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I. Introductory comments

Path integrals in QM and in QFT are considered as the integrals over a

Gaussian measure given by a free action A0 ∼
∫ m (x′)2

2 dt .

In imaginary time, it leads to the Wiener measure

w(dx) = exp

{
−1

2

∫ (
x′(t)

)2
dt

}
dx .

The similar picture takes place in the common models of fundamental
interactions in QFT.

The problem is to choose the true dynamical variable that define
path integrals measure

and then to find the substitution that transforms the measure into the
Wiener one.
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II. Schwarzian path integrals

JT dilaton 2D gravity and SYK model (a quantum mechanical model of
Majorana fermions with a random all-to-all interaction)

lead to an effective theory with the Schwarzian action

ASch = − 1

σ2

∫
[0, 1]

[
Sch(ϕ, t) + 2π2

(
ϕ′(t)

)2]
dt ,

where

Sch(ϕ, t) =

(
ϕ′′(t)

ϕ′(t)

)′
− 1

2

(
ϕ′′(t)

ϕ′(t)

)2

.

Here ϕ(t) is an orientation preserving (ϕ′(t) > 0) diffeomorphism of the
interval (ϕ ∈ Diff1+([0, 1])) .

ϕ(t) plays the role of the dynamical variable of the theory.

− (ϕ′(t))2 ( wrong sign of the term ?! )
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On the group of diffeomorphismsDiff1+([0, 1]) , there exists a countably-
additive measure formally written as

µσ(dϕ) = exp

 1

σ2

∫
[0, 1]

Sch(ϕ, t) dt

 dϕ .

It is generated by the Wiener measure under some special substitution
of variables.

If we consider a continuous function on the interval [0, 1] ξ(t) satisfying
the boundary condition ξ(0) = 0 (ξ ∈ C0([0, 1]) ) , then under the substitu-
tion

ϕ(t) =

t∫
0

eξ(τ)dτ

1∫
0

eξ(η)dη

, ξ(t) = logϕ′(t)− logϕ′(0) ,

the measure µσ(dϕ) on the group Diff1+([0, 1]) turns into the Wiener

measure wσ(dξ) on C0([0, 1]) , and there is the equality of functional
integrals

∫
Diff1+([0, 1])

F
(
ϕ, ϕ′

)
µσ(dϕ) =

∫
C0([0,1])

F
(
ϕ(ξ), (ϕ(ξ))′

)
wσ(dξ) .
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Polar decomposition of the Wiener measure

The Wiener measure

wσ(dx) = exp

− 1

2σ2

1∫
0

(
x′(t)

)2
dt

 dx .

is quasi-invariant under the following action of the group of diffeomorphisms
Diff3+([0, 1]) on C+([0, 1]) :

x 7→ fx , (fx)(t) = x
(
f−1(t)

) 1√
(f−1(t))′

,

x ∈ C+([0, 1]) , f ∈ Diff3+([0, 1]) .

There is the invariant under the group Diff3+([0, 1]). It is given by the
integral

1

ρ2
=

1∫
0

1

x2(t)
dt .
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Define ϕ ∈ Diff1+([0, 1]) by the equation

ϕ−1(t) = ρ2
t∫

0

1

x2(τ)
dτ .

Then x(t) is expressed in terms of ρ and ϕ(t)

x(t) = ρ
1√

(ϕ−1(t))′
.

In this case, we have

1∫
0

x2(t)dt = ρ2
1∫

0

(
ϕ′(τ)

)2
dτ .

Therefore, there is a one-to-one correspondence (ρ , ϕ) ↔ x , and the
space C+([0, 1]) is stratified into the orbits with different values of the in-
variant ρ .
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Thus, for the Wiener measure on the space C+([0, 1]) the following polar
decompositions are valid:

wσ(dx) = Pσ(ρ)
(
ϕ′(0)ϕ′(1)

) 3
4 µ 2σ

ρ
(dϕ) dρ .

wσ(dx) = exp

{
− σ2

8ρ2

}
e

3
4
ξ(1)(

1∫
0

eξ(τ)dτ

) 3
2

w 2σ
ρ

(dξ) dρ .

Although x(t) and ξ(τ) are both Wiener processes , the Markov be-
haviour of x(t) with respect to the time t of ”its own world” obviously does
not imply its Markov behaviour with respect to the time τ of the ”shadow
world”, and vice versa.
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The proof and the general rules of Schwarzian path integration as well
as some properties of Wiener integrals are given in:

VV B and ET Sh, Extraordinary Properties of Functional Integrals and
Groups of Diffeomorphisms, Phys. Part. Nucl. 48 (2017) 267.

