Bayesian Analysis of Hybrid EoS Based on Astrophysical Observational Data

Alexander Ayriyan ${ }^{1}$

D. Alvares ${ }^{2,3}$, D. Blaschke ${ }^{3,4}$ and H. Grigorian ${ }^{1,5}$

${ }^{1}$ Laboratory of Information Technologies, JINR
${ }^{2}$ Instituto de Física, Universidad Autónoma de San Luis Potosí
${ }^{3}$ Bogoliubov Laboratory for Theoretical Physics, JINR
${ }^{4}$ Institute for Theoretical Physics, University of Wroclaw
${ }^{5}$ Department of Theoretical Physics, Yerevan State University

June 4, 2014

Qualification and Classification of EoS

- Estimation of different models of EoS from observational constraints
- Applying Bayesian Analysis for the estimation
- Finding suggestions for observation which could be most selective for the models of EoS

General Motivation
Observational constraints
Tolman-Oppenheimer-Volkoff equations Bayesian Analysis

Neutron Star Structure

Observational Constraints

Mass and Radius Constraints

Radius and maximum mass constraints are given from PSR J0437-4715 [1] and PSR J0348+0432 [2] correspondingly.

Observational Constraints

Gravitational Binding Energy Constraint

A constraint on the gravitational binding energy is taken from the neutron star B in the binary system J0737-3039 (B) [3].

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

Observational Constraints

Three Statistically Independent Constraints

- A radius constraint from the nearest millisecond pulsar PSR J0437-4715 [1].
- A maximum mass constraint from PSR J0348+0432 [2].
- A constraint on the gravitational binding energy from the neutron star B in the binary system PSR J0737-3039 (B) $[3]$.

Tolman-Oppenheimer-Volkoff equations

TOV equations

$$
\left\{\begin{array}{l}
\frac{d m(r)}{d r}=C_{1} \epsilon r^{2} \tag{1}\\
\frac{d m_{B}(r)}{d r}=C_{1} n_{B} m_{N} \frac{r^{2}}{\left(1-2 C_{2} m / r\right)} \\
\frac{d p(\epsilon, r)}{d r}=-C_{2} \frac{(\epsilon+p)\left(m+C_{1} p r^{3}\right)}{r\left(r-2 C_{2} m\right)}
\end{array}\right.
$$

Constants

$$
\begin{equation*}
C_{1}=1.11269 \cdot 10^{-5} \frac{\mathrm{M}_{\odot}}{\mathrm{km}^{3}} \frac{\mathrm{fm}^{3}}{\mathrm{MeV}} \quad C_{2}=1.4766 \frac{\mathrm{~km}}{\mathrm{M}_{\odot}} \tag{2}
\end{equation*}
$$

Mass-Radius plot

Credit: Aleksi Kurkela

General Motivation
Observational constraints Tolman-Oppenheimer-Volkoff equations

Bayesian Analysis
Results Conclusions Motivation

EoS Models

Formulation of the Problem
Calculation of Probabilities

EoS Parametrization

Hybrid EoS

$p(\epsilon)=p^{\prime}(\epsilon) \Theta\left(\epsilon_{c}-\epsilon\right)+p^{\prime}\left(\epsilon_{c}\right) \Theta\left(\epsilon-\epsilon_{c}\right) \Theta\left(\epsilon_{c}-\epsilon+\Delta \epsilon\right)+$ $p^{\prime \prime}(\epsilon) \Theta\left(\epsilon-\epsilon_{c}-\Delta \epsilon\right)$,
where $p^{\prime}(\epsilon)$ is given by a pure hadronic EoS (here well known model of APR), and $p^{\prime \prime}(\epsilon)$ represents the high density nuclear matter [4] used here as quark matter given in the bag-like form.

Bag-Like Form of QM EoS

$p^{\prime \prime}(\epsilon)=c_{Q M}^{2} \epsilon-B$,
where $c_{Q M}^{2}$ is the squared speed of sound in quark matter and B is the bag constant.

General Motivation
Observational constraints
Tolman-Oppenheimer-Volkoff equations
Bayesian Analysis
Results Conclusions
Motivation

EoS Models

Formulation of the Problem
Calculation of Probabilities

EoS Parametrization

Hybrid EoS

General Motivation
Observational constraints Tolman-Oppenheimer-Volkoff equations Bayesian Analysis Results Conclusions Motivation

EoS Models

Formulation of the Problem
Calculation of Probabilities

EoS Parametrization

Hybrid EoS Pareameters

$$
\begin{array}{rlll}
400 \leq \epsilon_{c}\left[M e V / \mathrm{fm}^{3}\right] \leq 1000 & : & \epsilon_{c}(k) & k=1 \ldots N_{1}=10 \\
0 \leq \gamma=\frac{\Delta \epsilon}{\epsilon_{c}} \leq 1 & : & \gamma(I) & l=1 \ldots N_{2}=10 \\
0.3 \leq c_{Q M}^{2} \leq 1 & : & c_{Q M}^{2}(m) & m=1 \ldots N_{3}=10
\end{array}
$$

Vector of Parameters

For the BA, we have to sample the above defined parameter space and to that end we introduce a vector of the parameter values:

$$
\pi_{i}=\vec{\pi}\left(\epsilon_{c}(k), \gamma(I), c_{\mathrm{QM}}^{2}(m)\right)
$$

$$
\left.i=1 \ldots N \text { (here } N=\prod_{q=1}^{3} N_{q}\right) \text { and } i=N_{1} \times N_{2} \times k+N_{2} \times I+m
$$

Qualification of EoS Set from Observation

Goal

To find the set π_{i} corresponding to an EoS and thus a sequence of configurations which contains the most probable one based on the given constraints using BA (calculate of a posteriori probabilities of π_{i}).

