Improved Muon-Capture Calculations in Light and Heavy Nuclei

Lotta Jokiniemi Contact: jokiniemi@ub.edu

University of Barcelona, Spain

OMC4DBD Collaboration Meeting, 26/04/2022

Introduction

Improved OMC Calculations

- Current knowledge on particles and interactions between them is based on the Standard Model (SM) of particle physics
- According to the SM, neutrinos are extremely weakly interacting, massless fermions
- Yet we know from solar neutrino experiments that neutrinos must have a non-zero mass
 - But what is the absolute mass scale?
 - What else is there beyond the SM?
- Observing neutrinoless double-beta decay would provide answers!

Two-Neutrino Double-Beta ($2\nu\beta\beta$) **Decay**

$$^{A}_{Z}X_{N} \rightarrow ^{A}_{Z+2}Y_{N-2} + 2e^{-} + 2\bar{\nu}_{e}$$

Two-Neutrino Double-Beta ($2\nu\beta\beta$) **Decay**

$${}^{A}_{Z} \mathbf{X}_{N} \rightarrow {}^{A}_{Z+2} \mathbf{Y}_{N-2} + 2e^{-} + 2\bar{\nu}_{e}$$

- May happen, when β -decay is not energetically allowed
- Allowed by the Standard Model
- Measured in pprox 10 isotopes
 - Half-lives of the order 10^{20} years or longer

Neutrinoless Double-Beta ($0\nu\beta\beta$) Decay

$$^{A}_{Z}\mathrm{X}_{N} \rightarrow ^{A}_{Z+2}\mathrm{Y}_{N-2} + 2e^{-}$$

Neutrinoless Double-Beta ($0\nu\beta\beta$) Decay

$$^{A}_{Z} \mathbf{X}_{N} \rightarrow ^{A}_{Z+2} \mathbf{Y}_{N-2} + 2e^{-}$$

- Requires that the neutrino is a Majorana particle
- Violates the lepton-number conservation law by two

•
$$rac{1}{t_{1/2}^{(0
u)}}\propto |\langle m_{
u}
angle|^2$$

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

• Axial-vector coupling $(g_{\rm A}^{\rm free} pprox 1.27)$

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

- Axial-vector coupling $(g_{\rm A}^{\rm free} pprox 1.27)$
 - Quenched or not?

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

- Axial-vector coupling $(g_{\rm A}^{
 m free}pprox 1.27)$
 - Quenched or not?
- Phase-space factor

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

• Axial-vector coupling $(g_{\rm A}^{
m free}pprox 1.27)$

- Quenched or not?
- Phase-space factor
 - Numerically solved from Dirac equation

¹Agostini *et al.*, arXiv:2202.01787 (2022)

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

- Axial-vector coupling $(g_{
 m A}^{
 m free}pprox 1.27)$
 - Quenched or not?
- Phase-space factor
 - Numerically solved from Dirac equation
- Nuclear matrix element (NME)

¹Agostini *et al.*, arXiv:2202.01787 (2022)

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

- Axial-vector coupling $(g_{
 m A}^{
 m free}pprox 1.27)$
 - Quenched or not?
- Phase-space factor
 - Numerically solved from Dirac equation
- Nuclear matrix element (NME)
 - Has to be provided from theory

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

- Axial-vector coupling $(g_{
 m A}^{
 m free}pprox 1.27)$
 - Quenched or not?
- Phase-space factor
 - Numerically solved from Dirac equation
- Nuclear matrix element (NME)
 - Has to be provided from theory
 - Hard to estimate the errors!

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 New physics

48Ca

- Axial-vector coupling $(g_{\Lambda}^{\rm free} \approx 1.27)$
 - Quenched or not?
- Phase-space factor
 - Numerically solved from Dirac equation
- Nuclear matrix element (NME)
 - Has to be provided from theory
 - Hard to estimate the errors!

¹Agostini *et al.*, arXiv:2202.01787 (2022)

M long

• Ab initio methods (CC, IMSRG, ...)

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - $\begin{array}{ll} & {\sf VERY \ complex \ problem \ } \rightarrow {\sf limited} \\ & ({\sf usually}) \ to \ {\sf light \ nuclei} \end{array}$

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei
- Nuclear Shell Model (NSM)

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

• Nuclear Shell Model (NSM)

• Solves the SE in valence space

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - States \equiv two-quasiparticle excitations

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - $\bullet \ \ \mathsf{States} \equiv \mathsf{two-quasiparticle} \ \mathsf{excitations}$
 - + Large model spaces, wide reach

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - $\bullet \ \ \mathsf{States} \equiv \mathsf{two-quasiparticle} \ \mathsf{excitations}$
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

- Ab initio methods (CC, IMSRG, ...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces
 - VERY complex problem \rightarrow limited (usually) to light nuclei

• Nuclear Shell Model (NSM)

- Solves the SE in valence space
- + Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - $\bullet \ \ \mathsf{States} \equiv \mathsf{two-quasiparticle} \ \mathsf{excitations}$
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

Ordinary Muon Capture as a Probe of $0\nu\beta\beta$ Decay

 OMC leads to transitions to all J^π states up to high energies

- OMC leads to transitions to all J^π states up to high energies
 - Accesses the intermediate states of $0\nu\beta\beta$ decay!

