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To make progress in
multi-loop calculations

Which tools do we have?

Large-N methods...



Examples

m Perturbative loop expansion in small coupling (Feynman diagrams)

m Large-N. in SU(N.) gauge theories: Planar limit (1/N,. expansion)
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Planar diagram, ~ A° Non-planar diagram, ~ 2° /Nc

Suppressed by 1/N

m Large-Nf: Bubble diagrams (1/Nf expansion)

Al - - - - -~

m Large-charge expansion (topic of this talk) (1/Q expansion)
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Reorganizing perturbative expansion

For a well-defined limit need to introduce 't Hooft coupling A

m Large-N_ : Planar limit : A, = g?N_ = fixed
m Large-Nf : Bubble diagrams : Ar = g?Nf = fixed
m Large-charge expansion : Ag = ng = fixed

Then we have

observable ~ Z g'Pi(N) = %Fk(A)
k

|=Iloops

N = {Nc, N, Q}

Let us now see explicitly how this 't Hooft coupling emerges...



Dy _
7 (90)
The operators ¢ (¢9) carry U(1) charge +Q (—Q)

Consider model with U(1) global symmetry L = aqua% e

Consider the two-point function (5%0) and rescale the field as
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- Lo = Q0,600 + “(60)°)
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For Q>>1 dominated by the extrema of S

In a CFT is physical (critical exponents)
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d— 2
Goal : compute  Age = Q( 5 > T VR

We expect scaling dimensions to take the form:

A 1S (k+1)-loop correction to the saddle point equation

We will compute A_; and Ay

In general, we can expand these functions Ag's for small and
large value of the argument



Small 20Q: Recover perturbative expansion

1-loop 2-loop 3-loop
Aot Q% Q3N QA3
Ao QAo Q°N; Q° N\
A QNG QX



Small 20Q: This talk computation

1-loop

2-loop 3-loop
Q*XG Qs
QNG Q°XS
QNG Q*X5

QN



Large A0Q: Large charge limit

Orlando et al 2015

AQ:QC%1 [041+042Qd%21+043Qd_—fl—|—...} +Q0 [504-51@5——214_”.} 4_(')(@—%1)

EFT for phonons (supertluid phase)



Q>>1 =P

Semiclassical computation

S = S(¢o) + %W — $0)*S" (¢0) + - ..

' '

A_q Ag



M eth Od Badel, Cuomo, Monin, Rattazzi 2019
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® Tune QFT to the (perturbative) fixed point (WF or BZ type)

® Map the theory to the cylinder ~ RY - R x S91

® Exploit operator/state correspondence for the 2-point
function to relate anomalous dimension to the energy

E=A/R

® [0 compute this energy evaluate expectation value of the
evolution operator in an arbitrary state with fixed charge Q



® Weyl map and operator/state correspondence

Working at the WF fixed point we can map the theory to the cylinder.

R 5 R x S9-1, r = Re™/R
@ D 7

The eigenvalues of the dilation charge, i.e. the scaling dimensions,
become the energy spectrum on the cylinder.

Eso = Dgo/R

State-operator correspondence:
States and operators are in 1-to-1 correspondence.

Tr—Ti =1 <§EQ($J“)¢Q(%)>cyz T2 Ne BT



® [0 compute this energy, evaluate expectation value of the
evolution operator in an arbitrary state with fixed charge Q

(Qle™HT|Q) "= Ne~FeaT

as long as there is overlap between |Q> and the ground
state, the latter will dominate for T — o

To study system at tixed charge thermodynamically we have:

H— H+ uQ




Example : O(N) model at WF fixed point

2 2
S — /ddx ((aq;') | (47T) g0 (¢I¢I)2>

In d = 4 — ¢, this theory features an infrared Wilson Fisher fixed point.
) 3¢ 9(3N + 14)e2
g"(€) = '

8+N (84 N)3




O(N) charges

In the O(N) vector model with even N we can fix up to 5 N charges, which

is the rank of the O(N) group.
We introduce complex field variables

1

\/— (01 + i) = ok e'Xt
P2 = ﬁ (93 + iga) = %02 e'x2,

P33 =...

