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Motivation

• High-precision theoretical description of Standard Model processes is of crucial

importance. In particular, the New Physics — new particles and interactions — is

likely to appear as small deviations from SM and therefore can be detected only

with high precision of theoretical predictions at hand.

• From the computational point of view, our ability to obtain high-precision results

depends crucially on multiloop calculation techniques. Complexity grows both

qualitatively and quantitatively in an explosive way with the number of loops

and/or scales.

• New methods and approaches are always required. Using computer power is a

must for at least two last decades. Insights from various fields of mathematics

help a lot.
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Example: form factors

2 loops:

• Dispersion relation

• Feynman parametrization

• Mellin-Barnes parametrization

• pFq expansion in indices, HypExp

[Matsuura, van der Marck, and van Neerven, 1989;

Harlander, 2000]

[Gehrmann, Huber, and Maitre, 2005]
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Example: form factors

3 loops:

[Gehrmann, Heinrich, Huber, and Studerus, 2006; Heinrich, Huber, and Mâıtre, 2008; RL,

Smirnov, and Smirnov, 2010]

• Feynman parametrization

• Mellin-Barnes parametrization, MB, AMBRE [Czakon, 2006; Gluza et al., 2007]

• Recurrence+analyticity in d , [Tarasov, 1996; RL, 2010]

• PSLQ recognition [Ferguson et al., 1998]
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Example: form factors

4 loops:

[Henn, Smirnov, Smirnov, and Steinhauser, 2016; RL, Smirnov, Smirnov, and Steinhauser, 2019;

RL, von Manteuffel, Schabinger, Smirnov, Smirnov, and Steinhauser, 2021b]

• ∼ 100 big topologies.

• Linear reducibility, HyperInt [Panzer, 2013]

• Parallelization for IBP reduction,

finite fields reconstruction [von Manteuffel and Schabinger, 2015; Smirnov and

Chuharev, 2020]

• Differential equations, reduction to ϵ-form [Henn, 2013; RL, 2015], Libra [RL,

2021]

• PSLQ recognition
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Example: form factors

5 loops:

• ∼ 1000 big topologies.

• It looks like no available techniques can help.
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NNLO cross sections

• Massless form factors represent a traditional topic of the multiloop calculations

where the “world records” are fixed. But from the experimental point of view less

loops and more scales are more important.

• In particular, only very recently multiloop methods have grown to NNLO

differential cross section calculations of 2 → 2 processes with massive particles.

NNLO corrections to differential cross sections are not even known for basic QED

process: e+e− → γγ, e+e− → µ+µ−, etc. Partial results start to appear [Duhr,

Smirnov, and Tancredi, 2021; Banerjee et al., 2020].

• The complexity of NNLO calculations with massive internal lines is connected

with appearance of non-polylogarithmic integrals. Effective approach to the

calculation of such integrals is, probably, the most hot topic in multiloop

calculations.
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State of the art

Complexity crucially depends on # of loops L and on # of scales S .
PPPPPPPscales

loops
1 loop 2 loops 3 loops 4 loops 5 loops > 5

1 ✓ ✓ ✓ ✓ a few

2 ✓ ✓ some a few

3 ✓ some a few

> 3 ✓ a few

The following empirical “formula” describes the complexity of calculations:

Complexity = L+ S + δm,

where δm = 1 (δm = 0) for diagrams with/without massive internal lines.

• 5-loop massless propagators [Georgoudis, Gonçalves, Panzer, Pereira, Smirnov, and Smirnov, 2021].

• 4-loop g − 2 integrals (onshell massive propagators) [Laporta, 2017]

• 4-loop form factors [RL, von Manteuffel, Schabinger, Smirnov, Smirnov, and Steinhauser, 2022]

• 3-loop massless boxes [Henn, Mistlberger, Smirnov, and Wasser, 2020]

• 2-loop 5 legs [Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, and Zoia, 2019]

• 3-loop massive form factors: numerical calculation [Fael, Lange, Schönwald, and Steinhauser, 2022].

• Partial results for 2-loop boxes with inner massive lines [Duhr, Smirnov, and Tancredi, 2021].
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Calculation path

1. Diagram generation

✓Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001], tapir [Gerlach et al., 2022],. . .

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,

2012], . . .

3. DE Solution

Reduce the system to ϵ-form, write down solution in terms of polylogarithms.

Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]

NB: 3rd step is not always doable.
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IBP reduction



IBP identities [Chetyrkin and Tkachov, 1981]

Given a Feynman diagram, consider a family

j(n) =
ˆ

dµL

N∏
k=1

D
−nk
k , dµL =

L∏
k=i

dd li

D1, . . . ,DM — denominators of the diagram,

DM+1, . . . ,DN — irreducible numerators, such that

N = L(L+ 1)/2 + L · E .

p1p2

pE

-p1-p2...-pE

From 0 =
´
dµL

∂
∂li

· qm
∏N

k=1 D
−nk
k one obtains

IBP identities

[cklBkAl + clAl ] j(n) = 0.

Here ckl , cl are some coefficients.

Al j(nl ) = nl j(nl + 1),

B l j(nl ) = j(nl − 1)

IBP identities allow one to express any integral in the family via a finite number of

master integrals. They also allow to construct differential and difference equations for

the latter.

10



IBP reduction

Laporta algorithm (FIRE, Kira, Reduze, . . . )

• generate identities for many numeric n ∈ ZN .

• use Gauss elimination and collect reduction rules

to database.

• twist: mapping to finite fields Fp +

reconstruction.⇐= naturally parallelizable

Heuristic search (LiteRed)

1. Generate identities for shifts around n with

symbolic entries.

2. Use Gauss elimination until acceptable rule is

found.

3. Solve Diophantine equations to derive

applicability condition.

Observation: only a small fraction of identities finally

contribute to the reduction rule.
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IBP reduction in parametric representation

Note that N = L(L+ 1)/2 + L · E grows quadratically with L, while M, the # of lines

in the diagram, grows only linearly. Parametric representation: only M indices.

Parametric representation

j̃(d)(n1, . . . nM) =

ˆ ∏M
k=1 dxkx

nk−1
k

G(x)d/2

G = U+F , where U and

F are Feynman graph

polynomials.

IBP identities relating integrals with the same d require constructing syzygy module

for ideal generated by ⟨G , ∂1G , ∂MG⟩.

IBP identities from syzygies [RL, 2014]. Baikov rep.: [Zhang, 2014]

Syzygy QG + Q1∂1G + . . .+ QM∂MG = 0 leads to IBP identity

[ d
2
Q(A) + Qk (A)Bk ]j̃(n) = 0

Quite promising, but a fast algorithm for constructing a minimal (rather than

Groebner) basis of syzygy module is very desirable.
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IBP reduction with intersection theory? [Mastrolia and Mizera, 2019]

• Integral in parametric representation is understood

as bilinear pairing between integration cycle C and

differential form ϕ.

ˆ
C
G−νϕ = ⟨ϕ|C ] , Simplest twisted cycle:

Pochhammer contour.

• ⟨ϕ|C ] is invariant under ϕ → ϕ+∇ν ϕ̃ and/or C → C + ∂C̃ , where

∇ν = d − νG−1dG is twisted differential and ∂C̃ is a boundary (contractable)

cycle.

• Therefore, ⟨·|·] is defined on the elements of twisted de Rham cohomology and

twisted homology. Those are finite-dimensional spaces, therefore we can use basis

expansion as IBP.

• Ref. [Cho and Matsumoto, 1995] introduced pairing ⟨ϕ1|ϕ2⟩, correctly defined for

∇ν and ∇−ν de Rham cohomologies.

• IBP reduction is simply a basis expansion

⟨ϕ|C ] =
∑
i

⟨ϕ|ϕi ⟩ ⟨ϕi |C ] ,

where ji = ⟨ϕi |C ] are master integrals.

• Unfortunately, ⟨ϕ1|ϕ2⟩ is still very difficult to calculate in general. All examples

considered so far correspond to integrals with only a few (1 or 2) indexes.

Perspectives of this approach are doubtful.
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Differential equations and dimensional reucrrences

As a result of IBP reduction we express amplitudes via a finite set of master integrals

j = (j1, . . . , jK )
⊺. What is more important, we obtain equations for them:

Differential equations

[Kotikov, 1991; Remiddi, 1997]

∂x j = M(x , d)j

Dimensional recurrences

[Tarasov, 1996; Derkachov et al., 1990]

j (d − 2) = R(x , d)j (d)

Dimensional recurrence relations are especially useful for one-scale integrals, when the

differential equations can not help. The approach is very effective when R is triangular.

