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Thermodynamics in an external magnetic field
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2 + 1 QCD

f =
F
V

= −T
V

lnZ = ε− Ts = εtotal − Ts− e ~B · ~M – free energy density (1)

ε – energy density; s – entropy density; ~M – magnetization



Thermodynamics in an external magnetic field
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2 + 1 QCD

f =
F
V

= −T
V

lnZ = ε− Ts = εtotal − Ts− e ~B · ~M – free energy density (1)

ε – energy density; s – entropy density; ~M – magnetization

pi = − 1

V
Li

∂F
∂Li

– pressure in the i-th direction (2)

eB ⇒ preferred direction ⇒ In general, pq 6= p

This depends on the magnetic field setup:
– “B-scheme”: eB = const
– “Φ-scheme”: ~Φ = e ~B · Lx Ly =

−−−→const



Thermodynamics in an external magnetic field

B-scheme

F = Etotal − TS − e ~B · ~M · Lx Ly Lz

px = pisotr + e ~B · ~M

py = pisotr + e ~B · ~M

pz = pisotr + e ~B · ~M

 ⇒ p(B)
x = p(B)

y = pz

Φ-scheme

F = Etotal − TS − ~Φ · ~M · Lz

px = pisotr

py = pisotr

pz = pisotr + e ~B · ~M

 ⇒ p(Φ)
x = p(Φ)

y = pz − e ~B · ~M
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pi = − 1

V
Li

∂F
∂Li

e ~B =
~Φ

LxLy

pz = −f



Thermodynamics in an external magnetic field

ε = −T
V
Lt
∂ lnZ
∂Lt

pi =
T

V
Li
∂ lnZ
∂Li

M =
T

V

∂ lnZ
∂(eB)

s = − 1

V

∂F
∂T

I = ε− px − py − pz = −T
V

d lnZ
d ln a

– interaction measure (trace anomaly)

χB =
∂M
∂(eB)

∣∣∣∣
B=0

= − 1

V

∂2F
∂(eB)2

∣∣∣∣
B=0

– magnetic susceptibility
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Lattice observables and methods

Nt ×N3
s lattice T = 1/(aNt), V = (aNs)

3

Z =

∫
D[U ]D[ψ, ψ̄] e−S(ψ,ψ̄,U) =

∫
D[U ] e−βSg

∏
f=u,d,s

[detM(U, qfB,mf )]
1/4 (3)

Symanzik improved gauge action:

Sg =
1

3

∑
n

∑
µ6=ν

Re Tr
{
− 1

12

[
1− U2×1

µν (n)
]
+

5

6

[
1− U1×1

µν (n)
]}

(4)

Fermion matrix for staggered quarks with external field1:

M(n|f) = 1

2a

∑
µ

ηµ(n)
[
uµ(qB, n)Uµ(n)δf,n+µ̂ − u?µ(qB, f)U

†
µ(f)δf,n−µ̂

]
+mδf,n (5)

ux(Nx − 1, ny, nz, nt) = e−ia
2qBNxny , ux(n) = 1, nx 6= Nx − 1

uy(n) = eia
2qBnx

uν(n) = 1, ν /∈ {x, y}
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1 In the parer stout improved action for staggered fermions is actually used

PBC ⇒ Φ = (aNs)
2eB = 6πNb, Nb ∈ Z



Lattice observables and methods
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The desired quantity: pz =
T

V
lnZ

Z =

∫
D[U ]D[ψ, ψ̄] e−S(ψ,ψ̄,U) =

∫
D[U ] e−βSg

∏
f=u,d,s

[detM(U, qfB,mf )]
1/4 (3)

Z = Z(β, amf ,Φ)
∂

∂Φ
is not defined

⇓
Integration over a constant-Φ trajectory

Desired observables:

a4sg = − 1

N3
sNt

∂ lnZ
∂β

– gauge action density

a3ψ̄fψf =
1

N3
sNt

∂ lnZ
∂(amf )

– quark condensate density
∆X = X|B −X|0



The integral method at nonzero magnetic field
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∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ

−a4∆sg +∑
f

∂(am ph
f )

∂β
· a3∆ψ̄fψf

 (6)
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∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ

−a4∆sg +∑
f

∂(am ph
f )

