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Anisotropic flow in heavy-ion collisions at Nuclotron-NICA energies
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Strong energy dependence of 𝑑𝑣!/𝑑𝑦 and 𝑣" at 𝑠##=2-11 GeV

Anisotropic flow at FAIR/NICA energies is a delicate balance between:
I. The ability of pressure developed early in the reaction zone and 
II. Long passage time (strong shadowing by spectators)

Differential flow measurements 𝑣$( 𝑠##, centrality, pid, 𝑝%, 𝑦) will help 
to study:

• effects of collective (radial) expansion on anisotropic flow
• interaction between collision spectators and produced matter
• baryon number transport

Several experiments (MPD, BM@N, STAR FXT, CBM, HADES, NA61/SHINE) 
aim to study properties of the strongly-interacted matter in this energy 
region

𝑑𝑁
𝑑𝜙

∝ 1 + 2(
!"#

𝒗𝒏 cos 𝑛 𝜙 − Ψ%& , 𝑣! = cos 𝑛 𝜙 − Ψ%&

𝑣# – directed flow, 𝑣' – elliptic flow, 𝑣( – triangular flow, etc.

MPDBM@N

M. Abdallah et al. [STAR Collaboration] 2108.00908 [nucl-ex]
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• Biggest systematics – difference between experiments (for example, FOPI vs. HADES)
• Problem with correction for detector acceptance

Why do we need unified package for flow analysis?



𝑢!, 𝑄! vectors formalism for flow measurements

• Unit vector of a particle 𝑢5 centrality, pid, 𝑝6 , 𝑦 :

𝑢5 = 𝑒758 = 3
𝑢5,9 ≡ 𝑥5 = cos 𝑛𝜑
𝑢5,: ≡ 𝑦5 = sin 𝑛𝜑

• Event flow vector 𝑄5 centrality :

𝑄5 =;
;<=

>
𝜔5;𝑢5; ≡ 𝑄5 𝑒75?! = =

𝑄5,9 ≡ 𝑋5 = 𝑄5 cos 𝑛Ψ5
𝑄5,: ≡ 𝑌5 = 𝑄5 sin 𝑛Ψ5

• 𝜑 – azimuthal angle of the produced particle
• 𝜔 – weight of the 𝑄! vector (for example, 𝜔 = 1 for participant plane and 𝜔 = 𝐸 for 

spectator plane)
• Ψ! – event plane angle
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𝑢!, 𝑄! vectors formalism for flow measurements

Flow can be measured using 𝑄5 , 𝑢5 vectors:

𝑣5 =
𝑢5±𝑄5∓∗

2 𝑄5C𝑄5D∗
, 𝑣5,99 =

𝑥5±𝑋5∓∗

2 𝑋5C𝑋5D∗
, 𝑣5,:: =

𝑦5±𝑌5∓∗

2 𝑌5C𝑌5D∗

Where “ ± ” – different subevents

Normalizations of 𝑄5 vector: 

• 𝑄5 (event plane method)

• 1 (scalar product method)
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Corrections for non-uniform acceptance
Recentering:

𝑋5E = 𝑋5 − 𝑋5 , 𝑌5E = 𝑌5 − 𝑌5
Twist: 

𝑋5EE =
𝑋5E − 𝜆F5GD𝑌5E

1 − 𝜆F5GD𝜆F5GC
, 𝑌5EE =

𝑌5E − 𝜆F5GD𝑋5E

1 − 𝜆F5GD𝜆F5GC

Rescale:

𝑋5EEE =
𝑋5EE

𝑎F5C
, 𝑌5EEE =

𝑌5EE

𝑎F5D

Where 𝑎F5
± = 1 ± 𝑋F5 , 𝜆H∓5

G± = I"
I!

J"∓!
K$!
±
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Corrections are based on method in:
I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Corrections applicable for both 𝑸𝒏 and 𝒖𝒏 vectors
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𝑋!"

𝑌!"

𝑋!"

