Implementation of QnAnalysis framework for flow measurements in MPD

Parfenov Petr, Evgeny Kashirin, Mikhail Mamaev, Oleg Golosov, Valerii Troshin NRNU MEPhI

Cross-PWG meeting in MPD 12.04.2022

Anisotropic flow in heavy-ion collisions at Nuclotron-NICA energies

Ι.

П.

M. Abdallah et al. [STAR Collaboration] 2108.00908 [nucl-ex]

$$\begin{split} \frac{dN}{d\phi} &\propto 1 + 2\sum_{n=1} \boldsymbol{v_n} \cos[n(\phi - \Psi_{RP})], \qquad \boldsymbol{v_n} = \langle \cos[n(\phi - \Psi_{RP})] \rangle \\ \boldsymbol{v_1} - \text{directed flow, } \boldsymbol{v_2} - \text{elliptic flow, } \boldsymbol{v_3} - \text{triangular flow, etc.} \end{split}$$

Strong energy dependence of dv_1/dy and v_2 at $\sqrt{s_{NN}}$ =2-11 GeV

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

The ability of pressure developed early in the reaction zone and Long passage time (strong shadowing by spectators)

Differential flow measurements $v_n(\sqrt{s_{NN}}, \text{ centrality, pid}, p_T, y)$ will help to study:

- effects of collective (radial) expansion on anisotropic flow
- interaction between collision spectators and produced matter
- baryon number transport

Several experiments (MPD, BM@N, STAR FXT, CBM, HADES, NA61/SHINE) aim to study properties of the strongly-interacted matter in this energy region

Why do we need unified package for flow analysis?

- Biggest systematics difference between experiments (for example, FOPI vs. HADES)
- Problem with correction for detector acceptance

 u_n , Q_n vectors formalism for flow measurements

• Unit vector of a particle u_n (centrality, pid, p_T , y):

$$u_n = e^{in\varphi} = \begin{cases} u_{n,x} \equiv x_n = \cos n\varphi \\ u_{n,y} \equiv y_n = \sin n\varphi \end{cases}$$

• Event flow vector Q_n (centrality):

$$Q_n = \sum_{k=1}^{M} \omega_n^k u_n^k \equiv |Q_n| e^{in\Psi_n} = \begin{cases} Q_{n,x} \equiv X_n = |Q_n| \cos n\Psi_n \\ Q_{n,y} \equiv Y_n = |Q_n| \sin n\Psi_n \end{cases}$$

- φ azimuthal angle of the produced particle
- ω weight of the Q_n vector (for example, $\omega = 1$ for participant plane and $\omega = E$ for spectator plane)
- Ψ_n event plane angle

u_n , Q_n vectors formalism for flow measurements

Flow can be measured using Q_n , u_n vectors:

$$v_{n} = \frac{\left\langle u_{n}^{\pm} Q_{n}^{\mp *} \right\rangle}{2\sqrt{\left\langle Q_{n}^{+} Q_{n}^{-*} \right\rangle}}, v_{n,xx} = \frac{\left\langle x_{n}^{\pm} X_{n}^{\mp *} \right\rangle}{\sqrt{2\left\langle X_{n}^{+} X_{n}^{-*} \right\rangle}}, v_{n,yy} = \frac{\left\langle y_{n}^{\pm} Y_{n}^{\mp *} \right\rangle}{\sqrt{2\left\langle Y_{n}^{+} Y_{n}^{-*} \right\rangle}}$$

Where " \pm " – different subevents

Normalizations of Q_n vector:

- $|Q_n|$ (event plane method)
- 1 (scalar product method)

Corrections for non-uniform acceptance

Recentering:

$$X'_n = X_n - \langle X_n \rangle, \qquad Y'_n = Y_n - \langle Y_n \rangle$$

Twist:

$$X_{n}^{\prime\prime} = \frac{X_{n}^{\prime} - \lambda_{2n}^{s-} Y_{n}^{\prime}}{1 - \lambda_{2n}^{s-} \lambda_{2n}^{s+}}, \qquad Y_{n}^{\prime\prime} = \frac{Y_{n}^{\prime} - \lambda_{2n}^{s-} X_{n}^{\prime}}{1 - \lambda_{2n}^{s-} \lambda_{2n}^{s+}}$$

Rescale:

$$X_{n}^{\prime\prime\prime} = \frac{X_{n}^{\prime\prime}}{a_{2n}^{+}}, \qquad Y_{n}^{\prime\prime\prime} = \frac{Y_{n}^{\prime\prime}}{a_{2n}^{-}}$$

Where
$$a_{2n}^{\pm} = 1 \pm \langle X_{2n} \rangle$$
, $\lambda_{m \mp n}^{s\pm} = \frac{v_m}{v_n} \frac{\langle Y_{m \mp n} \rangle}{a_{2n}^{\pm}}$

