Improved Muon-Capture Calculations in Light and Heavy Nuclei

Lotta Jokiniemi
Contact: jokiniemi@ub.edu

University of Barcelona, Spain
OMC4DBD Collaboration Meeting, 26/04/2022

UNIVERSITAT ${ }_{\text {de }}$ BARCELONA

Motivation

- Current knowledge on particles and interactions between them is based on the Standard Model (SM) of particle physics
- According to the SM, neutrinos are extremely weakly interacting, massless fermions
- Yet we know from solar neutrino experiments that neutrinos must have a non-zero mass
- But what is the absolute mass scale?
- What else is there beyond the SM?
- Observing neutrinoless double-beta decay
 would provide answers!

Two-Neutrino Double-Beta $(2 \nu \beta \beta)$ Decay

$$
{ }_{Z}^{A} \mathrm{X}_{N} \rightarrow{ }_{Z+2}^{A} \mathrm{Y}_{N-2}+2 e^{-}+2 \bar{\nu}_{e}
$$

Two-Neutrino Double-Beta $(2 \nu \beta \beta)$ Decay

$$
{ }_{Z}^{A} \mathrm{X}_{N} \rightarrow{ }_{Z+2}^{A} \mathrm{Y}_{N-2}+2 e^{-}+2 \bar{\nu}_{e}
$$

- May happen, when β-decay is not energetically allowed
- Allowed by the Standard Model
- Measured in ≈ 10 isotopes
- Half-lives of the order 10^{20} years or longer

Neutrinoless Double-Beta $(0 \nu \beta \beta)$ Decay

Neutrinoless Double-Beta $(0 \nu \beta \beta)$ Decay

$$
{ }_{Z}^{A} \mathrm{X}_{N} \rightarrow{ }_{Z+2}^{A} \mathrm{Y}_{N-2}+2 e^{-}
$$

- Requires that the neutrino is a Majorana particle
- Violates the lepton-number conservation law by two
- $\frac{1}{t_{1 / 2}^{(0 \nu)}} \propto\left|\left\langle m_{\nu}\right\rangle\right|^{2}$

Half-life of $0 \nu \beta \beta$ Decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

New physics

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

New physics

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

New physics

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
- Numerically solved from Dirac equation
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
- Numerically solved from Dirac equation
- Nuclear matrix element (NME)
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
- Numerically solved from Dirac equation
- Nuclear matrix element (NME)
- Has to be provided from theory
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
- Numerically solved from Dirac equation
- Nuclear matrix element (NME)
- Has to be provided from theory
- Hard to estimate the errors!
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor
- Numerically solved from Dirac equation
- Nuclear matrix element (NME)
- Has to be provided from theory
- Hard to estimate the errors!

Matrix elements of $0 \nu \beta \beta$ decays ${ }^{1}$
${ }^{1}$ Agostini et al., arXiv:2202.01787 (2022)

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations

+ Large model spaces, wide reach

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations

+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...

Nuclear Many-Body Methods

- Ab initio methods (CC, IMSRG, ...)
+ Aim to solve Schrödinger equation (SE) for all nucleons and forces
- VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations
+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...

Ordinary Muon Capture as a Probe of $0 \nu \beta \beta$

 Decay
L. Jokiniemi (UB)

Improved OMC Calculations
$26 / 04 / 2022$
$8 / 22$

Advantages of OMC as a Probe of $0 \nu \beta \beta$ Decay

- OMC leads to transitions to all J^{π} states up to high energies

Advantages of OMC as a Probe of $0 \nu \beta \beta$ Decay

- OMC leads to transitions to all J^{π} states up to high energies
- Accesses the intermediate states of $0 \nu \beta \beta$ decay!

