Konstantin Postnov Sternberg Astronomical Institute, Moscow U.

18.07.2022

1

Gravitational waves: Astrophysical and cosmological inferences

International Conference on Quantum Field Theory, High-Energy Physics, and Cosmology

Plan

- Introduction
- 10-1000 Hz: ground-based laser interferometers
- LIGO/Virgo 01-03
- Astrophysical implications
- NanoHz: pulsar timing arrays results

Gravitational waves

$$g_{\alpha\beta} = g^{\mathrm{B}}_{\alpha\beta} + h_{\alpha\beta} , \quad R_{\alpha\beta\gamma\delta} = R^{\mathrm{B}}_{\alpha\beta\gamma\delta}$$

$$\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu} \quad \partial^{\nu} \bar{h}_{\mu\nu} = 0.$$

GW energy flux

• Energy density

$$t^{00} = \frac{c^2}{16\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle$$

• Power

$$\frac{dE_{\rm GW}}{dt} = \frac{c^3 r^2}{16\pi G} \int d\Omega \,\langle \dot{h}_+^2 + \dot{h}_\times \rangle.$$

• Flux

$$T^{\mathrm{GW}\,0z} \simeq \frac{\pi}{4} \frac{c^3}{G} f^2 h_{\mathrm{amp}}^2 \simeq 300 \frac{\mathrm{ergs}}{\mathrm{cm}^2 \,\mathrm{sec}} \left(\frac{f}{1 \,\mathrm{kHz}}\right)^2 \left(\frac{h_{\mathrm{amp}}}{10^{-21}}\right)^2$$

GW emission

$$\bar{h}_{\mu\nu}(t,\mathbf{x}) = -4\frac{G}{c^2} \int_{\mathcal{V}} \frac{T_{\mu\nu}(t-|\mathbf{x}-\mathbf{x}'|/c,\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|} d^3\mathbf{x}'$$

• Quadrupole radiation for v/c<<1:

$$h_{jk}^{\rm GW} = 2G\frac{\ddot{\mathcal{I}}_{jk}}{r} \sim G\frac{\omega^2(ML^2)}{r} \sim G\frac{E_{\rm kin}/c^2}{r}$$

$$h_{jk}^{\rm GW} \sim h_+ \sim h_\times \sim 10^{-21} \left(\frac{E_{\rm kin}}{M_\odot c^2}\right) \left(\frac{100 {\rm Mpc}}{r}\right)$$

Astrophysical sources

GW produces tidal field

8

Laser interferometers

LIGO 1990-2017 ~690 MUSD

Chirp signal from coalescing binary system

GW from inspiraling binary BH

18.07.2022

D. Reitze, 2017

Working GW-interferometers

LIGO Hanford USA

KAGRA Kamioka Japan

> LIGO Livingston USA

Virgo Pisa Italy

18.07.2022

Dubna-2022

Credit: LVC collab., Univ. of Tokyo

35-350 Hz bandpass filter applied

18.07.2022

15

amplitude

Normalized

Binary BHs LIGO/Virgo

GWTC-1 Catalog arXiv:1811.12907

18.07.2022

Chirp signal from inspiraling binaries

Chirp-mass determined inspiraling signal

$$M_{ch} = (\mu^3 M^2)^{1/5}$$
$$h \sim M_{ch}^{5/3} f^{2/3} / r$$

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left(\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f}\right)^{3/5}$$

Chirp mass determines detection horizon. h_{lim} ~ M^(5/6)

Mass-redshift degeneracy

$$\begin{split} f_{0} &= f / (1+z), \ dt_{0} = dt (1+z) \\ \frac{df}{dt} \bigg|_{o} &= \frac{df}{dt} \frac{1}{(1+z)^{2}} \\ M_{ch} \bigg|_{o} &= \left(\frac{5 f_{o}^{-11/3} (df_{o} / dt)}{96 \pi^{8/3}} \right)^{3/5} = M_{ch} (1+z) = > f M_{ch} = inv \\ h_{o} &\sim \frac{M_{ch}}{d_{m}} (\pi f M_{ch})^{2/3} \\ d_{o} &\sim \frac{4 (M_{ch})_{o}}{h_{o}} (\pi f_{o} (M_{ch})_{o})^{2/3} = d_{m} (1+z) \quad \text{Luminosity distance} \end{split}$$

