Progress in hyperon polarization analysis at NICA/MPD

Elizaveta Nazarova¹

MPD Polarization Meeting «Vorticity and Polarization in Heavy-Ion Collisions»

19.04.2022

¹ Joint Institute of Nuclear Research, Dubna, Russia

Outline

- Introduction
- Analysis technique
 - Simulation
 - Centrality determination
 - > Event plane determination
 - Lambda reconstruction
 - > Global polarization measurement
- Results
- Conclusions

Outline

- Introduction
- Analysis technique
 - Simulation
 - > Centrality determination
 - > Event plane determination
 - Lambda reconstruction
 - > Global polarization measurement
- Results
- Conclusions

Compared to the previous results

- Predicted¹ and observed^{2,3} <u>global polarization signals</u> <u>rise</u> as the collision energy is reduced:
 - > NICA energy range will provide new insight
- $\Lambda(\bar{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure with new observables^{4,5}

¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
²J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
³F. Kornas for the HADES Collaboration, SQM 2021
⁴O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)
⁵M. A. Lisa et al., Phys. Rev. C 104, 011901 (2021)

- Predicted¹ and observed^{2,3} <u>global polarization signals</u> <u>rise</u> as the collision energy is reduced:
 - > NICA energy range will provide new insight
- $\Lambda(\bar{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure with new observables^{4,5}

¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
²J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
³F. Kornas for the HADES Collaboration, SQM 2021
⁴O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)
⁵M. A. Lisa et al., Phys. Rev. C 104, 011901 (2021)

Global hyperon polarization

- w.r.t. reaction plane
- Emerges in HIC due to the system angular momentum^{1,2}
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport
- Measured through the weak decay:

$$\Lambda \to p + \pi^-$$

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\mathrm{H}} |\vec{P_{\mathrm{H}}}| \cos\theta^*$$

 $lpha_\Lambda = -lpha_{ar\Lambda} \simeq 0.732~~{
m (Updated~value^3)}$

• * — denotes hyperon rest frame (e.g. Λ)

¹Z. Liang, X. Wang, PRL 94, 102301 (2005)
²L. Adamczyk et al., Nature 548, 62 (2017)
³Ablikim M, et al., Nature Phys. 15:631 (2019)

D

reaction

S

19.04.2022

 $\boldsymbol{\theta}^{*}$

p

Ĥ.

Global hyperon polarization

 θ^{*} — angle between the decay particle and polarization direction

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi^*) \right\rangle$$

- φ^{*} azimuthal angle of decay particle
 - → Determine centrality

 - → Reconstruct Lambda
 - → Global polarization

- PV primary vertex
- V_0 vertex of hyperon decay

- dca distance of closest approach
- path decay length

MC

simulation

PHSD

Detector

simulation

GEANT 3

Event

reconstruction

MPD

- Bi-Bi @ 9GeV, 10M MB events, b [0,12]fm (request 23)
- Global hyperon polarization
 - > Thermodynamical (Becattini) approach²

¹W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 ²F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32

```
Elizaveta Nazarova
```

Hyperon polarization at NICA/MPD

8/45

9/45

19.04.2022

MC simulation	 MC simulation using PHSD generator¹ (<u>new</u>) Bi-Bi @ 9GeV, 10M MB events, b [0,12]fm (request 23)
PHSD	 Global hyperon polarization
	> Thermodynamical (Becattini) approach ²
Detector simulation GEANT 3	 MC simulation using PHSD generator¹ (previous) Au-Au @ 7.7GeV, 1.4M MB events, b [0,16]fm
	 Global hyperon polarization
Event	• Thermodynamical (Becattini) approach ²
MPD	¹ W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 ² F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32

Hyperon polarization at NICA/MPD

MC

simulation

PHSD

Detector

simulation

GEANT 3

Event

reconstruction

MPD

Detector simulation

- > Transfer of hyperon polarization vector $\mathbf{P} = \{P_x, P_y, P_z\}$ from generator data (PHSD) to MCTracks
- Accounts for non-unitary length of the vector (weight)
- Polarization set to zero P = {0,0,0} if P_n > 1 (calculation of thermal vorticity is unreliable)
- Transfer of polarization during hyperon decays¹ (feed-down)
 S^{*}_D = CS^{*}_P
 - > D daughter, P parent, C coefficient²
- Anisotropic decay of Λ hyperons (<u>can be turned on/off</u>) * $\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda} |\vec{P_{\Lambda}}| \cos\theta^*$ (recall)

¹ Ξ⁺(Ξ⁻), Ξ⁰, Σ⁰ decays (C_{Ξ} - = 0.927, C_{Ξ} = 0.9, C_{Σ} = -1/3) ² F. Becattini et al., Phys.Rev.C 95 (2017) 5, 054902