Unification of a priori probabilities
 $P\left(\pi_{i}\right)=1$ for $\forall i$.

Calculation of Probabilities

Probability of Corresponding to Radius Constraint for π_{i}

$P\left(E_{B} \mid \pi_{i}\right)=\Phi\left(R_{i}, \mu_{B}, \sigma_{B}\right)$, here R_{i} is max radius given by π_{i}. $\mu_{B}=15.5 \mathrm{~km}$ and $\sigma_{B}=1.5 \mathrm{~km}$ [1].

Calculation of Probabilities

Probability of Corresponding to Mass Constraint for π_{i}

$P\left(E_{A} \mid \pi_{i}\right)=\Phi\left(M_{i}, \mu_{A}, \sigma_{A}\right)$, here M_{i} is max mass given by π_{i}. $\mu_{A}=2.01 \mathrm{M}_{\odot}$ and $\sigma_{A}=0.04 \mathrm{M}_{\odot}[2]$.

Calculation of Probabilities

Probability of Corresponding to $M-M_{B}$ Constraint for π_{i}

We need to estimate the probability for the closeness of a theoretical point $M_{i}=\left(M_{i}, M_{B i}\right)$ to the observed point $\mu_{K}=\left(\mu_{G}, \mu_{B}\right)$. The required probability can be calculated using the following formula

$$
P\left(E_{K} \mid \pi_{i}\right)=\left[\Phi\left(\xi_{G}\right)-\Phi\left(-\xi_{G}\right)\right] \cdot\left[\Phi\left(\xi_{B}\right)-\Phi\left(-\xi_{B}\right)\right]
$$

where $\Phi(x)=\Phi(x, 0,1), \xi_{G}=\sigma_{M_{G}} / d_{M_{G}}$ and $\xi_{B}=\sigma_{M_{B}} / d_{M_{B}}$, with $d_{M_{G}}$ and $d_{M_{B}}$ being the absolute values of components of the vector $\mathbf{d}_{\mathbf{i}}=\mu-\mathbf{M}_{i}$, where $\mu_{\mathbf{B}}=\left(\mu_{G}, \mu_{B}\right)^{T}$ is given in

EoS Models

Formulation of the Problem
Calculation of Probabilities

Calculation of Probabilities

Probability of $M-M_{B}$ for π_{i}

General Motivation
Observational constraints
Tolman-Oppenheimer-Volkoff equations
Bayesian Analysis
Results Conclusions Motivation

Calculation of Probabilities

Probability of All Constraints for π_{i}

Taking to the account assumption that these measurements are independent on each other we can calculate complete conditional probability:

$$
P\left(E \mid \pi_{i}\right)=P\left(E_{A} \mid \pi_{i}\right) \times P\left(E_{B} \mid \pi_{i}\right) \times P\left(E_{K} \mid \pi_{i}\right)
$$

Calculation of a posteriori Probabilities of π_{i}

Now, we can calculate probability of π_{i} using Bayes' theorem:

$$
P\left(\pi_{i} \mid E\right)=\frac{P\left(E \mid \pi_{i}\right) P\left(\pi_{i}\right)}{\sum_{j=0}^{N-1} P\left(E \mid \pi_{j}\right) P\left(\pi_{j}\right)}
$$

General Motivation
Observational constraints
Tolman-Oppenheimer-Volkoff equations
Bayesian Analysis
Results Conclusions
Motivation

$M-R$ and $M_{g}-M_{B}$ plots EoS plots

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

BA of Hybrid EoS Based on Astrophysical Observational Data

General Motivation
Observational constraints
Tolman-Oppenheimer-Volkoff equations
Bayesian Analysis
Results Conclusions
Motivation

$M-R$ and $M_{g}-M_{B}$ plots

EoS plots

A. Ayriyan. III Scientific Conference-School ALUSHTA'14

Conclusions

- The most probable set of parameters resulting from the Bayesian Analysis point out to a quite stiff EoS with a smooth phase transition.
- Less probable configurations have jump in phase transition. Most of these EoS are pretty much stiff as well.
- The 7 most probable EoS do not allow a "third family".

Phase Diagram

Fake measurements

Ulrich H. Gerlach. PhysRev (1968) 172 (1), p. 1325-1330.

References I

圊 S．Bogdanov．Astrophys．J．762， 96 （2013）
周 J．Antoniadis et al．Science 340， 6131 （2013）
䍰 F．S．Kitaura et al．Astron．\＆Astrophys．450， 345 （2006）
目 M．Alford，S．Han and M．Prakash．Phys．Rev．D 88， 083013 （2013）

R M．G．Alford，S．Han and M．Prakash．Phys．Rev．D 88， 083013 （2013）

References II

囯 D. Blaschke, H. Grigorian, D. Alvarez-Castillo and A. Ayriyan. Journal of Physics: Conference Series 496 (2014) 012002 (arXiv:1402.0478)

In the end, there can be only one.
 - Duncan MacLeod

Thanks for your attention!