- OMC leads to transitions to all J^π states up to high energies
 - Accesses the intermediate states of $0\nu\beta\beta$ decay!
- Left-hand-side leg probed by charge-exchange reactions

$$a_{z}a + A_{Z}X \rightarrow a_{z-1}b + A_{Z+1}Y,$$

where (a, b) can be (p, n), $(^{3}\text{He}, t)$, ...

- OMC leads to transitions to all J^π states up to high energies
 - Accesses the intermediate states of $0\nu\beta\beta$ decay!
- Left-hand-side leg probed by charge-exchange reactions

$$a_{z}a + A_{Z}X \rightarrow_{z-1}^{a}b + A_{Z+1}Y,$$

- where (a, b) can be (p, n), $(^{3}\text{He}, t)$, ...
- Ordinary muon capture (OMC)

$$\mu^- +^{\mathcal{A}}_{Z} X \to \nu_{\mu} +^{\mathcal{A}}_{Z-1} Y$$

can probe the right-hand side

 $0^{+} \xrightarrow{A^{2}X} 0^{\nu\beta\beta} \xrightarrow{A^{2}X^{\prime}} 0^{+}$

• Both OMC and $0\nu\beta\beta$ decay involve couplings g_A and g_p :

$$W^{(OMC)} \propto |g_{\rm A}M_{\rm A} + g_{\rm V}M_{\rm V} + g_{\rm P}M_{\rm P}|^2$$

$$M^{0
u} = M^{0
u}_{
m GT}(g_{
m A}, g_{
m P}, g_{
m M}) - \left(rac{g_{
m V}}{g_{
m A}}
ight)^2 M^{0
u}_{
m F}(g_{
m V}) + M^{0
u}_{
m T}(g_{
m A}, g_{
m P}, g_{
m M}) \; ,$$

$$[t_{1/2}^{0\nu}]^{-1} = \frac{g_{\rm A}^4}{g_{\rm A}} G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

…so if

- we know the involved nuclear structure precisely enough, and
- OMC rates to individual nuclear states can be measured

...we can probe $g_{\rm A}$ and $g_{\rm p}$ on the relevant momentum-exchange regime for $0\nu\beta\beta$ decay

Muon Capture on Light Nuclei

Improved OMC Calculations

26/04/2022

11/22

g_A Quenching at High Momentum Exchange?

- Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay ²
- How about g_A quenching at high momentum transfer $q \approx 100 \text{ MeV/c?}$
 - OMC could provide a hint!

²P. Gysbers *et al.*, *Nature Phys.* **15**, 428 (2019)

Interaction Hamiltonian → capture rate:

$$\mathcal{N}(J_i
ightarrow J_f) = rac{2J_f+1}{2J_i+1} \left(1-rac{q}{m_\mu+AM}
ight) q^2 \sum_{\kappa u} |g_{\mathrm{V}}M_{\mathrm{V}}+g_{\mathrm{A}}M_{\mathrm{A}}+g_{\mathrm{P}}M_{\mathrm{P}}|^2$$

PHYSICAL REVIEW

VOLUME 118, NUMBER 2

APRIL 15, 1960

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

MASATO MORITA Columbia University, New York, New York

AND

AKIHIKO FUJII† Brookhaven National Laboratory, Upton, Long Island, New York (Received November 9, 1959) NEW!! Hadronic Two-Body Currents

• Correct the couplings by effective one-body currents ³

$$g_{
m A}
ightarrow (1+\delta_{a}(\mathbf{q}^{2}))g_{
m A} ext{ and } g_{
m P}
ightarrow \left(1-rac{q^{2}+m_{\pi}^{2}}{q^{2}}\delta_{a}^{P}(\mathbf{q}^{2})
ight)g_{
m P}$$

³Hoferichter *et al.*, *Phys. Rev. C* **102**, 074018 (2020)

L. Jokiniemi (UB)

Improved OMC Calculations

Ingredients 2: Nuclear Physics

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled from complimentary space with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!