MC

simulation

PHSD

Event reconstruction

- Centrality and Event Plane determination
- > Realistic PID

11/45

¹P. Parfenov et al, NRNU MEPhI for the MPD collaboration (https://github.com/FlowNICA/CentralityFramework)

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

DCA comparison in Back-Up

19.04.2022

12/45

 MC-Glauber based centrality framework¹

¹P. Parfenov et al, NRNU MEPhI for the MPD collaboration (https://github.com/FlowNICA/CentralityFramework)

 $^{(*)}N_a = fN_{\text{part}} + (1-f)N_{coll}$

19.04.2022

MC Glauber

data

14/45

- Completed calibration of centrality
 - Full analysis done for 10%-centrality bins
 - 4 intervals of centrality chosen for analysis (0-10%, 10-20%, 20-50%, 50-100%), for comparison with previous results
- Choice of b [0,12]fm reduces amount of events without interaction (~1% compared to ~20% we had with b [0,16]fm)
- Agreement within ~5% for impact parameter
 - Except for the last two centrality bins (80-90%, 90-100%)
 - Excluded them from the main analysis

Event plane angle can be measured as:
Ψⁿ_{EP} = ¹/_n arctan ^{Qy}/_{Qx}
Q_y = Σ_iw_i sin(nφ_i)
Q_x = Σ_iw_i cos(nφ_i)

$$w_i = E_i/E_{total}$$
 (FHCal)
 $w_i = p_{Ti}/p_{Ttotal}$ (TPC)

• Event plane resolution can be calculated as:

$$R_{\rm EP}^{k} = \langle \cos(k(\Psi_{\rm EP}^{n} - \Psi_{\rm RP})) \rangle \quad \text{(w.r.t. reaction plane angle from the model} \\ R_{\rm EP}^{k} = \sqrt{\langle \cos(k(\Psi_{\rm EP,R}^{n} - \Psi_{\rm EP,L}^{n})) \rangle} \quad \text{(sub-event resolution method}^{1})$$

¹A. M. Poskanzer , S. Voloshin Phys.Rev. C (1998) 58. pp. 1671–1678

$$R_{\rm EP}^k(sub) = \frac{\sqrt{\pi}}{2\sqrt{2}}\chi\exp\left(-\chi^2/4\right)\left[I_{(k-1)/2}(\chi^2/4) + I_{(k+1)/2}(\chi^2/4)\right]$$

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

- Event plane and its resolution determined using FHCal
 Chapter durin 2 months does
- Checked via 2 methods

APÈ

- Event plane and its resolution determined using FHCal
- Reasonable behaviour compared to the previous results

Lambda reconstruction

Fitting procedure:

- Global fit (Gauss + Legendre polynomials)
- > Background fit in sidebands ($\pm 7\sigma$)
- > Cut-off: $< M_{A} > \pm n^{*}\sigma$
- > ω_2 cut based on maximum significance (for each centrality bin)

Lambda reconstruction

Global polarization reconstruction

- Obtained invariant mass distribution in bins of $\Delta \phi_p^* = \Psi_{\rm EP}^1 \phi_p^*$
 - > Net amount of Λ in each bin
 - > Distribution of $N_{\Lambda}(\Delta \phi_p^*)$
- Fit of the distribution¹ to get $\langle \sin(\Delta \phi_p^*) \rangle \rightarrow P_{\Lambda}$
 - > «Event plane» method (p_n fit parameters)

 $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{p_1}{R_{\rm EP}^1}$

$${}^{1}\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_{p}^{*}} = p_{0}(1+2p_{1}\sin(\Delta\phi_{p}^{*})+2p_{2}\cos(\Delta\phi_{p}^{*})+2p_{3}\sin(2\Delta\phi_{p}^{*})+2p_{4}\cos(2\Delta\phi_{p}^{*})+\ldots)$$

Results (previous)

Hyperon polarization at NICA/MPD

Results (new)

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_p^*} = p_0(1+2p_1\sin(\Delta\phi_p^*)+2p_2\cos(\Delta\phi_p^*)+2p_3\sin(2\Delta\phi_p^*)+2p_4\cos(2\Delta\phi_p^*)+\ldots)$$

Hyperon polarization at NICA/MPD

- (left) Previous result (PHSD ~1M events, @ 7.7 GeV)
- (right) New result with ~1M events, PHSD @ 9 GeV
- The results seem similar, but ...

