
Implementation of QnAnalysis
framework for flow

measurements in MPD

Parfenov Petr, Evgeny Kashirin, Mikhail Mamaev, Oleg Golosov, Valerii Troshin
NRNU MEPhI

Cross-PWG meeting in MPD
12.04.2022

Anisotropic flow in heavy-ion collisions at Nuclotron-NICA energies

2

Strong energy dependence of 𝑑𝑣!/𝑑𝑦 and 𝑣" at 𝑠##=2-11 GeV

Anisotropic flow at FAIR/NICA energies is a delicate balance between:
I. The ability of pressure developed early in the reaction zone and
II. Long passage time (strong shadowing by spectators)

Differential flow measurements 𝑣$(𝑠##, centrality, pid, 𝑝%, 𝑦) will help
to study:

• effects of collective (radial) expansion on anisotropic flow
• interaction between collision spectators and produced matter
• baryon number transport

Several experiments (MPD, BM@N, STAR FXT, CBM, HADES, NA61/SHINE)
aim to study properties of the strongly-interacted matter in this energy
region

𝑑𝑁
𝑑𝜙

∝ 1 + 2(
!"#

𝒗𝒏 cos 𝑛 𝜙 − Ψ%& , 𝑣! = cos 𝑛 𝜙 − Ψ%&

𝑣# – directed flow, 𝑣' – elliptic flow, 𝑣(– triangular flow, etc.

MPDBM@N

M. Abdallah et al. [STAR Collaboration] 2108.00908 [nucl-ex]

CBM

3

• Biggest systematics – difference between experiments (for example, FOPI vs. HADES)
• Problem with correction for detector acceptance

Why do we need unified package for flow analysis?

𝑢!, 𝑄! vectors formalism for flow measurements

• Unit vector of a particle 𝑢5 centrality, pid, 𝑝6 , 𝑦 :

𝑢5 = 𝑒758 = 3
𝑢5,9 ≡ 𝑥5 = cos 𝑛𝜑
𝑢5,: ≡ 𝑦5 = sin 𝑛𝜑

• Event flow vector 𝑄5 centrality :

𝑄5 =;
;<=

>
𝜔5;𝑢5; ≡ 𝑄5 𝑒75?! = =

𝑄5,9 ≡ 𝑋5 = 𝑄5 cos 𝑛Ψ5
𝑄5,: ≡ 𝑌5 = 𝑄5 sin 𝑛Ψ5

• 𝜑 – azimuthal angle of the produced particle
• 𝜔 – weight of the 𝑄! vector (for example, 𝜔 = 1 for participant plane and 𝜔 = 𝐸 for

spectator plane)
• Ψ! – event plane angle

4

𝑢!, 𝑄! vectors formalism for flow measurements

Flow can be measured using 𝑄5 , 𝑢5 vectors:

𝑣5 =
𝑢5±𝑄5∓∗

2 𝑄5C𝑄5D∗
, 𝑣5,99 =

𝑥5±𝑋5∓∗

2 𝑋5C𝑋5D∗
, 𝑣5,:: =

𝑦5±𝑌5∓∗

2 𝑌5C𝑌5D∗

Where “ ± ” – different subevents

Normalizations of 𝑄5 vector:

• 𝑄5 (event plane method)

• 1 (scalar product method)

5

Corrections for non-uniform acceptance
Recentering:

𝑋5E = 𝑋5 − 𝑋5 , 𝑌5E = 𝑌5 − 𝑌5
Twist:

𝑋5EE =
𝑋5E − 𝜆F5GD𝑌5E

1 − 𝜆F5GD𝜆F5GC
, 𝑌5EE =

𝑌5E − 𝜆F5GD𝑋5E

1 − 𝜆F5GD𝜆F5GC

Rescale:

𝑋5EEE =
𝑋5EE

𝑎F5C
, 𝑌5EEE =

𝑌5EE

𝑎F5D

Where 𝑎F5
± = 1 ± 𝑋F5 , 𝜆H∓5

G± = I"
I!

J"∓!
K$!
±

6

Corrections are based on method in:
I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Corrections applicable for both 𝑸𝒏 and 𝒖𝒏 vectors

𝑋!