∂β
· a3∆ψ̄fψf

 (6)

a(β), fm

ams(β)

3.6 3.8 4.0 4.2 4.4 4.6
β

0.05

0.10

0.15

0.20

0.25

0.30

[15] S. Borsányi et al., "The QCD equation of state with dynamical
quarks" , JHEP 11 (2010) [arXiv:1007.2580]

am ph
f is tuned along the LCP:

fK
Mπ

and fK
MK

are fixed ⇒ mu = md =
ms

28.15

fK ⇒ a(β)



The integral method at nonzero magnetic field
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∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ

−a4∆sg +∑
f

∂(am ph
f )

∂β
· a3∆ψ̄fψf

 (6)

Determination of the integration constant:

At B = 0: p/T 4 T→0−−−→ 0

At B 6= 0 lim
T→0

(p/T 4) 6= 0; amf = ∞ ⇒ pure SU(3) + free quarks

No contribution to ∆pz

∆pz → 0 ∀ Φ <∞, T ; m2
f � qB

∆pz(Φ, T ;β)

T 4
= −N4

t

∑
f

∫ ∞

am
ph
f

d(amf ) a
3∆ψ̄fψf (7)

In practice the integration is over mu and md up to the
point where mu = md = ms (Nf = 3 theory with
different qf ). Then the integration is over the quark
masses simultaneously up to amf = ∞.



The integral method at nonzero magnetic field
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∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ

−a4∆sg +∑
f

∂(am ph
f )

∂β
· a3∆ψ̄fψf

 (6)

∆pz(Φ, T ;β)

T 4
= −N4

t

∑
f

∫ ∞

am
ph
f

d(amf ) a
3∆ψ̄fψf (7)

The order of calculation:

With eq. (7) determine the integration constant (at fixed lattice, Φ, β (⇒ T ))

With eq. (6) determine ∆pz for various T and Φ (lattice is fixed)

Renormalization of ∆pz ⇒ ∆pz,r(Φ, T )

Interpolation of resulting curves ⇒ ∆pz,r(eB, T ) for any B and T

Shifting by the zero-field pressure taken from [43] ⇒ full pressure for a range of T and B

[43] S. Borsányi et al., "Full result for the QCD equation of state with 2+1 flavors" , Phys. Lett. B 730 (2014) [arXiv:1309.5258]



Renormalization
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f contains additive divergences in the cutoff – in 1/a.
They are independent of eB, except for [−b1(eB)2 ln(µa)], which is canceled through

B2

2
→ B2

r

2
+ b1(eB)2 ln(µa) (8)

Ze = 1 + 2b1e
2
r ln(µa), B2 = ZeB

2
r , e2 = Z−1

e e2r, eB = erBr

b1 is related to the QED β-function
eB is external ⇒ no U(1) degrees of freedom ⇒ only the lowest order coeff. b1 in Ze

Can be ommited from the Lagrangian

Added as counter-term to ∆f



Renormalization
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Charge renormalization
Free case:

b free
1 =

∑
f

b free
1f , b free

1f =
Nc
12π2

·
(qf
e

)2

(9)

∆ lnZ free
r = b free

1f · Φ2 · ln(mf a) +O(Φ4)− b free
1 · Φ2 · ln(µa) (10)

∆ψ̄fψ
free
f =

1

L4

∂∆ lnZ free
r

∂mf
= b free

1f

(eB)2

mf
+O[(eB)4] (11)

Full QCD:

b1(a) = b free
1 ·

1 +∑
i≥1

cig
2i(1/a)

 a→0−−−→ b free
1 (12)

∆ lnZr = b1(a) · Φ2 · ln(ΛH a) +O(Φ4)− b1(a) · Φ2 · ln(µa) (13)

∆ψ̄fψf = b1(a) ·
(eB)2

ΛH
· ∂ΛH
∂mf

+O[(eB)4] (14)



Renormalization

µ = ΛH is chosen.

fr = (1− P)[f ], pz,r = (1− P)[pz] (15)

P is the operator that projects out the O[(eB)2] term:

P[X] = (eB)2 · lim
eB→0

X

(eB)2

∣∣∣∣
T=0

(16)

At finite T additional finite terms appear here ⇒ subtraction of P[X] is to be
performed at T = 0.
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Lattice ensembles