Advantages of OMC as a Probe of $0 \nu \beta \beta$ Decay

- OMC leads to transitions to all J^{π} states up to high energies
- Accesses the intermediate states of

$$
0 \nu \beta \beta \text { decay! }
$$

- Left-hand-side leg probed by charge-exchange reactions

$$
{ }_{z}^{a} a+{ }_{Z}^{A} X \rightarrow_{z-1}^{a} b+{ }_{Z+1}^{A} Y,
$$

where (a, b) can be $(p, n),\left({ }^{3} \mathrm{He}, t\right), \ldots$

Advantages of OMC as a Probe of $0 \nu \beta \beta$ Decay

- OMC leads to transitions to all J^{π} states up to high energies
- Accesses the intermediate states of $0 \nu \beta \beta$ decay!
- Left-hand-side leg probed by charge-exchange reactions

$$
{ }_{z}^{a} a+{ }_{Z}^{A} X \rightarrow_{z-1}^{a} b+{ }_{Z+1}^{A} Y,
$$

where (a, b) can be $(p, n),\left({ }^{3} \mathrm{He}, t\right), \ldots$

- Ordinary muon capture (OMC)

$$
\mu^{-}+{ }_{Z}^{A} X \rightarrow \nu_{\mu}+{ }_{z-1}^{A} Y
$$

can probe the right-hand side

Advantages of OMC as a Probe of $0 \nu \beta \beta$ Decay

- Both OMC and $0 \nu \beta \beta$ decay involve couplings g_{A} and g_{p} :

$$
W^{(O M C)} \propto\left|g_{\mathrm{A}} M_{\mathrm{A}}+g_{\mathrm{V}} M_{\mathrm{V}}+g_{\mathrm{P}} M_{\mathrm{P}}\right|^{2}
$$

$$
M^{0 \nu}=M_{\mathrm{GT}}^{0 \nu}\left(g_{\mathrm{A}}, g_{\mathrm{P}}, g_{\mathrm{M}}\right)-\left(\frac{g_{\mathrm{V}}}{g_{\mathrm{A}}}\right)^{2} M_{\mathrm{F}}^{0 \nu}\left(g_{\mathrm{V}}\right)+M_{\mathrm{T}}^{0 \nu}\left(g_{\mathrm{A}}, g_{\mathrm{P}}, g_{\mathrm{M}}\right)
$$

$$
\left[t_{1 / 2}^{0 \nu}\right]^{-1}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- ...so if
- we know the involved nuclear structure precisely enough, and
- OMC rates to individual nuclear states can be measured
...we can probe g_{A} and g_{p} on the relevant momentum-exchange regime for $0 \nu \beta \beta$ decay

g_{A} Quenching at High Momentum Exchange?

- Recently, first $a b$ initio solution to $g_{\text {A }}$ quenching puzzle was proposed for β-decay ${ }^{2}$
- How about g_{A} quenching at high momentum transfer $q \approx 100 \mathrm{MeV} / \mathrm{c}$?
- OMC could provide a hint!

${ }^{2}$ P. Gysbers et al., Nature Phys. 15, 428 (2019)

Ingredients 1: Particle Physics

Muon-Capture Theory

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathrm{V}} M_{\mathrm{V}}+g_{\mathrm{A}} M_{\mathrm{A}}+g_{\mathrm{P}} M_{\mathrm{P}}\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*
Masato Morita
Columbia University, New York, New York
AND
Akitiko Fujui
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

Ingredients 1: Particle Physics

- Correct the couplings by effective one-body currents ${ }^{3}$

$$
g_{\mathrm{A}} \rightarrow\left(1+\delta_{a}\left(\mathbf{q}^{2}\right)\right) g_{\mathrm{A}} \text { and } g_{\mathrm{P}} \rightarrow\left(1-\frac{q^{2}+m_{\pi}^{2}}{q^{2}} \delta_{a}^{P}\left(\mathbf{q}^{2}\right)\right) g_{\mathrm{P}}
$$

[^0]
Ingredients 2: Nuclear Physics

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled from complimentary space with a unitary transformation
- Operators can be made consistent with the Hamiltonian!

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

- Solve the Dirac equations for the muon:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

- Solve the Dirac equations for the muon:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

- For a point-like

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

- Solve the Dirac equations for the muon:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

- For a point-like or finite-size nucleus

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

- Solve the Dirac equations for the muon:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

- For a point-like or finite-size nucleus

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

- Solve the Dirac equations for the muon:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

- For a point-like or finite-size nucleus

Test case: Capture Rates on Low-Lying States in ${ }^{12} \mathrm{C}$

Nuclear Shell Model + Two-Body Currents + Realistic Muon Wave Function

- Nuclear shell-model calculation in p-shell with chiral two-body currents and realistic bound-muon wave functions
- Quite good agreement with experiment