Using the analytical properties wrt d , [RL, 2010] to fix the arbitrary periodic functions,

one can obtain the solution in the form of convergent sums. High-precision evaluation

of these sums can be done with SummerTime package [RL and Mingulov, 2016].

Using PSLQ algorithm, one can turn the obtained numerical results into analytical

expressions. This is the approach which was successfully applied to the calculation of

the 3-loop form factors.
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Differential equations



Differential equations for master integrals

• Differential equations for master integrals have the form

∂x j = M(x , ϵ)j

• One can try to simplify the equation by transformation j = T j̃ , so that

∂x j̃ = M̃ j̃ , M̃ = T−1 [MT − ∂xT ]

• [Henn, 2013]: there is often a “canonical” basis J = T−1j such that

∂xJ = ϵS(x)J (ϵ-form)

• General solution is easily expanded in ϵ:

U(x , x0) = Pexp

ϵ xˆ

x0

dxS(x)

 =
∑
n

ϵn
˚

x>xn>...>x0

dxn . . . dx1S(xn) . . . S(x1)

• We usually want to send the lower limit x0 to a singular point (say, to 0), so we

have to consider the regularized operator U(x , 0) = limx0→0 U(x , x0)x
ϵS0
0 .

• Algorithm of finding transformation to ϵ-form: [RL, 2015]. Implemented in 3

publicly available codes: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa,

2017], and recently in Libra [RL, 2021].
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General structure of reduction algorithm

Algorithm proceeds in three major stages, each involving a sequence of “elementary”

transformations.

1. Fuchsification: Eliminating higher-order poles

Input: Rational matrix M (x , ϵ)

Output: Rational matrix with only simple poles on the extended complex plane,

M (x , ϵ) =
∑

k
Mk (ϵ)
x−ak

.

2. Normalization: Normalizing eigenvalues

Input: Matrix from the previous step, M (x , ϵ) =
∑

k
Mk (ϵ)
x−ak

.

Output: Matrix of the same form, but with the eigenvalues of all Mk (ϵ) being

proportional to ϵ.

3. Factorization: Factoring out ϵ

Input: Matrix from the previous step.

Output: Matrix in ϵ-form, M (x , ϵ) = ϵS(x) = ϵ
∑

k
Sk

x−ak
.
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Frobenius method

Path-ordered exponent

U(x , 0) = Pexp

 xˆ

x0

M(x)dx

 xM0
0 , M0 = resx=0M(x)

can also be expanded in generalized power series when x is small enough.

U(x , 0) =
∑
λ∈S

xλ
∞∑
n=0

Kλ∑
k=0

1

k!
C (n + λ, k) xn lnk x .

Note that for expansion around singular point (which we usually want) non-integer

powers xλ and log x might appear.

The convergence radius is the distance to the nearest singularity. However, it is easy

to perform analytical continuation to the whole complex plane by matching expansions

at different points. Let x = 1 is also the singular point, then the continuation of

U(x , 0) beyond x = 1 is simply

U(x > 1, 0) = U(x , 1)U−1(1/2, 1)U(1/2, 0)

Frobenius expansion provides a systematic way to obtain numerical results
for any family of multiloop integrals, including non-polylogarithmic ones.
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Libra program

• Libra is a Mathematica package useful for treatment of differential systems

which appear in multiloop calculations.

• Tools for reduction to ϵ-form

• Visual interface

• Algebraic extensions

• Birkhoff-Grothendieck factorization

• Tools for constructing solution

• Determining boundary constants.

• Constructing ϵ-expansion of Pexp.

• Constructing Frobenius expansion of Pexp.
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Libra tools for reduction to ϵ-form

• Fuchsification and normalization.

• Automatic tool (useful for simple cases)

In[1]: t=Rookie[M,x,ϵ];

• Interactive tool (useful for most cases)

In[1]: t=VisTransformation[M,x,ϵ];

• Factorization.

In[2]: t=FactorOut[M,x,ϵ,µ];

• General solution

In[3]: U=PexpExpansion[{M,6},x];
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Boundary conditions

Suppose we have found a transformation T (x) = T (x , ϵ) to ϵ-form, j = TJ. Then we

can write

J(x) = U(x , x0)J(x0),

j(x) = T (x)U(x , x0)[T (x0)]
−1j(x0)

But the point x0 should be somewhat special to simplify the evaluation of j(x0) as

compared to j(x). As a rule, ”special” boils down to ”singular”, i.e., we can expect

simplifications for x0 being a singular point of the differential system. Let it be x0 = 0

for simplicity.