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Corrections applicable for both Q_n and u_n vectors

The QnAnalysis package

Motivation:

- Decoupling configuration from implementation
- Persistency of analysis setup
- Co-existence of different setups (easy systematics study)
- Unification of analysis methods
- Self-descriptiveness of the analysis results

QnAnalysis requirements:

- ROOT ver. \geq 6.20 (with MathMore library)
- C++17 compatible compiler
- CMake ver. \geq 3.13

Can be easily installed on NICA cluster using ROOT and CMake modules

Git repository: <u>https://github.com/HeavyIonAnalysis/QnAnalysis</u>

<u>QnAnalysis</u>
QnTools configuration
Mapping <u>AnalysisTree</u> to internal objects of QnTool
<u>QnTools</u> library
FlowVectorCorrections library
Q-vectors corrections
Q-vectors correlations
Building observables (resolution, flow, etc.)

Examples of QnAnalysis usage

QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments Now it is available in MPD

AnalysisTree format for MPD data

AnalysisTree:

A framework and experimentally independent, lightweight and flexible data format that stores information in configurable basic objects:

- **EventHeader** information about general event properties
- Track reconstructed track parameters
- **Particle** Monte Carlo track parameters
- **Module** information about module in a moduletype detector (FHCal)
- **Hit** information about hit in a hit-type detector

Each object can contain any number of custom integer, floating or boolean fields

AnalysisTree can store information from any experiment and/or model

AnalysisTree data format: <u>https://github.com/HeavyIonAnalysis/AnalysisTree</u>

MPD experiment at NICA

Multi Purpose Detector (MPD) Stage 1

• **Data set – official production (request 9):** • Au+Au at $\sqrt{s_{NN}} = 7.7$ GeV (10M events)

• Centrality determination:

- b based on MC-Glauber method
- **Event plane determination:** TPC (for v_2), FHCal (for v_1)

• Track selection:

- Primary tracks
- $\square N_{hits}^{\rm TPC} > 16$
- $\square |\eta| < 1.5$
- $p_{\rm T} < 3.0 \; {\rm GeV}/c$
- PID based on PDG

QnAnalysis implementation in MPD experiment

MPD-specific interface:

- **MpdDst→AnalysisTree converter:** converter from MpdDst to AnalysisTree format
- YAML configuration files for QnAnalysis:
 - **mpd-analysis-configuration.yml**: sets up Q_n , u_n vectors to collect (cuts, correction steps, ...)
 - **mpd-correlation.yml:** sets up correlations between previously collected Q_n , u_n vectors

General interface:

- AnalysisTree: A framework-independent, lightweight and flexible data format
- **QnTools:** set of tools for multidimentional Q-vector-based corrections and correlations:
 - **QnAnalysisCorrect**: collects Q_n , u_n vectors
 - QnAnalysisCorrelate: make correction between collected Q_n, u_n vectors

Joint development with FAIR (CBM for NICA)

QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments – now available for MPD

QnAnalysis git link: <u>https://github.com/HeavyIonAnalysis/QnAnalysis</u> AnalysisTree git link: <u>https://github.com/HeavyIonAnalysis/AnalysisTree</u>

Flow measurement procedure in MPD with QnAnalysis

The whole procedure can be divided into 3 main steps:

Working templates for all steps can be found here: https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Preprocessing stage

- Converter from MpdDst to base AnalysisTree a <u>simple ROOT macro</u>: root -l -b -q MpdDst2AT.C'("mpddst.root","AnalysisTree.root","System", $\sqrt{s_{NN}}$)'
- Run additional calibration (centrality determination, pid, candidates from KFParticleFinder, etc.) if needed
- Create an additional AnalysisTree with extended information from previous step using run_write_task.cpp and UserTaskWrite class (needed to be compiled)

Analysis stage: QnAnalysisCorrect

Configuration example: Q-vector definition

AnalysisTree variable <branch>/<field>

Reusable elements using YAML substitution

Here, the Q-vector was defined with the following cuts:

- $-1.5 < \eta < -0.05$ (TPC L)
- motherId = 1 (primary track)
- pdg = 2212 (protons)
- $16 < N_{hits} < 100$ (track quality)

Prepared setup examples for MPD are available here: <u>https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts</u>

Analysis stage: QnAnalysisCorrelate

•

•

٠

Configuration example: Correlation setup

- # --- Set up u,Q vectors from QnAnalysisCorrect _detectors: &detectors_reco - name: reco_hadrons_L tags: [un_vector] correction-step: plain - name: reco_hadrons_R tags: [un_vector] - name: reco_TPC_EP_L tags: [qn_vector] correction-step: plain
 - name: reco_TPC_EP_R
 tags: [qn_vector]
 correction-step: plain