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	Rate $\left(10^{3} 1 / \mathrm{s}\right)$				
		Exp.			NSM	
		Measday 4	Double Chooz			
		1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$			
1_{gs}^{+}	0	6.04 ± 0.35	$5.68_{-0.23}^{+0.14}$	6.48	$4.56-4.86$	
2_{1}^{+}	0.953	0.21 ± 0.1	$0.31_{-0.07}^{+0.09}$	0.42	$0.32-0.34$	
2_{2}^{+}	3.759	-	$0.026_{-0.011}^{+0.015}$	0.011	$0.009-0.009$	

[^1]
Results: Capture Rates on Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	Rate $\left(10^{3} 1 / \mathrm{s}\right)$				
		Exp. 6	NSM		IMSRG	
			1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\operatorname{Sum}^{+}\left(1^{+}\right)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$\operatorname{Sum}\left(2^{+}\right)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

Results: Capture Rates on Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)				
		Exp. ${ }^{6}$	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	213	7.7	
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.
$2{ }_{1}^{+}$	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
$2{ }_{2}^{+}$	1.341	3.4 ± 0.5	3.1	5	1.0	
Sum (2+)		20.9 ± 2.6	4.1	3.2		1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

- Generally, IMSRG gives smaller capture rates
${ }^{6}$ P. Gorringe et al., Phys. Rev. C 60, 055501 (1999)

Results: Capture Rates on Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	Rate $\left(10^{3} 1 / \mathrm{s}\right)$				
		Exp. 6	NSM		IMSRG	
			1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\operatorname{Sum}^{+}\left(1^{+}\right)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$\operatorname{Sum}\left(2^{+}\right)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

- Generally, IMSRG gives smaller capture rates
- 1^{+}states mixed
${ }^{6}$ P. Gorringe et al., Phys. Rev. C 60, 055501 (1999)

Results: Capture Rates on Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	Rate $\left(10^{3} 1 / \mathrm{s}\right)$				
		Exp. 6	NSM		IMSRG	
			1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\operatorname{Sum}^{+}\left(1^{+}\right)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$\operatorname{Sum}\left(2^{+}\right)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

- Generally, IMSRG gives smaller capture rates
- 1^{+}states mixed
- Agreement with experiment could be better
${ }^{6}$ P. Gorringe et al., Phys. Rev. C 60, 055501 (1999)

Improvements to Morita-Fuji Formalism

- Morita-Fujii ${ }^{7}$ (MF) and Walecka ${ }^{8}$ formalisms for OMC combined with pnQRPA tend to give different capture rates

$$
g_{\mathrm{A}}^{\mathrm{eff}}(\text { Jok. })^{9} \approx 0.6 \quad g_{\mathrm{A}}^{\text {eff }}(\text { Šim. })^{10} \approx 1.27 \quad g_{\mathrm{A}}^{\text {eff }}(\text { Cic. })^{11} \approx 1.0
$$

- Not straigthforward to compare the two formalisms
- Something has to be done (ongoing work w/E. Ydrefors and J. Suhonen)

1 Check the assumptions made in the MF formalism
2 Introduce 'Walecka-like' multipole operators into MF formalism \rightarrow compare (first test case: ${ }^{100} \mathrm{Mo}$)

[^2]
Summary

- By studying OMC we can shed light on the unknown effective value of g_{A}
- In order to probe the effective value of g_{P} we would need to have data on capture rates to individual states
- First ab initio muon-capture studies performed
- Next: improved muon-capture theory

[^0]: ${ }^{3}$ Hoferichter et al., Phys. Rev. C 102, 074018 (2020)

[^1]: ${ }^{4}$ Measday, Phys. Rep. 354,243 (2001)
 ${ }^{5}$ Abe et al., Phys. Rev. C 93,054608 (2016)

[^2]: ${ }^{7}$ Morita and Fujii, Phys. Rev. 118, 606 (1960)
 ${ }^{8}$ Walecka, Muon Physics II p. 113 (Academic Press, New York) (1975)
 ${ }^{9}$ LJ, Suhonen, Phys. Rev. C 100, 014619 (2019)
 ${ }^{10}$ Šimkovic et al., Phys. Rev. C 102, 034301 (2020)
 ${ }^{11}$ Ciccarelli et al., Phys. Rev. C 102, 034306 (2020)

