N-Z dependence of OMC rates for Double Beta Decays and Astro Antineutrinos

I.H. Hashim and H. Ejiri RCNP Osaka

From the Ejiri's place

Double β decay, single β & ν and CERs

- DBD responses (nuclear matrix elements) and neutrino/anti neutrino responses indicate by M₁ and M₂ in the fig. are studied by CERs of (³He,t) and OMC.
- These responses give similar observation to neutrino and antineutrino CC interaction on a nucleus ^A_ZX.

$${}^{A}_{Z}X + \nu_{e} \rightarrow {}^{A}_{Z+1}X + e^{-}$$
 (NME M^{ν})

 ${}^{A}_{Z+2}X + \bar{\nu}_{e} \rightarrow {}^{A}_{Z+1}X + e^{+} (\text{NME } M^{\bar{\nu}}),$

Current Interest from OMC on nuclei

1. The renormalization (quenching of axial coupling)

H, Ejiri J. Suhonen J. Phys. G. 42 2015
H. Ejiri N. Soucouti, J. Suhonen PL B 729 2014 .
L. Jokiniemi J. Suhonen H. Ejiri AHEP2016 ID8417598
L. Jokiniemi J. Suhonen. H. Ejiri and I. Hashim PL B 794 143 (2019)

Current Interest from OMC on nuclei

DBDs are studied in wide A or N-Z

2.

OMC rates depends very much on N-Z or N excess because OMC reaction with transforming p to n is blocked by the excess N-Z.

Semi empirical expressions for the OMC rates

- Semi empirical OMC rates are different from each other, and change by factors of 2-3 for the mass A=92 and 100.
- OMC, where proton is transformed into neutron, OMC rate is blocked by neutron excess as A=92 (N=50) goes to A=100 (N=58).
- It is very interesting to see experimentally how the rate decreases as A=100 to 92.

Fig. 4.5. Comparison of the muon total capture rate with the Primakoff formula Eq. (4.53), and the Goulard-Primakoff extension, Eq. (4.55). The data are those of Suzuki et al. [183].

Table 4.3 Fitted parameters for the Goulard–Primakoff formula, Eq. (4.55)

0	Number of data	G_1	G_2	G_3	G_4
Pre-TRIUMF data [149]	58	252	-0.038	-0.24	3.23
TRIUMF data [149]	30	261	-0.040	-0.26	3.24
World set 1990 [252]A	91		-0.020	-0.23	3.25
World set 1990 [252]B	91		0.8	-0.02	6.5

Goulard and Primakoff then extended this formula, adding two more terms, viz:

$$A_{\rm c}(A,Z) = Z_{\rm eff}^4 G_1 \left[1 + G_2 \frac{A}{2Z} - G_3 \frac{A - 2Z}{2Z} - G_4 \left(\frac{A - Z}{2A} + \frac{A - 2Z}{8AZ} \right) \right] . \tag{4.55}$$

Current Interest from OMC on nuclei

 Experimental OMC strength distribution, which are studied by RI distributions, are used to check the model and the quenching.

Hashim Ejiri et al. PR C 97 2018

Mass number dependence for OMC rates of ¹⁰⁰Mo and ⁹⁶Mo.

Bern 2019

Result from RCNP2018 Beamtime

- ^{Nat}Mo have shorter lifetime compared to ¹⁰⁰Mo.
- The average A for natural Mo is 96, thus the present observation fit with earlier investigations where lower A have lower lifetime (higher capture rate).

calculated τ_{μ} (GP) for (96,42) = 100.3 ns calculated τ_{μ} (GP) for (100,42) = 130.4 ns

TABLE I.	Part of	f the fit	results	of the	100 Mo	and	^{Nat} Mo	(in
ch10, 100	MHz T	DC).						

Isotope	τ (ns)	$\Delta \tau$ (ns)	N_0	ΔN_0	N_{BG}	ΔN_{BG}
^{100}Mo	133.4	6.0	3568	142.7	170.2	6.8
$^{\rm Nat}Mo$	99.1	4.5	13924	542.7	43.3	0.8

I.H.Hashim et al. PRC2022 in review

- Present work gives about similar with the one calculated using GP prediction and comparison with ⁹⁶Mo data reported in [1] gives uncertainty less than 10% errors.
- For other nuclei reported in previous work, also shows increasing pattern when the A increases.
- However, for isotope within the same series with $\Delta A=4$ showing decreasing pattern for all nuclei.
- Neutron excess in medium-heavy nuclei blocked the 0⁺ Fermi and the 1⁺ Gamow-Teller (GT) excitations and thus reduced the β⁺ and the antineutrino responses[2].

[1] T. Suzuki, et al. Rev. C 35 6 (1987) 2212
[2] H.O.U. Fynbo, Nuclear Physics A 724 (2003) 493–501

Ratio of same isotope series

- Ratio $\Lambda_{\mu}^{A-4}/\Lambda_{\mu}^{A}$ (GP) gives that nuclei with lower N have higher capture rates by average of 1.4x.
- $\Lambda_{\mu}^{A-4}/\Lambda_{\mu}^{A}$ (EXP) much lower ratio (1.27x) low N nuclei have higher capture rate.
- Experimental observation is within 20% error with the GP prediction.
 - same amount of neutron excess reduces about the same β^+ response.

Neutron excess nuclei

- The fluctuation error of present work is within< 10 % from GP prediction, whereas some old experimental value are within 25% error.
- The nuclei with high N tends to have larger deviation compared to natural and low N nuclei.
- We prefer to be in conservative position that nuclear structure effects are at the bottom of all these variations of the total muon capture rates.

Conclusion

- The OMC on nuclei is a weak semileptonic process that is useful for studying the antineutrino nuclear responses relevant to double beta decay.
- The absolute lifetime from negative muon on ¹⁰⁰Mo and ^{Nat}Mo shows a systematic ratio between A=100 and A=96, where A=100 have a much lower capture rate due to neutron excess.
 - The total muon capture rate describes the overall final states distribution after the muon capture process.
- Deviation of present experimental value and others using enriched nuclei shows consistency with the GP calculated value proving that the slight g_A quenching in nuclear structure effects is observed.
- Double beta decay nuclei experiment uses stable multi-ton (10²⁸⁻²⁹) isotopes to get signals for rare decays
 - Largest N-Z excess to get large phase space (Q-value)
- Muon capture involve transformation from p to n, OMC rates is blocked if many neutrons around.
 - OMC and DBD rate are reduced