113MeV < T < 300MeV

eB up to 0.7 GeV2
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Condensates, the β-function and a commant on magnetic catalysis
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Dashed line:
mf → ∞ −→ pure SU(3) + free quarks

∆ψ̄fψf −→ ∆ψ̄fψ
free
f

From eq. (11):
P[mf ·∆ψ̄fψ free

f ]

(eB)2
= b free

1f (17)

Dashed-dotted line:
P[mf ·∆ψ̄fψχ

PT

f ]

(eB)2
=

b free
1f

16Nc

Cont. limit at large mf is consistent with eq. (17) ⇒
⇒ in cont. limit at mf � ΛQCD ∆ψ̄fψf ∼ 1/mf ⇒ logarithmic divergence in eq. (7).

On the lattice this is removed through integration up to amf ∼ 1.

In cont. limit this divergence reappears
and should be subtracted via charge
renormalization.

∆pz(Φ, T ;β)

T 4
= −N4

t

∑
f

∫ ∞

am
ph
f

d(amf ) a
3∆ψ̄fψf (7)



Quadratic contribution to the EoS
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Calculation of the O[(eB)2] contribution to pz at T ' 0

Performing integration in eq. (7) at T = 0 for various Φ

Fit data with quadratic in (eB)2 curve and extrapolation to obtain

lim
eB→0

∆pz
(eB)2

Do the same at T = 113 MeV

T = 113 MeV may be used
instead of T = 0 for the quadratic

subtraction

∆pz(Φ, T ;β)

T 4
= −N4

t

∑
f

∫ ∞

am
ph
f

d(amf ) a
3∆ψ̄fψf (7)



Quadratic contribution to the EoS
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Calculation of the O[(eB)2] contribution to pz at T ' 0

Consider obtained values of lim
eB→0

∆pz
(eB)2

at T = 113 MeV for different lattices as function

of ln(a/a0),
a0 = 1.47 GeV−1 – the largest used lattice spacing (at Nt = 6)

From eq. (13)
∆pz
(eB)2

= b1 ln(ΛHa)

The data are fitted with this function:
1. b1 from eq. (3.14) with i = 1:

b1(a) = b free
1 [1 + c1g

2(1/a)],

g2(1/a) =
6

β(a)
; c1 from [38]

2. b1 = b free
1

[38] P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger,
"Vector correlator in massless QCD at order O(α4

s) and the QED β-function at five loop" , JHEP 07 (2012) [arXiv:1206.1284]

Two fits agree ⇒ b free
1 may be used



Quadratic contribution to the EoS
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Calculation of the O[(eB)2] contribution to pz at T ' 0

Combined fit of ∆pz/(eB)2 as function eB at T = 113 MeV
∆pz
(eB)2

= c0 + b free
1 ln(a/a0) + (eB)2 · (c1 + c′1a

2 + c′′1a
4) + (eB)4 · (c2 + c′2a

2) (18)

lim
eB→0

∆pz
(eB)2

∣∣∣∣
T=0

= c0 + b free
1 ln(a/a0)

lim
eB→0

∆pz
(eB)2

∣∣∣∣
T=0

= b free
1 ln(ΛH a)


ΛH(m ph

ud) = (1/a0) ec0/b free
1 = 0.120(9) GeV

ΛH depends on the regularization scheme (on lattice action), but it is expected to be mild.
ΛH is not free parameter but is automatically determined by the lattice implementation of the
renormalization prescription.



Quadratic contribution to the EoS
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Calculation of the O[(eB)2] contribution to pz at T ' 0

Calculation of

∆pz,r = (1− P)[∆pz]

and taking cont. limit at T = 113 MeV

∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ

−a4∆sg +∑
f

∂(am ph
f )

∂β
· a3∆ψ̄fψf

 (6)

Found for eq. (6):
T1 = 113 MeV; β1 ⇔ T1; ∆pz for different Φ



Complete magnetic field dependence of the EoS

N. V. Kolomoyets (JINR) QCD EoS with eB 23/24



Summary

Using a novel ’generalized integral method’, the QCD EoS is determined for range of
temperatures and magnetic fields.
The tabulated data are available.
The thermodynamic structure of QCD is altered by magn. field:

- vacuum term
- pressure anisotropy

…
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