- (left) PHSD @ 9 GeV, ~1M events
- (right) PHSD @ 9 GeV, ~2M events
- When we increase statistics, the picture starts to change

- (left) PHSD @ 9 GeV, ~2M events
- (right) PHSD @ 9 GeV, ~5M events
- Not only the errors are decreasing, but the value of polarization

Hyperon polarization at NICA/MPD

- (left) PHSD @ 9 GeV, ~5M events
- (right) PHSD @ 9 GeV, ~10M events
- Not only the errors are decreasing, but the value of polarization
- For the full sample, the reconstructed value is consistent with 0

29/45

• (left) PHSD @ 9 GeV, ~10M events, using $\Delta \phi_p^* = \Psi_{\rm EP}^1 - \phi_p^*$ • (right) PHSD @ 9 GeV, ~10M events, using $\Delta \phi_p^* = \Psi_{\rm RP} - \phi_p^*$

- (left) PHSD @ 9 GeV, ~5M events
- (right) PHSD @ 9 GeV, ~10M events
- Not only the errors are decreasing, but the value of polarization
- For the full sample, the reconstructed value is consistent with 0

Overview of statistics

	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	60-70%	70-80%	80-90%	90-100%
$\mathbf{N}_{\mathrm{events}}$	$1.3^* \ 10^6$	$1.4^* \ 10^6$	$1.4^* \ 10^6$	$1.4^* \ 10^6$	$1.4^* \ 10^6$	$1.5^* \ 10^6$	$1.2^* \ 10^6$	$3.7*~10^{5}$	7.5* 10 ⁴	1.8* 10 ³
N_{Λ}	$4.4*10^{6}$	$3.3*10^{6}$	2.4* 10 ⁶	$1.6^* \ 10^6$	$1.0*\ 10^{6}$	$0.6*~10^{6}$	$0.3*~10^{6}$	0.5* 10 ⁵	-	-

PHSD @9 GeV

	0-10%	10-20%	20-50%	50- 100%
\mathbf{N}_{events}	$1.3^* \ 10^6$	$1.4^* \ 10^6$	$4.2*10^{6}$	$3.0*\ 10^{6}$
N_{Λ} (full)	$4.4* \ 10^{6}$	$3.3^* \ 10^6$	$4.9*10^{6}$	$1.0^* \ 10^6$
$N_{\Lambda}(5M)$	2.1* 10 ⁶	$1.6^* \ 10^6$	$2.4*10^{6}$	0.5* 10 ⁶

HADES
Au-Au @1.23 AgeV
Ag-Ag @1.58 AGeV

	10-40%
N_{Λ} (Au)	1.5* 10 ⁵
N_{Λ} (Ag)	$1.1^* \ 10^6$

PHSD @7.7 GeV

	20-50%
\mathbf{N}_{events}	$2.9*10^{6}$
\mathbf{N}_{Λ}	3.3* 10 ⁵

31/45

HADES PLB803 (2020) 135298, b = 5.5(1.2 0.8 p [GeV/c] [%]12 |-|-STAR preliminary ★ 0.52<y+ly l<1.02 1.02<y+ly___l<1.52 ★ 1.52<y+ly l<2.02 2 centrality 20-60% Au+Au Vs_{NN} = 7.2 GeV 0.5 1.5 2.5 2 p_[GeV/c]

- Rapidity and transverse momentum dependences of global polarization of Lambda
 - > STAR collaboration, SQM2021 (e-Print: 2108.10012)
 - HADES collaboration, SQM2021
- ${\scriptstyle \bullet }$ No significant y and ${\scriptstyle p_{_{\rm T}}}$ dependence within uncertainties

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

- Rapidity and transverse momentum dependences of global polarization of Lambda
 - STAR collaboration, SQM2021 (e-Print: 2108.10012)
 - HADES collaboration, SQM2021
- No significant y and p_T dependence within uncertainties

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

(left) PHSD @ 9 GeV, ~2M events
(right) PHSD @ 9 GeV, ~10M events

Δ

 \bigcirc

0.5

Δ

 \bigcirc

η

○ MC (full)

△ MC (primary)

Reco (pol)

 $\mathsf{P}_{\Lambda}, [\%]$

2

(left) PHSD @ 9 GeV, ~2M events
(right) PHSD @ 9 GeV, ~10M events

1.5

Conclusions

- Feasibility study of the global polarization measurement with PHSD
 - > Sample with increased statistics: Bi-Bi @ 9GeV, 10M MB events, b [0,12]fm
 - Official production (request 23)
- Compared with our previous results from the testing sample (Au-Au @ 7.7GeV, 1.4M MB events, b [0,16]fm)
 - Better results with centrality and EP resolution determination
 - > Unexpected behaviour of extracted global polarization values
- Outlook
 - > Does the method become inapplicable/should be corrected?
 - > Is the picture the same with the second method?

Thank you for your attention!