Problem

U(x , x0) diverges when x0 tends to zero. Therefore, we have to consider not

the values, but the asymptotics of j(x0) at x = 0.

Libra can determine which asymptotic coefficients, c, are sufficient to calculate

and find the “adapter” matrix L relating those with the column of boundary

constants, C = Lc.

In[4]: {L,cs}=GetLcs[M,T,{x,0}];
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Example of using Libra

One of many 4-loop massless vertex topologies with two off-shell legs.

• Differential system

∂x j =




︸ ︷︷ ︸

374 × 374 matrix

j , where j =



...

...

...

...



• Maximum size of the diagonal blocks is “only” 11× 11.

• No global rationalizing variable. Three algebraic extensions are needed for the

reduction to ϵ-form:

x1 =
√
x , x2 =

√
x − 1/4, x3 =

√
1/x − 1/4
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Simplifications with symbol map

There is a standard approach to the simplification of the polylogarithmic expressions

using symbol map. One might think of symbols as a cleaner way to represent iterated

(or path-ordered) integrals with logarithmic weights (with some reservations, though):

I =

˙

1>τn>...>τ1>0

d ln pn(τn) . . . d ln p1(τ1)
S

−−−−−−−−−−−−→ pn⊗ . . .⊗p1

Formal symbol manipulation rules then easily follow, e.g.

d ln(pq) = d ln p + d ln q =⇒ (. . .⊗pq⊗ . . .) = (. . .⊗p⊗ . . .) + (. . .⊗q⊗ . . .)

Similarly, by ordering the integration variables in the product of integrals, we get

S(I1I2) = S(I1)� S(I2), where � denotes a shuffle product, e.g.

(a⊗b)�(c⊗d) = a⊗b⊗c⊗d+a⊗c⊗b⊗d+a⊗c⊗d⊗b+c⊗a⊗b⊗d+c⊗a⊗d⊗b+c⊗d⊗a⊗b

We have, in particular, symbols for classical polylogarithms

S(Lin(x)) = x⊗ . . .⊗x︸ ︷︷ ︸
n−1

⊗(x − 1)
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Simplifications with symbol map

Symbols are good for checking the identities, e.g., using S it is easy to establish1

7Li2
(

1+ε/z
1−iε

)
−7Li2

(
1+ε̄/z
1+i ε̄

)
+7Li2

(
z+ε̄
ε̄−i

)
−7Li2

(
z+ε
ε+i

)
+11Li2

(
z+ε
ε−i

)
−11Li2

(
z+ε̄
ε̄+i

)
+4Li2(1+zε)−4Li2(1 + z ε̄)+18Li2(−iz)−18Li2(iz)+11Li2

(
1+ε̄/z
1−i ε̄

)
−11Li2

(
1+ε/z
1+iε

)
= 2iπ2

5
√
3
− 23

3
iπ ln z + 6iπ ln

(
2−

√
3
)
− iψ′( 1

6 )
5
√
3

− 24iG , where ε = 1/ε̄ = e2πi/3.

However, strictly speaking, they are much less powerful in simplifying expressions.

E.g., if we omit in the left-hand side a couple of dilogs with not so simple arguments,

we could have failed to recognize in the symbol of the resulting expression that of the

sum of the omitted dilogs.

Simplification algorithm idea (stay tuned)

For a given expression:

1. find all possible arguments of Lin which might enter the simplified form.

2. find equivalent form with the minimal number of polylogs.

1NB: This identity was used in real life (as well as some yet more complicated identities) for the simplification of

the total cross section of Compton scattering @NLO [RL, Schwartz, and Zhang, 2021a].
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Non-polylogarithmic integrals



Non-polylogarithmic integrals: “Systematic” approach

1. “Systematic” approach.
• Reduce the system to (A + ϵB)-form:

∂x j = (A + ϵB)j.

• “Integrate out” the ϵ0 form: make substitution j = U0J, where U0 is a fundamental

matrix for the unperturbed system ∂xU0 = AU0.

