \Phi(R_i, \mu_B, \sigma_B)$, here R_i is max radius given by π_i . $\mu_B = 15.5$ km and $\sigma_B = 1.5$ km [1].

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

Results Conclusions Motivation EoS Models Formulation of the Problem Calculation of Probabilities

Calculation of Probabilities

Probability of Corresponding to Mass Constraint for π_i

 $P(E_A | \pi_i) = \Phi(M_i, \mu_A, \sigma_A)$, here M_i is max mass given by π_i . $\mu_A = 2.01 \text{ M}_{\odot}$ and $\sigma_A = 0.04 \text{ M}_{\odot}$ [2].

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

EoS Models Formulation of the Problem Calculation of Probabilities

Calculation of Probabilities

Probability of Corresponding to $M - M_B$ Constraint for π_i

Motivation

We need to estimate the probability for the closeness of a theoretical point $M_i = (M_i, M_{Bi})$ to the observed point $\mu_K = (\mu_G, \mu_B)$. The required probability can be calculated using the following formula

$$P(E_{\mathcal{K}}|\pi_i) = \left[\Phi(\xi_G) - \Phi(-\xi_G)\right] \cdot \left[\Phi(\xi_B) - \Phi(-\xi_B)\right],$$

where $\Phi(x) = \Phi(x, 0, 1)$, $\xi_G = \sigma_{M_G}/d_{M_G}$ and $\xi_B = \sigma_{M_B}/d_{M_B}$, with d_{M_G} and d_{M_B} being the absolute values of components of the vector $\mathbf{d}_i = \mu - \mathbf{M}_i$, where $\mu_{\mathbf{B}} = (\mu_G, \mu_B)^T$ is given in

formation echnologies

・ロト (周) (E) (E) (E) (E)

> Results Conclusions Motivation

EoS Models Formulation of the Problem Calculation of Probabilities

Calculation of Probabilities

Probability of $M - M_B$ for π_i

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

Results Conclusions Motivation EoS Models Formulation of the Problem Calculation of Probabilities

Calculation of Probabilities

Probability of All Constraints for π_i

Taking to the account assumption that these measurements are independent on each other we can calculate complete conditional probability:

$$\mathcal{P}\left(E\left| \pi_{i}
ight) = \mathcal{P}\left(\mathcal{E}_{\mathcal{A}}\left| \pi_{i}
ight) imes \mathcal{P}\left(\mathcal{E}_{\mathcal{B}}\left| \pi_{i}
ight) imes \mathcal{P}\left(\mathcal{E}_{\mathcal{K}}\left| \pi_{i}
ight)$$

Calculation of *a posteriori* Probabilities of π_i

Now, we can calculate probability of π_i using Bayes' theorem:

$$P(\pi_i | E) = \frac{P(E | \pi_i) P(\pi_i)}{\sum\limits_{j=0}^{N-1} P(E | \pi_j) P(\pi_j)}$$

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

formation chnologies

M-R and M_g-M_B plots EoS plots

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

M-R and M_g-M_B plots EoS plots

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

M-R and M_g-M_B plots EoS plots

Conclusions

- The most probable set of parameters resulting from the Bayesian Analysis point out to a quite stiff EoS with a smooth phase transition.
- Less probable configurations have jump in phase transition. Most of these EoS are pretty much stiff as well.
- The 7 most probable EoS do not allow a "third family".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Phase Diagram

Fake measurements

- S. Bogdanov. Astrophys. J. **762**, 96 (2013)
- J. Antoniadis *et al.* Science **340**, 6131 (2013)
- F.S. Kitaura et al. Astron. & Astrophys. 450, 345 (2006)
- M. Alford, S. Han and M. Prakash. Phys. Rev. D 88, 083013 (2013)
- M.G. Alford, S. Han and M. Prakash. Phys. Rev. D 88, 083013 (2013)

<□> < => < => < => < =| = <0 < 0

D. Blaschke, H. Grigorian, D. Alvarez-Castillo and A. Ayriyan. Journal of Physics: Conference Series 496 (2014) 012002 (arXiv:1402.0478)

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

In the end, there can be only one. - Duncan MacLeod

Thanks for your attention!

고기도

프 🖌 🛪 프 🕨