Bound-Muon Wave Function

• Solve the Dirac equations for the muon:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1}\\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1}\end{cases}$$

• Solve the Dirac equations for the muon:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

• For a point-like

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

• Solve the Dirac equations for the muon:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

• For a **point-like** or **finite-size** nucleus

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

• Solve the Dirac equations for the muon:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

• For a **point-like** or **finite-size** nucleus

Ingredients 3: Atomic Physics

Bound-Muon Wave Function

• Solve the Dirac equations for the muon:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

• For a point-like or finite-size nucleus

Test case: Capture Rates on Low-Lying States in ¹²**C** Nuclear Shell Model + Two-Body Currents + Realistic Muon Wave Function

- Nuclear shell-model calculation in *p*-shell with chiral two-body currents and realistic bound-muon wave functions
- Quite good agreement with experiment

J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)					
			Exp.	NSM			
		Measday ⁴	Double Chooz ⁵	1bc	1bc+2bc		
$1_{\rm gs}^+$	0	6.04 ± 0.35	$5.68^{+0.14}_{-0.23}$	6.48	4.56-4.86		
2^{+}_{1}	0.953	0.21 ± 0.1	$0.31_{-0.07}^{+0.09}$	0.42	0.32-0.34		
$2^{\tilde{+}}_2$	3.759	-	$0.026\substack{+0.015\\-0.011}$	0.011	0.009-0.009		

⁴Measday, *Phys. Rep.* **354**,243 (2001)

⁵Abe et al., Phys. Rev. C **93**,054608 (2016)

L. Jokiniemi (UB)

17 / 22

J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ⁶	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$Sum(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2^{+}_{2}	1.341	$\textbf{3.4}\pm\textbf{0.5}$	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

⁶P. Gorringe *et al.*, Phys. Rev. C **60**, 055501 (1999)

L. Jokiniemi (UB)

Improved OMC Calculations

J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ⁶	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	49
$\operatorname{Sum}(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2^{+}_{2}	1.341	$\textbf{3.4}\pm\textbf{0.5}$	3.1	25	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	(3.2)	1.5	(1.2)

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

• Generally, IMSRG gives smaller capture rates

⁶P. Gorringe *et al.*, Phys. Rev. C **60**, 055501 (1999)

L. Jokiniemi (UB)

Improved OMC Calculations

J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ⁶	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$Sum(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2^{+}_{2}	1.341	$\textbf{3.4}\pm\textbf{0.5}$	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

Generally, IMSRG gives smaller capture rates
 1⁺ states mixed

⁶P. Gorringe et al., Phys. Rev. C **60**, 055501 (1999)

L. Jokiniemi (UB)

J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ⁶	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_1^+	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$Sum(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2^{+}_{2}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

[LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992]

- Generally, IMSRG gives smaller capture rates
- 1⁺ states mixed
- Agreement with experiment could be better

⁶P. Gorringe et al., Phys. Rev. C **60**, 055501 (1999)

L. Jokiniemi (UB)

Improved Muon-Capture Framework

Improved OMC Calculations

26/04/2022

19/22

Improvements to Morita-Fujii Formalism

 Morita-Fujii⁷ (MF) and Walecka⁸ formalisms for OMC combined with pnQRPA tend to give different capture rates

 $g_{\rm A}^{\rm eff}({
m Jok.})^9 \approx 0.6 \quad g_{\rm A}^{\rm eff}({
m \check{S}im.})^{10} \approx 1.27 \quad g_{\rm A}^{\rm eff}({
m Cic.})^{11} \approx 1.0$

- Not straigthforward to compare the two formalisms
- Something has to be done (ongoing work w/ E. Ydrefors and J. Suhonen)
 - 1 Check the assumptions made in the MF formalism
 - 2 Introduce 'Walecka-like' multipole operators into MF formalism \rightarrow compare (first test case: $^{100}{\rm Mo})$

⁷Morita and Fujii, *Phys. Rev.* **118**, 606 (1960)

⁸Walecka, *Muon Physics II* p.113 (Academic Press, New York) (1975)

⁹LJ, Suhonen, *Phys. Rev. C* 100, 014619 (2019)

¹⁰Šimkovic et al., Phys. Rev. C **102**, 034301 (2020)

¹¹Ciccarelli et al., Phys. Rev. C **102**, 034306 (2020)

L. Jokiniemi (UB)

- By studying OMC we can shed light on the unknown effective value of g_A
- In order to probe the effective value of $g_{\rm P}$ we would need to have data on capture rates to individual states
- First *ab initio* muon-capture studies performed
- Next: improved muon-capture theory

L. Jokiniemi (UB)

Improved OMC Calculations

26/04/2022

22 / 22