• The system for J is in ϵ-form:

∂xJ = ϵB̃J, B̃ = U−1
0 BU0.

• The general solution U1 = Pexp
[
ϵ
´
dxB̃(x)

]
is expanded in terms of iterated integrals

with weights being the elements of B̃.

NB: irreducibility to ϵ-form means that elements of B̃ are transcendental functions. In

particular, the weights might be possible to represent in terms of modular forms.

• Pros: to some extent decouples the solution of unperturbed equation and ϵ-expansion.

• Cons: Iterated integrals with transcendental weights are poorly investigated as

compared to polylogarithms. When it comes to numerical evaluation, it is often

necessary to reside to some sort of power series expansion.

2. Meanwhile, the Frobenius method can be applied directly to the differential

system. It seems to be the most effective approach for numerical evaluation. In

particular, it works for 3-loop massive form factors [Fael, Lange, Schönwald, and

Steinhauser, 2022].

3. For many cases of non-polylogarithmic integrals there exists a one-fold integral

representation in terms of polylogarithms and algebraic functions.

24



Monodromy group

z1
z2 z3

γ1

γ2 γ3

z0

• Monodromy group G⟲ ⊂ GL(n,C) of the differential system ∂z j = Mj with

j = (j1, . . . jn)⊺ determines how the solution space transforms under analytical

continuation along nonequivalent closed paths2. It is generated by the

monodromies around the loops encircling each singular point of the system.

• Monodromy group captures all nontrivial properties of the differential system

while being blind to a specific realazation (in particular, G⟲ is invariant wrt

rational transformations of the system).

Hilbert’s 21st problem: Proof of the existence of linear differential equations

having a prescribed monodromic group.

2Reminder: Let U(z) is a fundamental matrix, ∂zU = MU determined in the vicinity of a regular point z0, and let

U(z)|γ denotes its analytical continuation along the closed path γ starting and ending in this vicinity. Then

U(z)|γ = U(z)g(γ), where g(γ) is a complex n × n matrix (i.e. g(γ) ∈ GL(n,C)). In fact, this matrix depends

only on homotopy class [γ] (they form a fundamental group π1(C)). Thus the monodromy group

G⟲ = {g([γ])| [γ] ∈ π1(C)} is a representation of the fundamental group π1(C).
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Monodromy group at ϵ = 0 and (ir)reducibility

The ϵ-reducible and ϵ-irreducible systems differ intrinsically by the type of their

monodromy groups at ϵ = 0:

• ϵ-reducible with rational transformations: monodromy group is trivial, G⟲ = {1}.

• ϵ-reducible with algebraic transformations: monodromy group is finite, |G⟲| < ∞.

Monodromy group becomes trivial on the corresponding covering space.

• ϵ-irreducible: monodromy group is (isomorphic to) a subgroup of GL(n,Z).

In particular, for elliptic cases G⟲ is a congruence subgroup of SL(2,Z), see [Broedel

et al., 2022] for the case of 2-loop sunrise and 3-loop banana graph. This fact allows

one to express the integration kernels via modular forms.
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Monodromies from Frobenius expansions

Monodromy group can be obtained numerically from Frobenius expansion, so it is not

so easy to see the structure from, e.g.,

g1 =

(
1 0. 0

0 −1 0

0 0 −1

)
, g2 =

(
−2. −5.6325 −4.11456

0.618343 2.16094 0.84807

−0.117344 −0.220313 0.83906

)
,

g3 =

(
−8. + 0.i −16.8975 + 19.5116i −12.3437 + 102.816i

1.85503 − 0.296943i 3.83906 − 4.57912i −0.84807 − 21.5991i

−0.352031 + 0.406491i 0.220313 + 1.52637i 5.16094 + 4.57912i

)
.

We neead to find a matrix t such that t−1gk t are all integer matrices. One needs

some experimentation to find such a matrix. However, it appears to be possible! We

find that t =

 1 0 3

−3c − 1
32c

i
(
1−96c2

)
16

√
3c

−3c − 1
32c

c 2ic√
3

c

 with c = 0.11734382... being

some unrecognized constant, renders

t−1g1t =

(
−2 0 −3

0 −1 0

1 0 2

)
, t−1g2t =

(
1 0 0

0 1 0

0 0 −1

)
, t−1g3t =

(
1 0 0

0 5 6

0 −4 −5

)
.
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Examples of monodromy groups

Two-loop sunrise3: G⟲ ∼= Γ1(6) ⊂ SL(2,Z)

Two-loop massive vertex [von Manteuffel and Tancredi, 2017]: G⟲ ∼= Γ(2) ⊂ SL(2,Z).