𝑌!"
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The QnAnalysis package

Motivation:
• Decoupling configuration from implementation
• Persistency of analysis setup
• Co-existence of different setups (easy systematics study)
• Unification of analysis methods
• Self-descriptiveness of the analysis results

QnAnalysis

QnTools configuration

Mapping AnalysisTree to internal 
objects of QnTool

QnTools library

FlowVectorCorrections library

Q-vectors corrections

Q-vectors correlations

Building observables
(resolution, flow, etc.)

Git repository: https://github.com/HeavyIonAnalysis/QnAnalysis
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QnAnalysis requirements:
• ROOT ver. ≧ 6.20 (with MathMore library)
• C++17 compatible compiler
• CMake ver. ≧ 3.13

Can be easily installed on NICA cluster using ROOT and CMake modules

https://github.com/HeavyIonAnalysis/QnAnalysis
https://github.com/HeavyIonAnalysis/AnalysisTree
https://github.com/HeavyIonAnalysis/QnTools
https://github.com/FlowCorrections/FlowVectorCorrections
https://github.com/HeavyIonAnalysis/QnAnalysis


Examples of QnAnalysis usage 

8

ycm

HADES (M. Mamaev) CBM (O. Golosov) NA61/SHINE (E. Kashirin)

QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments
Now it is available in MPD
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AnalysisTree format for MPD data

AnalysisTree: 
A framework and experimentally independent, 
lightweight and flexible data format that stores 
information in configurable basic objects:

• EventHeader – information about general event 
properties

• Track – reconstructed track parameters
• Particle – Monte Carlo track parameters
• Module – information about module in a module-

type detector (FHCal)
• Hit – information about hit in a hit-type detector

Each object can contain any number of custom 
integer, floating or boolean fields

AnalysisTree

Core library
Data formats:
• EventHeader
• Track
• Particle
• Module
• Hit

Infra library
Ifrastructure for AnalysisTree:
• AnalysisTree reader
• AnalysisTree writer

AnalysisTree data format:
https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree can store information from any experiment and/or model

https://github.com/HeavyIonAnalysis/AnalysisTree
https://github.com/HeavyIonAnalysis/AnalysisTree


MPD experiment at NICA
Multi Purpose Detector (MPD) Stage 1
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❍ Data set – official production (request 9):
❏ Au+Au at 𝑠## = 7.7 GeV (10M events)

❍ Centrality determination: 
❏ 𝑏 based on MC-Glauber method 
❏ Event plane determination: TPC (for 𝑣$), 

FHCal (for 𝑣%)

❍ Track selection:
❏ Primary tracks
❏ 𝑁&'()*+, > 16
❏ |𝜂| < 1.5
❏ 𝑝* < 3.0 GeV/𝑐
❏ PID based on PDG

UrQMD GEANT4 Reconstruction Flow analysis



QnAnalysis implementation in MPD experiment
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MpdDst MpdDst→AnalysisTree converter

mpd-analysis-configuration.yml

mpd-correlation.yml

General interface:
• AnalysisTree: A framework-independent, lightweight and 

flexible data format
• QnTools: set of tools for multidimentional Q-vector-based 

corrections and correlations:
• QnAnalysisCorrect: collects 𝑄! , 𝑢! vectors
• QnAnalysisCorrelate: make correction between collected 𝑄! , 𝑢!

vectors

MPD-specific interface:
• MpdDst→AnalysisTree converter: converter from MpdDst to 

AnalysisTree format
• YAML configuration files for QnAnalysis:

• mpd-analysis-configuration.yml: sets up 𝑄! , 𝑢! vectors to collect 
(cuts, correction steps, …)

• mpd-correlation.yml: sets up correlations between previously 
collected 𝑄! , 𝑢! vectors

QnAnalysis git link: https://github.com/HeavyIonAnalysis/QnAnalysis
AnalysisTree git link: https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree

QnAnalysisCorrect

QnAnalysis

QnAnalysisCorrelate

QnTools

Joint development with FAIR (CBM for NICA)
QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments – now available for MPD

https://github.com/HeavyIonAnalysis/QnAnalysis
https://github.com/HeavyIonAnalysis/AnalysisTree


Flow measurement procedure in MPD with QnAnalysis

Preprocessing
• Conversion to AnalysisTree
• Necessary calibrations (centrality 

determination, pid, etc.)
• Creating additional AnalysisTree 

with extended information
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Preprocessing Analysis Postprocessing

Analysis

• Configure Q-vectors

• Run QnAnalysisCorrect to 
measure and correct Q-vectors 

• Configure correlations between 
Q-vectors

• Run QnAnalysisCorrelate to 
collect correlations

Postprocessing

• Obtain 𝑣$ from correlations

• Get TGraphErrors for 𝑣$

The whole procedure can be divided into 3 main steps:

Working templates for all steps can be found here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Preprocessing stage

• Converter from MpdDst to base AnalysisTree – a simple ROOT macro: 
root -l -b -q MpdDst2AT.C’(“mpddst.root”,”AnalysisTree.root”,”System”, s<<)’

• Run additional calibration (centrality determination, pid, candidates 
from KFParticleFinder, etc.) if needed
• Create an additional AnalysisTree with extended information from 

previous step using run_write_task.cpp and UserTaskWrite class 
(needed to be compiled)
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Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts/src/master/preprocessing/MpdDst2AT.C
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Analysis stage: QnAnalysisCorrect
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AnalysisTree 
input

Q-vector definitions
• Correction steps
• Subevent kinematics
• Additional cuts
• QA

Event axes
Event QA

YAML configuration Serialazible 
C++ classes

Branches:
• Event header(s)
• Channel detector(s)
• Tracks (reco, mc,…)

DataHeader:
• Channel detector 

geometry

Correction step runner
Mapping input to Q-vectors

Q-vectors correction
recentering, twist, rescale

QnTools

Corrected Q-vectors



Configuration example: Q-vector definition
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AnalysisTree variable
<branch>/<field>

Reusable elements using 
YAML substitution

Here, the Q-vector was defined with 
the following cuts:
• −1.5 < 𝜂 < −0.05 (TPC L)
• motherId = 1 (primary track)
• pdg = 2212 (protons)
• 16 < 𝑁&'() < 100 (track quality)

Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Analysis stage: QnAnalysisCorrelate

Corrected Q-vectors

Q-vectors correlation
Combinig Q-vector tuples

Processing correlations

YAML configuration Serialazible 
C++ classes

Sampling options
Event axes

Correlation args:
• Query on Q-vector
• Component(s) to correlate
• Correction steps

QnTools

Q-vector 
correlations
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Configuration example: Correlation setup
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Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Here, the correlations ⟨
⟩

𝑢$ centrality, 𝑝- , 𝑦 ∗
𝑄$(centrality) are defined with tags “un_vector” 
and “qn_vector” correspondingly

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Postprocessing stage

• Calculate 𝑣5 from correlations and save them as TGraphErrors – a 
simple ROOT macro: 

root -l -b -q Draw_graphs.C’(“correlation_out.root”,”graphs.root”)’
One can do simple arithmetic operations with correlations (+,-,*,/,sqrt(),…). That 
way, it is easy to calculate 𝑣!. For example, for scalar product one can get 
𝑢!±𝑄!∓∗ and 𝑄!Y𝑄!Z∗ and construct 𝑣!, 𝑣!,[[, 𝑣!,\\.

QnAnalysis allows to contruct differential 𝑣5 signal for any component of 
𝑢5 = 𝑥5 , 𝑦5 and 𝑄5 = 𝑋5 , 𝑌5 separately
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Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts/src/master/postprocessing/Draw_graphs.C
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Non-uniform acceptance corrections

Acceptance filter

TPC

TPC

FHCal

FHCal

Correction for non-uniform azimuthal acceptance

1. Recentering

2. Twist

3. Rescaling

Corrections are based on method in:
I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

−165° < 𝜑 < 165° Modules 23, 24, 25 (L) and 
19, 20, 21 (R) are off 19

𝑋!

