LIMITS ON WILSON COEFFICIENTS OF SMEFT OPERATORS FROM PROCESSES OF 3 AND 4 TOP QUARK PRODUCTION

Aleksey Aleshko, Eduard Boos, Viacheslav Bunichev, Lev Dudko July 18, 2022

Skobeltsyn Institute of Nuclear Physics (SINP MSU)

- \cdot A few words about SMEFT
- \cdot Description of processes
- \cdot Simulation setup
- Results
- Summary

INTRODUCTION

Standard Model Effective Field Theory is a convenient framework for searching for New Physics effects in interactions of SM particles.

As such, SMEFT provides a model-independent way to discover, constrain and parametrise potential deviations from the Standard Model.

By following SMEFT approach, one extends the Standard Model with additional higher-dimensional operators. In general, the SMEFT Lagrangian reads:

$$L = L_{SM} + \sum \frac{C_i}{\Lambda} O_i^{d=5} + \sum \frac{C_i}{\Lambda^2} O_i^{d=6} + \sum \frac{C_i}{\Lambda^3} O_i^{d=7} + ...,$$
(1)

where L_{SM} is the SM lagrangian, $O_i^{d=n}$ - composite operators of mass dimension n in some particular basis, c_i - dimensionless Wilson coefficients.

The effects of SMEFT operators of dimension 6 on observables, such as cross-sections or differential distributions, can be written:

$$\sigma = \sigma_{SM} + \sum_{k} \frac{C_i}{\Lambda^2} \sigma_k^{(1)} + \sum_{j < =i} \frac{C_i C_j}{\Lambda^4} \sigma_{i,j}^{(2)}, \qquad (2)$$

where σ_{SM} is the SM prediction, c_i - Wilson coefficients of i-th operator, Λ - hypothetical scale of the New Physics, $\sigma^{(1)}$ and $\sigma^{(2)}$ - coefficients, representing linear and quadratic (in terms of EFT coupling) contributions to the total amplitude. There are a total of 11 four-quark EFT operators of dimension 6. Among them, only the following four operators will contribute to both processes of four and three top quark production:

$$\begin{split} O_{tt}^{1} &= (\bar{t}_{R}\gamma^{\mu}t_{R})(\bar{t}_{R}\gamma_{\mu}t_{R}),\\ O_{QQ}^{1} &= (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{Q}_{L}\gamma_{\mu}Q_{L}),\\ O_{Qt}^{1} &= (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{t}_{R}\gamma_{\mu}t_{R}),\\ O_{Qt}^{8} &= (\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L})(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R}), \end{split}$$

where Q_L is the left-handed third generation quark doublet, t_R - the right-handed top quark singlet, T^A halves of Gell-Mann matrices $T^A \equiv \lambda^A/2$.

FOUR TOP QUARK SM PRODUCTION

- Many models of physics beyond the standard model (BSM) predict enhanced or modified couplings of top quarks to other particles.
- The process of the production of four top quarks is potentially sensitive to a possible contribution from the New Physics.

Figure 1: Representative diagrams of four top quark hadroproduction

FOUR TOP QUARK SMEFT PRODUCTION

Extension of the SM lagrangian with EFT operators introduce new vertices, which modifies SM observables.

Figure 2: Examples of modified vertices in four top quark hadroproduction

TRIPLE TOP QUARK SM PRODUCTION

Another potentially powerful source of possible BSM effects is the production of three top quarks. This process is also has rather low SM cross-section and also has not been yet observed.

Figure 3: Representative diagrams of three top quark hadroproduction

TRIPLE TOP QUARK SMEFT PRODUCTION

Extension of the SM lagrangian with EFT operators introduce new vertices, which modifies SM observables.

Figure 4: Examples of modified vertices in three top quark hadroproduction

- Obtain constraints on Wilson coefficients of certain dimension-6 EFT operators from processes of three and four quark hadroproduction.
- Compare the results obtained for both processes and assess them in terms of sensitivity to the possible contribution of NP.