Here, the correlations $\langle u_2(\text{centrality}, p_T, y) * Q_2(\text{centrality}) \rangle$ are defined with tags "un_vector" and "qn_vector" correspondingly

Prepared setup examples for MPD are available here: <u>https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts</u>

- # <u2 x Q2> with scalar product method
 _ args:
- args:
 - query: { tags: { any-in: [un_vector] } }
 query-list: *detectors_reco
 - components: *v2_sp_components
 correction-steps: [plain]
 weight: sumw
 - query: { tags: { any-in: [qn_vector] } }
 query-list: *detectors_reco
 components: *v2_sp_components
 correction-steps: [plain]
 weight: ones
 n-samples: 50
 weights-type: observable
 folder: "/v2/uQ/SP"
 axes: [*centrality]

Postprocessing stage

• Calculate v_n from correlations and save them as TGraphErrors – a simple ROOT macro:

root -l -b -q Draw_graphs.C'("correlation_out.root","graphs.root")'

One can do simple arithmetic operations with correlations (+,-,*,/,sqrt(),...). That way, it is easy to calculate v_n . For example, for scalar product one can get $\langle u_n^{\pm}Q_n^{\pm*}\rangle$ and $\langle Q_n^{+}Q_n^{-*}\rangle$ and construct $v_n, v_{n,xx}, v_{n,yy}$.

QnAnalysis allows to contruct differential v_n signal for any component of $u_n = (x_n, y_n)$ and $Q_n = (X_n, Y_n)$ separately

Non-uniform acceptance corrections

Correction for non-uniform azimuthal acceptance

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Effects of non-uniformity corrections

Q-vector	${\it Q}_n$ weight	Correction axes	Correction steps	Error calculation	Q_n normalization
Spectators (FHCal)	Module energy	b [0,12], 9 bins	Recentering Twist Rescaling	Bootstrapping, 50 samples	Sum of weights
Charged hadrons (TPC)	1	pT [0,3], 9 bins b [0,12], 9 bins			

Good agreement between v_n with acceptance non-uniformity corrections and full acceptance

$\langle Q_n Q_n \rangle$ components (FHCal)

Looking at different components of $\langle Q_n Q_n \rangle$ provides more detailed information about effects of non-uniform acceptance

Recovs. mc: v_1

 v_1 from reconstructed tracks is in agreement with v_1 from model

Recovs. mc: v_2

 v_2 from reconstructed tracks is in agreement with v_2 from model

Components comparison: v_1

 $v_{1,XX}$, $v_{1,YY}$ and $v_{1,all}$ are consistent with each other

Components comparison: v_2

 $v_{2,XX}$, $v_{2,YY}$ and $v_{2,all}$ are consistent with each other

Summary and outlook

- QnAnalysis framework is ready for use in MPD experiment
 - Basic setup templates for all stages of flow measurement are available here: <u>https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts</u>
- Using acceptance filter it was shown that corrections of the Q-vector employed by the QnAnalysis framework can suppress contribution from non-uniform acceptance of the detector
- Simple validation of the results were done by comparing flow coefficients measured from reconstructed and model data
 - Both directed and elliptic flow show good agreement between reconstructed and simulated (model) data
- Flow coefficients obtained using only certain Q-vector components were compared with the averaged value
 - Both directed and elliptic flow from different components of Q-vectors show consistent results
- **ToDo**: implementation of direct cumulant method for flow measurements is in progress; more detailed study of non-uniform acceptance effects in flow measurements

Thank you for your attention!

Backup slides

AnalysisTree format for MPD data

AnalysisTree:

A framework and experimentally independent, lightweight and flexible data format that stores information in configurable basic objects:

- **EventHeader** information about general event properties
- Track reconstructed track parameters
- **Particle** Monte Carlo track parameters
- **Module** information about module in a moduletype detector (FHCal)
- **Hit** information about hit in a hit-type detector

Each object can contain any number of custom integer, floating or boolean fields

Main structure of the AnalysisTree format in MPD: (mandatory default information, added custom information)

- RecoEvent (EventHeader):
 - Vertex (x,y,z)
- McEvent (EventHeader):
 - Vertex (x,y,z)
 - Impact parameter B
 - Reaction plane PhiRP
- TpcTracks (Track):
 - Momentum $(p_x, p_y, p_z \text{ or } p_T, \phi, \eta)$
 - Track quality (*N_{hits}*)
 - DCA (x,y,z)
 - PID-related information (charge, dE/dx, m^2 , tof_flag, pid_probability)
- McTracks (Particle):
 - Momentum (p_x , p_y , p_z or p_T , ϕ , η)
 - PID-related information (pdg, y)
 - mother_id
- FHCalModules (Module):
 - Module information (Energy, number)
- TpcTracks->McTracks matching

AnalysisTree data format: https://github.com/HeavyIonAnalysis/AnalysisTree