𝑌!

𝑋!"

𝑌!"

𝑋!"

𝑌!"

𝑋!""

𝑌!""

𝑋!""

𝑌!""

𝑋!""

𝑌!"""

The QnAnalysis package

Motivation:
• Decoupling configuration from implementation
• Persistency of analysis setup
• Co-existence of different setups (easy systematics study)
• Unification of analysis methods
• Self-descriptiveness of the analysis results

QnAnalysis

QnTools configuration

Mapping AnalysisTree to internal
objects of QnTool

QnTools library

FlowVectorCorrections library

Q-vectors corrections

Q-vectors correlations

Building observables
(resolution, flow, etc.)

Git repository: https://github.com/HeavyIonAnalysis/QnAnalysis
7

QnAnalysis requirements:
• ROOT ver. ≧ 6.20 (with MathMore library)
• C++17 compatible compiler
• CMake ver. ≧ 3.13

Can be easily installed on NICA cluster using ROOT and CMake modules

https://github.com/HeavyIonAnalysis/QnAnalysis
https://github.com/HeavyIonAnalysis/AnalysisTree
https://github.com/HeavyIonAnalysis/QnTools
https://github.com/FlowCorrections/FlowVectorCorrections
https://github.com/HeavyIonAnalysis/QnAnalysis

Examples of QnAnalysis usage

8

ycm

HADES (M. Mamaev) CBM (O. Golosov) NA61/SHINE (E. Kashirin)

QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments
Now it is available in MPD

9

AnalysisTree format for MPD data

AnalysisTree:
A framework and experimentally independent,
lightweight and flexible data format that stores
information in configurable basic objects:

• EventHeader – information about general event
properties

• Track – reconstructed track parameters
• Particle – Monte Carlo track parameters
• Module – information about module in a module-

type detector (FHCal)
• Hit – information about hit in a hit-type detector

Each object can contain any number of custom
integer, floating or boolean fields

AnalysisTree

Core library
Data formats:
• EventHeader
• Track
• Particle
• Module
• Hit

Infra library
Ifrastructure for AnalysisTree:
• AnalysisTree reader
• AnalysisTree writer

AnalysisTree data format:
https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree can store information from any experiment and/or model

https://github.com/HeavyIonAnalysis/AnalysisTree
https://github.com/HeavyIonAnalysis/AnalysisTree

MPD experiment at NICA
Multi Purpose Detector (MPD) Stage 1

10

❍ Data set – official production (request 9):
❏ Au+Au at 𝑠## = 7.7 GeV (10M events)

❍ Centrality determination:
❏ 𝑏 based on MC-Glauber method
❏ Event plane determination: TPC (for 𝑣$),

FHCal (for 𝑣%)

❍ Track selection:
❏ Primary tracks
❏ 𝑁&'()*+, > 16
❏ |𝜂| < 1.5
❏ 𝑝* < 3.0 GeV/𝑐
❏ PID based on PDG

UrQMD GEANT4 Reconstruction Flow analysis

QnAnalysis implementation in MPD experiment

11

MpdDst MpdDst→AnalysisTree converter

mpd-analysis-configuration.yml

mpd-correlation.yml

General interface:
• AnalysisTree: A framework-independent, lightweight and

flexible data format
• QnTools: set of tools for multidimentional Q-vector-based

corrections and correlations:
• QnAnalysisCorrect: collects 𝑄! , 𝑢! vectors
• QnAnalysisCorrelate: make correction between collected 𝑄! , 𝑢!

vectors

MPD-specific interface:
• MpdDst→AnalysisTree converter: converter from MpdDst to

AnalysisTree format
• YAML configuration files for QnAnalysis:

• mpd-analysis-configuration.yml: sets up 𝑄! , 𝑢! vectors to collect
(cuts, correction steps, …)

• mpd-correlation.yml: sets up correlations between previously
collected 𝑄! , 𝑢! vectors

QnAnalysis git link: https://github.com/HeavyIonAnalysis/QnAnalysis
AnalysisTree git link: https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree

QnAnalysisCorrect

QnAnalysis

QnAnalysisCorrelate

QnTools

Joint development with FAIR (CBM for NICA)
QnAnalysis is already used in the current (HADES, ALICE) and future (CBM) experiments – now available for MPD

https://github.com/HeavyIonAnalysis/QnAnalysis
https://github.com/HeavyIonAnalysis/AnalysisTree

Flow measurement procedure in MPD with QnAnalysis

Preprocessing
• Conversion to AnalysisTree
• Necessary calibrations (centrality

determination, pid, etc.)
• Creating additional AnalysisTree

with extended information

12

Preprocessing Analysis Postprocessing

Analysis

• Configure Q-vectors

• Run QnAnalysisCorrect to
measure and correct Q-vectors

• Configure correlations between
Q-vectors

• Run QnAnalysisCorrelate to
collect correlations

Postprocessing

• Obtain 𝑣$ from correlations

• Get TGraphErrors for 𝑣$

The whole procedure can be divided into 3 main steps:

Working templates for all steps can be found here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Preprocessing stage

• Converter from MpdDst to base AnalysisTree – a simple ROOT macro:
root -l -b -q MpdDst2AT.C’(“mpddst.root”,”AnalysisTree.root”,”System”, s<<)’

• Run additional calibration (centrality determination, pid, candidates
from KFParticleFinder, etc.) if needed
• Create an additional AnalysisTree with extended information from

previous step using run_write_task.cpp and UserTaskWrite class
(needed to be compiled)

13

Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts/src/master/preprocessing/MpdDst2AT.C
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Analysis stage: QnAnalysisCorrect

14

AnalysisTree
input

Q-vector definitions
• Correction steps
• Subevent kinematics
• Additional cuts
• QA

Event axes
Event QA

YAML configuration Serialazible
C++ classes

Branches:
• Event header(s)
• Channel detector(s)
• Tracks (reco, mc,…)

DataHeader:
• Channel detector

geometry

Correction step runner
Mapping input to Q-vectors

Q-vectors correction
recentering, twist, rescale

QnTools

Corrected Q-vectors

Configuration example: Q-vector definition

15

AnalysisTree variable
<branch>/<field>

Reusable elements using
YAML substitution

Here, the Q-vector was defined with
the following cuts:
• −1.5 < 𝜂 < −0.05 (TPC L)
• motherId = 1 (primary track)
• pdg = 2212 (protons)
• 16 < 𝑁&'() < 100 (track quality)

Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Analysis stage: QnAnalysisCorrelate

Corrected Q-vectors

Q-vectors correlation
Combinig Q-vector tuples

Processing correlations

YAML configuration Serialazible
C++ classes

Sampling options
Event axes

Correlation args:
• Query on Q-vector
• Component(s) to correlate
• Correction steps

QnTools

Q-vector
correlations

16

Configuration example: Correlation setup

17

Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Here, the correlations ⟨
⟩

𝑢$ centrality, 𝑝- , 𝑦 ∗
𝑄$(centrality) are defined with tags “un_vector”
and “qn_vector” correspondingly

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Postprocessing stage

• Calculate 𝑣5 from correlations and save them as TGraphErrors – a
simple ROOT macro:

root -l -b -q Draw_graphs.C’(“correlation_out.root”,”graphs.root”)’
One can do simple arithmetic operations with correlations (+,-,*,/,sqrt(),…). That
way, it is easy to calculate 𝑣!. For example, for scalar product one can get
𝑢!±𝑄!∓∗ and 𝑄!Y𝑄!Z∗ and construct 𝑣!, 𝑣!,[[, 𝑣!,\\.

QnAnalysis allows to contruct differential 𝑣5 signal for any component of
𝑢5 = 𝑥5 , 𝑦5 and 𝑄5 = 𝑋5 , 𝑌5 separately

18

Prepared setup examples for MPD are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts/src/master/postprocessing/Draw_graphs.C
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Non-uniform acceptance corrections

Acceptance filter

TPC

TPC

FHCal

FHCal

Correction for non-uniform azimuthal acceptance

1. Recentering

2. Twist

3. Rescaling

Corrections are based on method in:
I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

−165° < 𝜑 < 165° Modules 23, 24, 25 (L) and
19, 20, 21 (R) are off 19

𝑋!