Back Up: Multiplicity in TPC

¹P. Parfenov et al, NRNU MEPhI for the MPD collaboration (https://github.com/FlowNICA/CentralityFramework)

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

Back Up: Centrality determination

41/45

w/o DCA, M [20,350] DCA cut, M [10,230] $\times 10^{3}$ ×10³ counts counts -Full -0-10% 50 -10-20% 50 -20-30% 30-40% 40 40-50% 40 - **50-60%** -*60-70%* 30 - **70-80%** 30 80-90% 90-100% 20 20 10 10 0[⊾] 0 0 18 20 B, fm 2 6 8 10 12 14 16 2 6 8 10 12 ٥ 4 4

18 20 B, fm

— Full

-0-10%

- **10-20%**

-20-30%

-40-50%

- **50-60%**

-60-70% - **70-80%**

80-90%

90-100%

14

16

30-40%

Back Up: Average impact parameter

DCA cut, M [10,230]

w/o DCA, M [20,350]

Back Up: Average impact parameter

Back Up: Parameters from centrality framework

Васк	Back Op. Parameters from centrality framework													
Centrality, %	N _{ch} ^{min}	N ^{max}	$\langle b \rangle$, fm	RMS	b_{min},fm	b_{max} , fm	$\langle N_{part} \rangle$	RMS	N _{part}	N _{part}	$\langle N_{\rm coll} \rangle$	RMS	N _{coll}	N ^{max} coll
0 - 10	127	232	3.06	1.21	1.54	4.28	336.78	37.71	292.83	387.52	748.61	113.62	627.36	890.99
10 - 20	94	127	5.30	0.92	4.28	6.16	254.64	36.00	219.87	292.83	524.17	101.49	434.17	627.36
20 - 30	69	94	6.90	0.78	6.16	7.58	189.45	30.00	162.66	219.87	357.94	79.26	293.21	434.17
30 - 40	49	69	8.20	0.72	7.58	8.78	138.34	25.24	117.29	162.66	237.63	61.37	191.21	293.21
40 - 50	34	49	9.33	0.69	8.78	9.85	98.20	20.73	81.42	117.29	151.55	45.65	118.68	191.21
50 - 60	22	34	10.35	0.69	9.85	10.84	66.94	17.09	53.69	81.42	91.64	33.18	68.90	118.68
60 - 70	13	22	11.31	0.71	10.84	11.75	42.59	13.44	33.20	53.69	50.91	22.41	36.82	68.90
70 - 80	7	13	12.20	0.76	11.75	12.63	25.22	9.95	18.92	33.20	25.98	13.88	18.04	36.82
80 - 90	3	7	13.08	0.87	12.63	13.61	13.68	6.99	9.16	18.92	12.18	8.06	7.69	18.04
90 - 100	1	2	14.22	1.00	13.61	14.97	5.13	3.36	1.02	9.16	3.77	3.13	-0.60	7.69

DCA cut, M [10,230]

w/o DCA, M [20,350]

Centrality, %	Nch	N _{ch} max	$\langle b \rangle$, fm	RMS	b_{min}, fm	b_{max} , fm	$\langle N_{part} \rangle$	RMS	Npart	N ^{max} Npart	$\langle N_{coll} \rangle$	RMS	N _{coll}	N _{coll}
0 - 10	193	355	2.92	1.09	1.30	4.18	341.13	33.89	297.02	392.86	767.45	95.49	641.69	916.61
10 - 20	135	193	5.19	0.72	4.18	6.03	259.03	29.90	225.32	297.02	535.50	70.25	447.39	641.69
20 - 30	93	135	6.74	0.61	6.03	7.39	195.95	25.17	169.74	225.32	372.76	54.10	308.16	447.39
30 - 40	62	93	8.00	0.57	7.39	8.54	146.01	21.34	125.37	169.74	253.46	42.14	206.93	308.16
40 - 50	40	62	9.08	0.56	8.54	9.59	106.45	17.91	89.62	125.37	166.85	32.22	133.08	206.93
50 - 60	24	40	10.06	0.57	9.59	10.55	74.98	15.09	61.30	89.62	104.73	24.64	80.42	133.08
60 - 70	13	24	11.00	0.61	10.55	11.41	49.57	12.41	39.76	61.30	60.45	18.15	45.09	80.42
70 - 80	7	13	11.85	0.66	11.41	12.26	31.20	9.73	24.04	39.76	33.01	12.43	23.55	45.09
80 - 90	3	7	12.72	0.81	12.26	13.32	17.82	7.89	12.00	24.04	16.39	8.72	10.53	23.55
90 - 100	1	2	14.06	1.03	13.32	15.03	6.15	4.27	-0.56	12.00	4.61	3.86	-2.99	10.53

Elizaveta Nazarova

Hyperon polarization at NICA/MPD

44/45

+

Back Up: Event plane determination

- Event plane and its resolution determined using FHCal
 Checked wis 2 methods
- Checked via 2 methods

45/45