We fix N/2 charges through N/2 constraints Q; = Qi, where {Q;} is a
set of fixed constants. ¢; (@;) has charge Q; =1 (—1). Then we map the
theory to the cylinder.



— 1 - 2 !
Classical solution §=5(do) + 5(& = $0)"5(¢o) + ...

The solution of the EOM with minimal energy is spatially homogeneous

o = A; . Xi = —IuT i=1,...,N/2
where 112
™
Q _ o
—— = pv Noether charge
vol.
k
v = Z A? Sum of the VeVs
i=1
— k —
Q= Z Q; Sum of the charges

There is only a single chemical potential i, even if the charges Q;
are all different. )



Effective action

YUY, S Y 5
e = — oDy e
@e*TIQ =5 [ Do Dy eSe

Z N/2=V
T/2 1 1 )
Seﬂ' = / dr /de—l (580’,‘80,‘ -1 50’,- (8)(,‘8)(,‘)
—T/2
m? (47)? I =
+70;2 + Y gO(O'iUi)z‘*‘E Q ..\"N/z)

The red term fixes the charge of initial and final states to Q.

H — H + u@
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Leading order: A_4

A _ 1 is given by the effective action evaluated on the classical

trajectory at the fixed point
SerfR=EFE_1R=A_;

1
AN _4 33 (x—l-\/—3——l-x2)3

&R 4 i (x+ \/—3+x2)
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(x+\/—3+x2)

where x = 6g* Q.

This classical result resums an infinite number of Feynman diagrams!
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e 1-loop 2-loop 3-loop
coupling
A Qz g Qs g2 Q4gg
AO Qg Q292 Q393
Aq Qg* 024



Leading quantum B B
correction: § = S(¢o) + 9 (¢ — ¢0)° 5" (¢o) + - - -

0|2
|
ek

Xi = —ipt + =pi(z), i=1,...,
XN/2 = —iut —|-%7T($),
O'i:Si(x), ’L'Zl,...,%—l,

ON/2 = U+ r(z)

Expand to quadratic order in fluctuations:

1 1 1 1
Lo = 5(8%)2 + 5(87“)2 + (,u2 — m2)r2 — 27 ur w4+ 5832-837; + 58}97;8]92' — 210 | S; P

Gaussian integral of the action (B is a NxN matrix)

) 1
DrDrDs;Dp; ¢S =
/rwspe ot B



Fluctuations spectrum

e One relativistic (Type |) Goldstone boson (the conformal mode) and one
massive state with mass /6u2 — 2m?.

wy(l) = \/Jg +3u? —m? + \/4J3u2 + (Bu? — m?)?

° % — 1 non-relativistic (Type Il) Goldstone bosons and % — 1 massive

states with mass 2u

wi(l) = \/-’3 +ptEp

Jg = (¢ + d — 2)/R? is the eigenvalue of the Laplacian on the sphere.



One-loop correction: Ay (sum of zero point energies)

The one-loop correction Ag is determined by the fluctuation determinant
around the classical trajectory. It reads

o= 55" fas(0)+ -0+ (3 = D () +--(0)]

where ng is the multiplicity of the Laplacian on the (d — 1)-dimensional
sphere and the w; are the dispersion relations of the fluctuations counted

with their multiplicity.

Bl @ =~ (545 ) 5@+ (5 7g) 0@+ 51V 36428 () + 2N () (°Q° + O (4D

A A\ 3 A AN 3 a = —0.4046 — 0.0854N
Ag— [a+N+81n (4g Q)] (43 Q)3'+ [IS_NWLSln (4g Q)] (4g Q)I+O(1),
48 B =—0.8218 —0.0577N