𝑌!

𝑋!"

𝑌!"

𝑋!"

𝑌!"

𝑋!""

𝑌!""

𝑋!""

𝑌!""

𝑋!""

𝑌!"""

Good agreement between 𝑣4 with acceptance non-uniformity corrections and full acceptance 20

Effects of non-uniformity corrections

Q-vector 𝑄! weight Correction axes Correction steps Error calculation 𝑄! normalization

Spectators (FHCal) Module energy b [0,12], 9 bins Recentering
Twist
Rescaling

Bootstrapping, 50 samples Sum of weights

Charged hadrons (TPC) 1 pT [0,3], 9 bins
b [0,12], 9 bins

𝑄!𝑄! components (FHCal)

21

Full acceptance

Before corrections

Recentered Twisted Rescaled

Looking at different components of 𝑸𝒏𝑸𝒏 provides more detailed information
about effects of non-uniform acceptance

Reco vs. mc: 𝑣"

𝑣= from reconstructed tracks is in agreement with 𝑣= from model

22

10-40% 10-40%

Reco vs. mc: 𝑣#

𝑣F from reconstructed tracks is in agreement with 𝑣F from model

23

10-40% 10-40%

Components comparison: 𝑣"

𝑣=,LL, 𝑣=,JJ and 𝑣=,KMM are consistent with each other

24

10-40% 10-40%

Components comparison: 𝑣#

𝑣F,LL, 𝑣F,JJ and 𝑣F,KMM are consistent with each other

25

10-40% 10-40%

Summary and outlook
• QnAnalysis framework is ready for use in MPD experiment

• Basic setup templates for all stages of flow measurement are available here:
https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

• Using acceptance filter it was shown that corrections of the Q-vector employed by the
QnAnalysis framework can suppress contribution from non-uniform acceptance of the
detector

• Simple validation of the results were done by comparing flow coefficients measured
from reconstructed and model data
• Both directed and elliptic flow show good agreement between reconstructed and simulated

(model) data
• Flow coefficients obtained using only certain Q-vector components were compared with

the averaged value
• Both directed and elliptic flow from different components of Q-vectors show consistent results

• ToDo: implementation of direct cumulant method for flow measurements is in progress;
more detailed study of non-uniform acceptance effects in flow measurements

26

https://devel.mephi.ru/PEParfenov/QnAnalysisMPD_scripts

Thank you for your attention!

27

Backup slides

28

29

AnalysisTree format for MPD data

AnalysisTree data format:
https://github.com/HeavyIonAnalysis/AnalysisTree

AnalysisTree:
A framework and experimentally independent,
lightweight and flexible data format that stores
information in configurable basic objects:

• EventHeader – information about general event
properties

• Track – reconstructed track parameters
• Particle – Monte Carlo track parameters
• Module – information about module in a module-

type detector (FHCal)
• Hit – information about hit in a hit-type detector

Each object can contain any number of custom
integer, floating or boolean fields

Main structure of the AnalysisTree format in MPD:
(mandatory default information, added custom information)

• RecoEvent (EventHeader):
• Vertex (x,y,z)

• McEvent (EventHeader):
• Vertex (x,y,z)
• Impact parameter B
• Reaction plane PhiRP

• TpcTracks (Track):
• Momentum (𝑝!, 𝑝", 𝑝# or 𝑝$, 𝜙, 𝜂)
• Track quality (𝑁%&'()
• DCA (x,y,z)
• PID-related information (charge, 𝑑𝐸/𝑑𝑥, 𝑚), tof_flag,

pid_probability)

• McTracks (Particle):
• Momentum (𝑝!, 𝑝", 𝑝# or 𝑝$, 𝜙, 𝜂)
• PID-related information (pdg, 𝑦)
• mother_id

• FHCalModules (Module):
• Module information (Energy, number)

• TpcTracks->McTracks matching

https://github.com/HeavyIonAnalysis/AnalysisTree