𝑌!

𝑋!"

𝑌!"

𝑋!"

𝑌!"

𝑋!""

𝑌!""

𝑋!""

𝑌!""

𝑋!""
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Good agreement between 𝑣4 with acceptance non-uniformity corrections and full acceptance 20

Effects of non-uniformity corrections

Q-vector 𝑄! weight Correction axes Correction steps Error calculation 𝑄! normalization

Spectators (FHCal) Module energy b [0,12], 9 bins Recentering
Twist
Rescaling

Bootstrapping, 50 samples Sum of weights

Charged hadrons (TPC) 1 pT [0,3], 9 bins
b [0,12], 9 bins



𝑄!𝑄! components (FHCal)
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Full acceptance

Before corrections

Recentered Twisted Rescaled

Looking at different components of 𝑸𝒏𝑸𝒏 provides more detailed information 
about effects of non-uniform acceptance



Reco vs. mc: 𝑣"

𝑣= from reconstructed tracks is in agreement with 𝑣= from model
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10-40% 10-40%



Reco vs. mc: 𝑣#

𝑣F from reconstructed tracks is in agreement with 𝑣F from model
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10-40% 10-40%



Components comparison: 𝑣"

𝑣=,LL, 𝑣=,JJ and 𝑣=,KMM are consistent with each other
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10-40% 10-40%



Components comparison: 𝑣#

𝑣F,LL, 𝑣F,JJ and 𝑣F,KMM are consistent with each other
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10-40% 10-40%



Summary and outlook
• QnAnalysis framework is ready for use in MPD experiment

• Basic setup templates for all stages of flow measurement are available here: 
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

• Using acceptance filter it was shown that corrections of the Q-vector employed by the 
QnAnalysis framework can suppress contribution from non-uniform acceptance of the 
detector

• Simple validation of the results were done by comparing flow coefficients measured 
from reconstructed and model data
• Both directed and elliptic flow show good agreement between reconstructed and simulated 

(model) data
• Flow coefficients obtained using only certain Q-vector components were compared with 

the averaged value
• Both directed and elliptic flow from different components of Q-vectors show consistent results

• ToDo: implementation of direct cumulant method for flow measurements is in progress; 
more detailed study of non-uniform acceptance effects in flow measurements
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https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts


Thank you for your attention!
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Backup slides
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AnalysisTree format for MPD data

AnalysisTree data format:
https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree: 
A framework and experimentally independent, 
lightweight and flexible data format that stores 
information in configurable basic objects:

• EventHeader – information about general event 
properties

• Track – reconstructed track parameters
• Particle – Monte Carlo track parameters
• Module – information about module in a module-

type detector (FHCal)
• Hit – information about hit in a hit-type detector

Each object can contain any number of custom 
integer, floating or boolean fields

Main structure of the AnalysisTree format in MPD:
(mandatory default information, added custom information)

• RecoEvent (EventHeader):
• Vertex (x,y,z)

• McEvent (EventHeader):
• Vertex (x,y,z)
• Impact parameter B
• Reaction plane PhiRP

• TpcTracks (Track):
• Momentum (𝑝!, 𝑝", 𝑝# or 𝑝$, 𝜙, 𝜂)
• Track quality (𝑁%&'()
• DCA (x,y,z)
• PID-related information (charge, 𝑑𝐸/𝑑𝑥, 𝑚), tof_flag, 

pid_probability)

• McTracks (Particle):
• Momentum (𝑝!, 𝑝", 𝑝# or 𝑝$, 𝜙, 𝜂)
• PID-related information (pdg, 𝑦)
• mother_id

• FHCalModules (Module):
• Module information (Energy, number)

• TpcTracks->McTracks matching

https://github.com/HeavyIonAnalysis/AnalysisTree