Parameters from GW observations

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{\rm f}/{ m M}_{\odot}$	a _f	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	ζ	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03\\-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1_{-3.9}^{+5.2}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02\\-0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05\\-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27\substack{+0.09\\-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{+0.08}_{-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34\substack{+0.13 \\ -0.14}$	1651

10	02	20	าวว
TO .	07	.20	

Dubna-2022

Coalescing binaries LIGO/Virgo

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Sudarshan Ghonge | Karan Jani

UNIVERSITY®

LIGO

					and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second	C. C.				
01 2015 - 2016	G N		02 2016 - 2017			(Le					03a+b 2019 - 2020	
36 31	• • 23 14	14 7.7	• • • • • • • • • • • • • • • • • • •	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 · 22	25 18
63 CW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 CW170809	53 GW170814	≤ 2.8 GW170817	60 CW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
30 8.3	• 35 24	48 32	41 32	2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 • 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 GW190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
42 33	• • • • • • • • • • • • • • • • • • •	69 4 8	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 GW190701_203306	99 GW190706_222641	19 GW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 GW190727_060333
12 8.1	• • 42 • 29	37 27	48 32) 23 2.6	• • • • • • • • • • • • • • • • • • •	24 10	44 3 6	35 24	44 24	9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 6. <u>1190917_11463</u> 0	13 CW190924_021846	35 GW190925_232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61 GW190926_050336	102 GW190929_012149	19 GW190930_133541	19 GW191103_012549	18 cw191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 GW191204_110529	19 GW191204_171526	4] GW191215_223052
12 7.7	31 1.2	45 35	49 37	9 1.9	• • • • • • • • • • • • • • • • • • •	5.9 1.4	42 33	34 29	10 7.3	• • • • • • • • • • • • • • • • • • •	51 12	36 27
19 GW191216_213338	32 c v191219_163120	76 GW191222_033537	82 GW191230_180458	11 G1/200105_162429	61 GW200112_155838	7.2 w200115_0427/9	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 CW200208_222617	60 GW200209_085452
24 2.8	51 30	38 28	87 ei	39 28	40 33	19 14	• • • • • • • • • • • • • • • • • • •	28 15	36 14	34 28	13 7.8	34 14
27	78	62 GW200219_094415	141	64	69 CW200224 222234	32 GW/200225_060421	56	42	47	59 CW/200311 115953	20	53 CW/200322 091133

Note that the mask submittes shown here do not exclude uncertainties, which is why the final mask sometimes larger than the sum of the primary and secondary masks. In actuality, the final mask smaller than the primary plus the secondary mask. In actuality, the descendary masks in the primary bus the secondary mask. GRAVITATIONAL WAVE MERGER DETECTIONS SINCE 2015

Dubna-2022

~~ OzGrav-

Statistical properties: summary

- O1+O2+O3: 91 robust (S/N>8) detections
- Isotropic on the sky (2207.05792)
- Signal properties in agreement with GR up to a few % accuracy
- 2 NS+NS mergings, EM from GW 170817
- 4 BH+NS candidates. No electromagnetic signals.

Simplest scenario: BH+BH from massive star evolution

Astrophysical issues: BH from stellar collapses, binary BH formation

- Mass loss from massive stars
- BH mass gaps (2.5-5, 60-130 M_{sun})
- BH kicks
- BH spins

Wind mass-loss

Low metallicity is required to have no severe mass loss

Pair-instability SN (PISN) mass gap

SEVN code, Spera, Mapelli 2017

• $T_c > 7 \times 10^8 K \rightarrow \gamma + \gamma \rightarrow e^+e^-$

- He cores 34-64 M_{sun} pulsational pair instability (PPISN) with large mass loss, 64-130 M_{sun} – stellar explosion without remnant; M_{He} >130 M_{sun} – direct collapse to BH
- Pop III stars → up to 85
 M_{sun}

Other scenarios

Dynamical capture in dens stellar clusters (can produce BH with M>50 and non-parallel BH spins)

 "Exotic" scenarios – primordial BH (Zeldovich,Novikov 1967...Carr 1975... Dolgov&Silk 1993...)

Example: log-normal PBH mass function GWTC1+GWTC2

 $F(M) = A \exp[-\gamma \ln^2(M/M_0)]$

Exceptional BHBH mergers

- GW 190814, M₁=26, q=0.112, M₂=2.6 in lower mass gap? NS? Strange quark star? Outlier population? Formation from a triple star? Formation in AGN disk? Primordial BH?
- GW190521 $m_1 = 85^{+21}_{-14} M_{\odot}$ $m_2 = 66^{+17}_{-18} M_{\odot}$ upper mass gap (60-120), large effective spin $\chi_{1,2} \sim 0.1 - 0.9$

(Or even $m_1 = 168^{+15}_{-61} M_{\odot} m_2 = 66^{+33}_{-3} M_{\odot}$??)