EFT regimes

90@

| . 2 2 e
Solve:  p(p® —m~) "D 10,

uR =1+ 1987?2

\1/3
uR = 0@

272/3

UR~O(‘]) p controls the gap of the UR>>1
massive modes

Massless phonon Massive modes

W _ W4 Wy wW_ _




NLO result

e 1-loop 2-loop 3-loop
coupling
A Qz g Qs gz Q4gg
AO Qg Q292 Q393
Aq Qg* 024



» Boosting perturbation theory

A can be

Yj:iargr 1I-I()()‘)
gauge

coupling

Ay Q2)\o
Ag QAo
Ay

A

2-loop 3-loop
Q*XG Qs
QN Q°X;
QN QX
Need input for
one value of Q Q}\g

Need input for
two values of Q



Boosting perturbation theory to 4-loops

We can expand our result for small 't Hooft coupling g@ and obtain the
conventional loop expansion

_ —1 2 N —22)(N +6) _, 1844+ N(14 — 3N) _
82 :Q+(_§+Q;Q+N))e_[(a+w)°o ( 2(8+)(N): L :(BiN)3 )Q] ¢
8 ., —456 — 64N + N? 4+ 2(8 + N)(14 + N)¢(3) 5
+ (8+N)3Q * (8 4+ N)
~ —31136 — 8272N — 276N? + 56N> + N* 4+ 24(N + 6)(N + 8)(N + 26)¢(3) 7
4(N +8)5
| 65664 — 8064N + 4912N? + 1116N> + 48N* — N° + 64(N + 8)(178 + N(37 + N))<(3) Q] 3
16(N + 8)°

+ [cs@s +a@* +a@+ 0@+ q@] '+ 0 ()

Red terms: obtained via the semiclassical large charge expansion.
Black terms: obtained by combining the knowledge of the red ones with

the known perturbative results for the Q=1, Q@=2and Q =4 cases.

Q=1 and N=4 is the anomalous dimension of the Higgs field




|dentify the operator

We want the smallest dimension operator carrying a total charge Q

Derivatives increase the scaling dimension — we consider operator
without derivatives.

The latter belong to the fully symmetric O(N) space = m-index

traceless symmetric tensors, 'l'((1 ) )¢2p. They have charge m and
classical dimension m+ 2p — p = 0.

El Thus our operator is the Q-index traceless symmetric tensor

with classical dimension Q. It can be represented as a Q-boxes
Young tableau with one row.

Og =

R ————
Q

A define a set of crossover (critical) exponent which measures the

stability of the system (e.g. critical magnets) against anisotropic pertur-
bations (e.g. crystal structure).



Extending the method

NJLY model
Scalar QED

N

Quartic Yukawa Gauge complex

\ |/ |

Originally U(1) Abelian phi~r4-model at the Wilson-Fisher real fixed point in 4-e dimensions

/ \ | |

O(N) U(N)xU(M) d=4 Banks-Zaks FP

\/

d=4 asymptotically safe model

O(N) model with cubic interactions



Other directions/aspects

® \\Ve can add Yukawa and gauge interactions

® | arge order behaviour of the series (resurgence)

® Higher correlation functions
® Condensed matter applications
® Inhomogeneous ground state (operators with spin/derivatives)

® [est dualities between different CFTs in their charged sectors
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Thank you!
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Counting of Goldstones

The symmetry breaking pattern is U (%) — U (% - 1). Then the
expected number of Goldstone bosons is

dim (U (%) /U (%~ 1)) =N -1
We have only N /2 Goldstones!

Solution = fixing the charge we broke Lorentz symmetry. This mod-
ifies some of the Type | (= relativistic) Goldstone bosons into fewer Type
Il (= nonrelativistic) Goldstones which count double.

2

Chada-Nielsen Theorem: H. B. Nielsen and S. Chadha, "On how to
count Goldstone bosons”, Nucl.Phys.B105 (1976).

N
Counting 1+2x(——1):N—1



Yukawa interactions: NJLY model

_ _ . o _ . A o
LNty = 000" ¢ + ;007 + gbrjdby + gLy v (gbgb)
Qb — feix Remove phases from Yukawa term via:
X = T W, — P elT/? vr — PYre M7/

/ [ :
Lr=0 wae A_; is O(2) model result

(2) 1 1 2 1 2 o 2 2\, .2
S\ = dr [ dQq_1 {—(87“) + —(0m)* — 2iprd, ™+ (u° — m)r
. > 2

Fip B W + PV M + g FOLvh + g fRi

[ Droepipyes - A
det B




Fermionic dispersions

Leading quantum correction

_ % Z ne(wy () +w_(0)) = Nyngo(wps (6) + wp—(0)]

2 4 2 4 6 212
o5 3 (PN ) s (86B) PN 1-33)
Bo ' =@ (8772 3271‘4)\) T (1%2 3274 ) © ( 6476 182 I T agy

+....