NUMERICAL SIMULATIONS

- MC events generator: *Madgraph5* (results validated with *CompHEP* package)
- PDF set: NNPDF3.0
- Factorization/renormalization scale: 172.5 GeV
- FeynRules EFT model: 4topEFT
- Statistical analysis tool: EFTfitter

SM CROSS-SECTIONS

C.o.m. energy, GeV	SM crossect. $\sigma_{\rm SM}$, fb	MC err. $\Delta \sigma_{ m SM}$, fb	scale uncert., %	PDF uncert., %
13	11.5	0.1	82.8	17.5
14	15.6	0.1	81.3	15.7
100	5000	30	70.0	7.66

Table 1: SM cross-sections for process $pp \rightarrow t\bar{t}t\bar{t}$

C.o.m. energy, GeV	SM crossect. $\sigma_{\rm SM}$, fb	MC err. $\Delta \sigma_{\rm SM}$, fb	scale uncert., %	PDF uncert., %
13	1.26	0.04	40.7	18.1
14	1.65	0.04	40.1	17.7
100	440	4.0	45.3	8.14

Table 2: SM cross-sections for process $pp \rightarrow 3t + X$

EXTRACTED PARAMETERIZATION COEFFICIENTS

		$pp \rightarrow 4t$	L.	P	$pp \rightarrow 3t +$	- X
	13 TeV	14 TeV	100 TeV	13 TeV	14 TeV	100 TeV
$\sigma_{Q_{tt}^{1}}^{(1)}$	0.65	1.01	400	0.01	0	0
$\sigma_{Q_{00}^{1}}^{(1)}$	0.8	1	400	0.13	0.14	40
$\sigma_{Q_{Ot}^1}^{(1)}$	0.04	-0.15	100	0.02	0.01	20
$\sigma_{Q^8_{Ot}}^{(1)}$	0.44	0.53	200	0.05	0.05	-10
$\sigma_{Q_{tt}^1}^{(2)}$	5.65	7.72	14300	0.11	0.15	270
$\sigma_{Q_{00}^{1}}^{(2)}$	5.71	7.79	14200	0.9	1.3	3530
$\sigma_{Q_{Ot}^1}^{(2)}$	2	2.4	5000	0.22	0.31	820
$\sigma_{Q^8_{Ot}}^{(2)}$	0.6	0.57	1000	0.03	0.07	170

Table 3: Parameterization coefficients extracted fromprocesses of 3 and 4 top quark production.

	Extracted limits $C_k/\Lambda^2(TeV^{-2})$			
Operator	pp ightarrow 4t	$pp \rightarrow 3t + X$	Comb. channels	
Q_{tt}^1	[-1.90, 1.78]	[-3.34, 3.25]	[-1.86, 1.74]	
Q_{QQ}^1	[-1.90, 1.76]	[-1.23, 1.08]	[-1.19, 1.04]	
Q_{Qt}^1	[-3.10, 3.08]	[-2.38, 2.29]	[-2.21, 2.14]	
Q_{Ot}^8	[-6.03, 5.29]	[-7.20, 5.53]	[-5.56, 4.46]	

Table 4: Limits obtained from simulations at centre of massenergy of 13 TeV

	Extracted limits $C_k/\Lambda^2(TeV^{-2})$			
Operator	pp ightarrow 4t	$pp \rightarrow 3t + X$	Comb. channels	
Q_{tt}^1	[-1.88, 1.75]	[-3.14, 3.14]	[-1.83, 1.71]	
Q_{QQ}^1	[-1.87, 1.74]	[-1.12, 1.01]	[-1.09, 0.98]	
Q_{Qt}^1	[-3.21, 3.29]	[-2.18, 2.18]	[-2.08, 2.09]	
Q_{Ot}^8	[-6.93, 6.10]	[-4.97, 4.25]	[-4.73, 3.99]	

Table 5: Limits obtained from simulations at centre of massenergy of 14 TeV

	Extracted limits $C_k/\Lambda^2(TeV^{-2})$			
Operator	pp ightarrow 4t	$pp \rightarrow 3t + X$	Comb. channels	
Q_{tt}^1	[-0.71, 0.68]	[-1.21, 1.21]	[-0.69, 0.67]	
Q_{QQ}^1	[-0.71, 0.69]	[-0.34, 0.34]	[-0.33, 0.33]	
Q_{Qt}^1	[-1.18, 1.17]	[-0.70, 0.70]	[-0.68, 0.68]	
Q_{Ot}^8	[-2.71, 2.55]	[-1.50, 1.56]	[-1.47, 1.51]	

Table 6: Limits obtained from simulations at centre of massenergy of 100 TeV

SUMMARY

- Theoretical constraints on Wilson coefficients of several SMEFT operators was obtained from analysis of processes of three and four top quark hadroproduction.
- Results show that certain processes manifest better sensitivity to contributions of particular operators.

QUESTIONS?