Repeated meggers in stellar clusters or AGN disks?? Primordial BH?

• **GW190412** $m_1 = 30.1^{+4.6}_{-5.3} M_{\odot}$ $m_2 = 8.3^{+1.6}_{-0.9} M_{\odot}$ high spin $\chi_1 = 0.44^{+0.16}_{-0.22}$

→ Hierarchical merger?

NSBH mergers

• GW 200105_1162426 (8.9+1.9)

• GW 299115_042309 (5.4+1.5) $\chi_{\text{eff}} = -0.19^{+0.23}_{-0.35}$??

Predictions from binary star evolution

Detection rate BH+BH, BH+NS

Actual detections

Dubna-2022

1907.04218

EM emission from NS+BH

Mass shedding and tidal disruption

$$r_{\rm ISCO}/M = 3 + Z_2 \mp \sqrt{(3 - Z_1)(3 + Z_1 + 2Z_2)}$$
$$Z_1 \equiv 1 + (1 - \chi_1^2)^{1/3} \times \left[(1 + \chi_1)^{1/3} + (1 - \chi_1)^{1/3} \right]$$
$$Z_2 \equiv \sqrt{3\chi_1^2 + Z_1^2}$$

R_{tid}~R_{ns}(M_{bh}/M_{ns})^{1/3}
 Mass shedding if
 R_{tid}>R_{ISCO}

- Depends on NS compactness C=M_{ns}/R_{ns}
 (EOS)
- Tidal parameter $\Lambda = 2k_2/(3C^5)$
- Depends on the BH spin

Binary NS and multimessenger astronomy

Image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

GRB170817A and GW170817

GRB association with NS+NS was predicted by Blinnikov et al. 1984 SvAL

$$L_{\rm iso} = (1.6 \pm 0.6) \times 10^{47} \,{\rm erg \, s^{-1}}$$

18.07.2022

Fundamental inferences

1) EM and GW speed:

$$\Delta v/v_{\rm EM} \approx v_{\rm EM} \Delta t/D$$

10-s EM delay

$$-3 \times 10^{-15} \leqslant \frac{\Delta v}{v_{\text{EM}}} \leqslant +7 \times 10^{-16}$$

Instantaneous, D>26 Mpc

• 2) Equivalence principle

Shapiro delay

$$\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{r_{\rm e}}^{r_{\rm o}} U(\boldsymbol{r}(l)) dl$$

MW: M=2.5x10¹¹M $_{\odot}$ R<100 kpc

$$-2.6 \times 10^{-7} \leqslant \gamma_{\rm GW} - \gamma_{\rm EM} \leqslant 1.2 \times 10^{-6}$$

Cf. from Cassini mission: $2.1 + -2.3 \times 10^{-5}$

ApJL, 848, L13, 2017

18.07.2022

• 3) Number of additional dimensions

$$h \propto rac{1}{d_L^{\gamma}}$$
 $\gamma = rac{D-2}{2}$

H_0 prior	γ	D
$\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$		
$H_0 = 73.24 \pm 1.74$ [22]	$1.01\substack{+0.04 \\ -0.05}$	$4.02\substack{+0.07 \\ -0.10}$
$H_0 = 67.74 \pm 0.46$ [21]	$0.99\substack{+0.03\\-0.05}$	$3.98\substack{+0.07 \\ -0.09}$

FIG. 1. Posterior probability distribution for the number of spacetime dimensions, D, using the GW distance posterior to GW170817 and the measured Hubble velocity to its host galaxy, NGC 4993, assuming the H_0 measurements from [21] (blue curve) and [22] (green curve). The dotted lines show

arXiv:1801.08160

Parameters from GW signal

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	1.36–1.60 M _☉	1.36–2.26 M _☉
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}M_{\odot}$	$2.82^{+0.47}_{-0.09}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