Two-loop EW vertex [Broedel, Duhr, Dulat, Penante, and Tancredi, 2019]: G⟲ ∼= Γ1(6) ⊂ SL(2,Z).

p1 p1

p2 p2

3-loop forward box [Mistlberger, 2018]: G⟲ ∼= Γ1(5) ⊂ SL(2,Z).

φ

4-loop HQET vertex [Brüser, Dlapa, Henn, and Yan, 2020] : G⟲ ∼= Γ(3) ⊂ SL(2,Z).

3-loop equal-mass sunrise [Broedel, Duhr, and Matthes, 2022]:

G⟲ ∼=
〈(

1 6 −5
0 1 −1
0 0 1

)
,
(

1 0 0
2 3 −2
4 4 −3

)
,
(

−3 −10 7
12 31 −21
16 40 −27

)〉
⊂ GL(3,Z).

3-loop HQET sunrise G⟲ ∼=
〈(

−2 0 −3
0 −1 0
1 0 2

)
,
(

1 0 0
0 1 0
0 0 −1

)
,
(

1 0 0
0 5 6
0 −4 −5

)〉
⊂ GL(3,Z)

3Here

Γ1(N) =
{
g ∈ SL(2, Z)

∣∣∣ g =
(

1 ∗
0 1

)
mod N

}
, Γ(N) =

{
g ∈ SL(2, Z)

∣∣∣ g =
(

1 0
0 1

)
mod N

}
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More ideas of treating non-polylogarithmic integrals

• Use ϵ-regular basis [RL and Onishchenko, 2019].

• Use Feynman parametrization to gather two denominators into one [Bezuglov and

Onishchenko, 2022].

• Introduce suitable cut denominator δ(s − D) to later integrate wrt s.

• For the integrals expressible via hypergeometric functions pFq use integral

representation and expand in ϵ under the integral sign [Bezuglov, Kotikov, and

Onishchenko, 2022].

These methods seem to be not universal, but may help in real-life
calculations.
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Example: maximal cut of non-planar vertex

Consider one solution of the homogeneous differential system,

J1 = 2F1

(
1
2
, 1
2
+ 2ϵ, 1 + ϵ|x

)
. Integrating out ϵ0 gives

J1 =
∑
k

ϵk
∑

i∈{1,2}k+1

2K
(
xi0

)
π

I(Ωi0 i1 ,Ωi1 i2 , . . . ,Ωik−1 ik ,Ωik1|x) ,

where I denotes iterated integral, x1 = x , x2 = x = 1− x , and

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
= B̃(x)dx =

(
u(x)v(x) −u(x)v(x)

u(x)v(x) −u(x)v(x)

)
dx

πxx
,

u(x) = K(x) − 2E(x), v(x) = 2xK(x) − 2E(x) .

Ω can be expressed via modular forms. Meanwhile, there are much simpler

representations in terms of one-fold integrals:

J1 =
Γ(ϵ+ 1)

√
πΓ

(
ϵ+ 1

2

) ∑
k

ϵk
1ˆ

0

dt√
t(1− t)(1− tx)

lnk 1−t
(1−tx)2

k!

J1 =
1

iπ2

‰
√

x<|t|<1

dt K(x/t2)

t(1− t2)

[
1−2ϵ(1−2t)H1+2ϵ2 [2H0,1 − (1− 2t) (3H1,−1 + H1,1)]+. . .

]
,

where Hn = Hn(t) is harmonic polylogarithm.
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Summary

• Each step towards increasing the # of loops and/or # of scales
requires new methods. Those involve both technological advances
(e.g. massive parallelization) and new algorithms coming various
fields of mathematics.

• IBP reduction still remains a bottleneck for some calculations. New
ideas of IBP reduction appear, whether they will be successful is yet
to find out.

• Differential equations method is already in a very good shape.
However, there is still no regular approach to the computation of
non-polylogarithmic integrals.

• From the practical point of view, there is always a Frobenius method
which might be used to obtain numerical high-precision results.

Thank you!
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