Gauge interactions: scalar QED

o
S = /d4a¢ (—i o B+ (Duqb)T D, ¢ 22@@2)

Complex WF fixed point in 4-e dimensions

3
A= 20 (196 + 1V 7196) , e*? = 247°¢

* A_1 is O(2) model result

(—g‘“’VQ + R + (1 — ) VHVY — (ef)Qg“’”> Ay

SN =

(0,m)% — g(ef)2W2 — 2iprOym — 2ifurA°



Dispersions

patia
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Ghosts

Temporal
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Scalar

Field dy Y, £y
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Leading quantum correction
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Pheno application: Higgsplosion

Multi-boson production

L+ 14TeV 0 25TeV x 35TeV ' A
4 50TeV w 100 TeV "
| i
3
5' .
;
- Yoo
2 :
o oy e J -1:\’_\c\'7c-,‘.w.‘vu_u/n7)'):;‘;-_,\',,,{,\,',0 .
.?0 ' "
. - N . - + .
1L 00 * oxes, one- loop
Consider thel — 7. amplitude |, . 5 |
20 | a0 o B0 | }:ﬂ(_l . 100 . 120 | 140 ‘

n—| 0 o
. f,']"(-f(f - _,,E”. number of Higgs
A =nlA\"2 e 0
[Degrande, Khoze, Mattelaer, 2016]

A — Ah"f:ficB/\u

o(l - n)= GF(’\"’E)



Symmetry breaking pattern
We fix N /2 charges.

Since there i1s a single chemical potential the system preserves the

U(N/2) symmetry.

Then the vacuum of the theory spontaneously breaks U(N/2) to
U(N/2 —1). In fact it is possible to rotate the ground state as

)

1

= (A ... Ay ) —s (0.....0.

\/5( 1 N/2) ( ,
N/2—1

Sl

The symmetry breaking pattern is

U(N/2) — U(N/2 —1)

The sum of the charges acts as a single charge!



Boosting perturbation theory to all-loops

Our results resum the leading and next to leading order terms in
the large charge expansion to all-orders in the coupling.

We can use them to predict terms at arbitrary high-loop orders in the
standard diagrammatic approach.

6-loops: (—322 Q + 35[10191 — 64N — 2((3)(1327 + 160N)

— 2¢(5)(1441 + 80N) — 70¢(7)(46 + N) — 21¢(9)(126 + N)](g* @)°

An independent diagrammatic check of our prediction (up to 6-loop) ap-
peared in I. Jack and D. R. T. Jones, arXiv: 2101.09820 [hep-th].



Perturbative loop expansion: semiclassical approach
Consider the two-point function in the U(1) complex scalar model

= [ d [9396 + 32 (36)°]
Rescale the field as ¢ — ¢/v/Ao:

J D¢D<5<?>(Xf_)¢(x.-)e‘5 _ 1] DD (x¢)d(xi)e %o
J D¢Dge=> o [DgDFe %

Ordinary loop expansion with A\p the loop counting parameter. For
Ao < 1 the path integral is dominated by the extrema of S.

(d(xr)d(x:)) =

Evaluate via a saddle point expansion by expanding the action around the
stationary configuration ¢ = 0

S = S(g0) + (6 — ¢0)*S"(¢0) + .-

& 1s the solution of the classical EOM



® Tune QFT to the perturbative fixed point

1) In D=d-e dimensions, formal Wilson-Fisher fixed point exists

=

2) In D=d dimensions, fixed point might exists with small
parameter e build from parameters of the model

(e.g. numbers of colors, flavors, fields components, etc)

B(g) = —eg + Ba=a(g) =0

Example: Banks-Zaks FP in d=4 multi-flavor QCD, e=Nf/Nc