Optical and IR observations of kilonova

Spectrum of a Kilonova

Binary NS as main production channel for r-elements

Joint GW+kilonova analysis

Table 1: Key Properties of GW170817										
	Property	Value	Reference							
Chirp	mass, \mathcal{M} (rest frame)	$1.188^{+0.004}_{-0.002} M_{\odot}$	1							
F	First NS mass, M_1	$1.36 - 1.60 M_{\odot}$ (90%, low spin prior)	1							
Se	econd NS mass, M_2	$1.17 - 1.36 M_{\odot}$ (90%, low spin prior)	1							
Total bins	ary mass, $M_{\text{tot}} = M_1 + M_2$	$pprox 2.74^{0.04}_{-0.01} M_{\odot}$	1							
Observer ang	the relative to binary axis, $\theta_{\rm obs}$	$11 - 33^{\circ}$ (68.3%)	2							
Blue F	${ m KN}$ ejecta ($A_{ m max} \lesssim 140$)	$pprox 0.01 - 0.02 M_{\odot}$	e.g., 3,4,5							
Red K	$(A_{\rm max} \gtrsim 140)$	$pprox 0.04 M_{\odot}$	e.g., 3,5,6							
Light r	-process yield $(A \lesssim 140)$	$pprox 0.05 - 0.06 M_{\odot}$								
Heavy r	-process yield $(A \ge 140)$	$\approx 0.01 M_{\odot}$								
	Gold yield	$\sim 100-200 M_{\oplus}$	8							
	Uranium yield	$\sim 30-60 M_\oplus$	8							
Kinetic e	energy of off-axis GRB jet	$10^{49} - 10^{50} m ~erg$	e.g., 9, 10, 11, 12							
	ISM density	$10^{-4} - 10^{-2} \text{ cm}^{-3}$	e.g., 9, 10, 11, 12							

CONVIENDED

(1) LIGO Scientific Collaboration et al. 2017c; (2) depends on Hubble Constant, LIGO Scientific Collaboration et al. 2017d; (3) Cowperthwaite et al. 2017; (4) Nicholl et al. 2017; (5) Kasen et al. 2017; (6) Chornock et al. 2017; (8) assuming heavy r-process (A > 140) yields distributed as solar abundances (Arnould et al., 2007); (9)Margutti et al. 2017; (10) Troja et al. 2017; (11) Fong et al. 2017; (12) Hallinan et al. 2017

Future prospects (LVK collaboration)

	01		02	2	03		04		O5		
LIGO	80 Мрс	100 Мрс		11	0-130 Mpc		160- M	190 oc		Tar 330	get Mpc
Virgo		30 Мр) C		50 Ирс		90-1 Mr	20		150 M	-260 pc
KAGRA					8-28 Mpc	5	25-1 Mp	30 c		13 M	0+ lpc
LIGO-India										Tar 330	get Mpc
2015	2016	2017 2	2018	2019	2020	2021	2022	2023	2024	2025	2026

Abbot et al. 2020

40-km LIGO Cosmic Explorer (2035)

Sensitivity of detectors with different lengths. Solid curves are for a 40km long detector

LIGO Scientific Collaboration, arXiv:1607.08697 [astro-ph.IM]

- LIGO, Virgo, and KAGRA are closely coordinating to start the O4 Observing run together in ~March 2023, despite local and global adversities.
- LIGO projects a sensitivity goal of 160-190 Mpc for binary neutron stars. Virgo projects a target sensitivity of 80-115 Mpc. KAGRA should be running with greater than 1 Mpc sensitivity at the beginning of O4, and will work to improve the sensitivity toward the end of O4.

Pulsar timing arrays

- Pulsar timing (Estabrook & Walquist'75, Sazhin'78, Detweiler'79)
- Working collaborations
 - European PTA (EPTA) [42 msPSR]
 - Indian PTA (In PTA)
 - North American Nanohertz Observatory for GW (NANOGrav) [48 msPSR]
 - Parkes PTA (PPTA) [~30 msPSR]
 - >Join into International PTA (IPTA)

R(ns)~10 (h/10⁻¹⁶)/ (f/10⁻⁸ Hz)

NanoHz GW from PTA observations

• Stochastic GW backgrounds:

- Inspiral binary SMBH (M>10⁷) (e.g. Sesana+'08, α =-2/3)
- Cosmic strings (e.g. Oelmez+'10, α =-7/6)
- Cosmological phase transitions, primordial GW
 (Grishchuk'05 α=-2, Lasky+'16 α=-1)

18.07.2022

. . .

Pol+'21

IPTA DR2 results

 Stochastic common spectrum process (CP)

$$h_c = A(f/1 \,\mathrm{yr}^{-1})^{\alpha}$$
$$A = 3.8^{+6.3}_{-2.5} \times 10^{-15}$$

 $\Phi_0 \approx 10^{-5} \mathrm{Mpc}^{-3}$

 Cosmic string tension μG~[4-10]x10⁻¹¹ (Ellis,Lewicki'21)

$$h_c(f) = A_{\rm CP} \left(\frac{f}{f_{\rm yr}}\right)^{(3-\gamma_{\rm CP})/2}$$

$$A_{\rm GWB}^2 = \frac{4}{3\pi^{1/3}} \iiint dM_1 dz dq \frac{\mathcal{M}^{5/3}}{(1+z)^{1/3}} \frac{d^3 \Phi_{\rm BHB}}{dM_1 dz dq}$$

Antoniadis+ 2201.03980

Cosmological inferences if detected CP signal is GWB

 2d-order GWs accompanying formation of PBH from collapse of inflationary scalar perturbations

PHYSICAL REVIEW LETTERS 126, 041303 (2021)

De Luca, Franciolini, Riotto '21

Conclusions

- LVK O1+O2+O3: ~ 100 detections of binary BH and NS mergings, mostly binary BH, rate ~10-200 Gpc⁻³ yr⁻¹
- Astrophysical problems in formation of massive BH with M~100 $\rm M_{\odot}$, extreme mass ratio BH+BH inspirals, BH+NS
- Stochastic nanoHz CP signal is detected by NANOGrav and IPTA collaborations. If GWB, it may be produced by SMBH binaries ~10⁻⁵ Gpc⁻³ or cosmic strings with tension μ G~4x10⁻¹¹
- Pulsar timing as a sensitive probe to new theoretical models of nanoHz GWBs!

Backup slides

How to detect GWs?

 Michelson interferometer

Laser interferometry

• h~ΔL/L

$$ds^{2} = -dt^{2} + [1 + h_{+}(t - z)]dx^{2} + [1 - h_{+}(t - z)]dy^{2} + dz^{2}$$

Phase change in interferometer

$$ds^{2} = -c^{2}dt^{2} + [1+h(t)]dx^{2} + [1-h(t)]dy^{2}$$

$$ds = 0 \implies c^{2}dt^{2} = [1+h(t)]dx^{2} + [1-h(t)]dy^{2}$$

$$X, Y: \ \tau_{X,Y} = \int dt = \frac{1}{c}\int \sqrt{1\pm h(t)} dx \approx \frac{L}{c} \pm \frac{hL}{c}$$

GW interferometer

$$\delta x = \frac{1}{2}h_+\ell_x \quad \delta y = -\frac{1}{2}h_+\ell_y$$

Разность фаз в плечах интерферометра

$$\Delta\varphi(t) = \omega_o(2\delta y - 2\delta x) = \omega_o(\ell_x + \ell_y)h_+(t)$$

Модуляция интенсивности

$$\Delta \varphi = \frac{4\pi}{\lambda} Lh$$

$$\Delta I_{\rm PD}(t) \propto \Delta \varphi(t) = 2\omega_o \ell h_+(t)$$

How to measure tiny displacements?

$$\Delta \Phi = B \frac{hL}{\lambda}, \quad \frac{BL}{c} \leq \frac{1}{2} \left(\frac{1}{f_{GW}} \right) \Rightarrow B_{\max} \approx 400$$

Shot noise: $\Delta \Phi_{\min} \sim \frac{1}{\sqrt{N_{ph}}},$
$$N_{ph} = \frac{P_{laser} \times (\# recyclings)}{\hbar \omega} \times \Delta t \sim 2 \times 10^{20}$$

@ $P = 60W, \quad \Delta t = 10ms$
$$h_{\min} \sim \frac{\lambda}{BL} \frac{1}{\sqrt{N_{ph}}} = \frac{0.5\mu}{400 \times 4km} \frac{1}{\sqrt{2 \times 10^{20}}} \sim 10^{-22} \, \text{s}$$

n

18.0

Hellings-Downes correlation

$$\langle r_a^*(t)r_b(t)\rangle = 2C(\xi) \int_0^\infty df \, \frac{S_h(f)}{(2\pi f)^2} 2[1 - \cos(2\pi t)]$$

$$C(\xi) = \frac{1}{3} \left\{ 1 + \frac{3}{2} (1 - \cos \xi) \left[\ln \left(\frac{1 - \cos \xi}{2} \right) - \frac{1}{6} \right] \right\}$$

18.07.2022