VV B and ET Sh, Exact solution of the Schwarzian theory, Phys. Rev.
D 96 (2017) 101701(R) , [arXiv:1705.02405 [hep-th]].

VV B and ET Sh, Correlation functions in the Schwarzian theory, JHEP
11 (2018) 036 , [arXiv:1804.00424].

VV B and ET Sh, Unusual view of the Schwarzian theory, Mod. Phys.
Lett. A 33 (2018) 1850221 , [arXiv:1806.05605].

VV B and ET Sh, Polar decomposition of the Wiener measure: Schwarzian
theory versus conformal quantum mechanics, Theor. Math. Phys. 200
(2019) 1324, [arXiv:1812.04039].

VV B and ET Sh, Functional integration over the factor-spaceDiff1+(S1)/SL(2,R),
Phys. Part. Nucl. 51 (2020) 424, [arXiv:1912.07841].

VV B and ET Sh, Schwarzian functional integrals calculus, J. Phys. A:
Math. Theor. 53 (2020) 485201 , [arXiv:1908.10387].
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III. PI for quantum 4D quadratic gravity

The idea:

We consider R+R2 theory in the FLRW metric and find
the dynamical variable g(τ) that is invariant under the group of dif-

feomorphisms of the time coordinate.
Then we turn the Feynman path integrals∫

F (g) exp {i A(g)} dg

into the Euclidean ones ∫
F (g) exp {−A(g)} dg

by the corresponding transformation of the space-time metric.

We consider path integrals not over the space of metrics {G}, as it is
usually done,

but over the space of continuous functions {g(τ)} related to the confor-
mal factor of the metric.
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The second our novelty is to treat path integrals as the integrals over
the functional measure

µ(g) = exp {−A2} dg ,

where A2 is the part of the action A quadratic in R .

The rest part of the action in the exponent stands in the integrand as
the ”interaction” term.

We prove the measure µ(g) to be equivalent to the Wiener measure,
and, as an example, calculate the averaged scale factor in the first nontrivial
perturbative order.
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Realization of the idea:

We study the gravity model with the action

A = A0 +A1 +A2 = Λ

∫
dt̃
√
−G − κ

6

∫
dt̃
√
−GR+

λ2

72

∫
dt̃
√
−GR2

in FLRW metric

ds2 = N2(t̃) dt̃2 − a2(t̃) d~x2 , N(t̃) > 0 , a(t̃) > 0 .

Now the general coordinate invariance of the action is reduced to its
invariance under the group of reparametrizations of the time coordinate. We
suppose it to be the group of diffeomorphisms of the real semiaxis including
zero Diff (R+).

The two coordinate systems are the most popular. They are the so-called
cosmological coordinate system where

N(t) = 1 ,

and
conformal coordinate system where

N(τ) = a(τ) ,

with cosmological time t and conformal time τ being the time variable in
the corresponding coordinate system.
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We define the action of the diffeomorphisms ϕ ∈ Diff (R+) on the
functions N(t̃) and a(t̃) as follows:

(ϕN) (t̃) =
(
ϕ−1(t̃)

)′
N
(
ϕ−1(t̃)

)
; (ϕa) (t̃) = a

(
ϕ−1(t̃)

)
.

Instead of the laps and the scale factors, it is convenient to use the
functions f(t̃) and h(t̃) defined by the following equations:

f−1(t̃) =

t̃∫
0

N(t̃1)

a(t̃1)
dt̃1 , h(t̃) =

t̃∫
0

N(t̃1) dt̃1 ,

with the transformation rules

(ϕf)(t̃) = ϕ
(
f(t̃)

)
≡ (ϕ ◦ f) (t̃) , (ϕh)(t̃) = h

(
ϕ−1(t̃)

)
≡
(
h ◦ ϕ−1

)
(t̃) .
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The function
g(τ) = (h ◦ f) (τ) = h (f(τ))

is invariant under the diffeomorphisms ϕ .

It turns the conformal coordinate system time τ to the cosmological
one t

t = g(τ) , τ = g−1(t) .

Conformal : ds2 =
(
g′(τ)

)2 [
dτ2 − d~x2

]
,

Cosmological : ds2 = dt2 −
(
g′
(
g−1(t)

))2
d~x2 .
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The invariance of the action manifests itself in its dependence on the
only invariant function g

A = A(f, h) = A (g) = A0 (g) +A1 (g) +A2 (g) ,

with the explicit form

A0 (g) = Λ

∫ (
g′(τ)

)4
dτ ,

A1 (g) = −κ
∫ [(

g′′(τ)
)2 − (g′′(τ) g′(τ)

)′ ]
dτ ,

and

A2 (g) =
λ2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ .

Therefore, every four-dimensional space-time (and the corresponding
space-time FLRW metric) is determined by its proper function g , and
vice versa, every function g determines the particular four-dimensional
space-time.

Thus, averaging over the set of functions g means the averaging over the
set of possible four-dimensional spaces.
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We have found the true dynamical variable!

Now we represent path integrals in the theory∫
F (g) exp{−A(g)} dg

as the integrals of the form∫
F (g) exp{−A0(g)−A1(g)}µλ(dg) ,

over the functional measure

µλ(dg) = exp{−A2(g)} dg = exp

{
−λ

2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ

}
dg .
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If we substitute

q(τ) =
g′′(τ)

g′(τ)
,

we can rewrite the integral in the exponent in the measure density as

−λ
2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ = −λ
2

2

∫
(p′(τ))2 dτ ,

where p is given by the nonlinear nonlocal substitution

p(τ) = q(τ) +

τ∫
0

q2(τ1) dτ1 .

There is the one-to-one correspondence between the function g(τ) and
the Wiener variable p(τ) , and the measure µλ(dg) written in terms of p(τ)
is the Wiener measure w 1

λ
(dp) .
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The nonlinear nonlocal substitutions in the Wiener measure were studied
in

VV B and ET Sh : J. Math. Sci. 248 (2020) 544, (and also arXiv:1112.3899v2).

and it was demonstrated that the paths p(τ) form the space of all con-
tinuous functions on the interval [0, T ] , while the paths q(τ) are continuous
almost at all points of the interval but may have singularities of the form

q(τ) ∼ 1

τ − τ∗j

at a finite number of points of the finite interval [0, T ] .

It gives us the possibility to study the quantum corrections to the clas-
sical solutions of the form

gcl(τ) =
1

2
σ τ2 , acl(t) = g′cl

(
g−1cl (t)

)
=
√

2σ t .
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Calculating the path integrals in the first nontrivial order
(
∼ 1

λ2

)
< a(t) >g= Z−1

∫
g′
(
g−1(t)

)

× exp


g−1(t)∫
0

[
−Λ

(
g′(τ1)

)4
+ κ

(
g′′(τ1)

)2]
dτ1 − κg′′(g−1(t)) g′(g−1(t))

µλ(dg)

where the normalizing factor is

Z =

∫
exp


g−1(t)∫
0

[
−Λ

(
g′(τ1)

)4
+ κ

(
g′′(τ1)

)2]
dτ1 − κg′′(g−1(t)) g′(g−1(t))

µλ(dg)

we obtain the result for the averaged scale factor as the function of
cosmological time t

< a(t) >g=
√

2σ t

{
1 +

1

λ2

[
−59

63

(
2t

σ

) 3
2

+
11

120
κ (2t)2 − 1423

2800
Λ (2t)4

]}
.

VV B and ET Sh, Path integrals in quadratic gravity, JHEP 02
(2022) 112 , [arXiv:2110.06041];
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IV. PI for quantum 2D quadratic gravity

The general form of the 2D gravity action up to the terms quadratic in
curvature K is

Ã = c0

∫ √
G d2x+ c1

∫
K
√
G d2x+ c2

∫
K2
√
G d2x .

We consider the action restricted to the conformal gauge, where the
metric of the 2D surface looks like

dl2 = g(u, v)
(
du2 + dv2

)
= g(z, z̄) dz dz̄

√
G = g .

The Gaussian curvature of the surface is

K = − 1

2g
∆ log g ,

where ∆ stands for the Laplacian.

The action is invariant under the complex analytic substitutions. There-
fore, we reduce the region of integration to the disc d : (|z| ≤ 1) .

19



We consider the specific form of the action

A =
λ2

2

∫
d

(K + 4)2 g(z, z̄) dz dz̄ =
λ2

2

∫
d

(∆ψ)2 dz dz̄

where

∆ψ = q∆ log q +
4

q
, q =

1
√
g
,

and study path integrals∫
F (ψ) exp{−A(ψ)} dψ =

∫
F (ψ)µλ(dψ)

over the Gaussian functional measure

µλ(dψ) =
exp{−A(ψ)} dψ∫
exp{−A(ψ)} dψ

.
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The extremum of the action is given by the equation

∆ψ = 0 , q∆ log q +
4

q
= 0 .

We choose the boundary condition corresponding to the Poincare model
of the Lobachevsky plane

q0||z|=1 = 0 .

The unique solution in the disk d (|z| ≤ 1) satisfying the boundary con-
dition is

q0 = 1− zz̄ .
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Let us rewrite the action substituting ψ → f with

∆ψ =
1

q0
T−1 [f ]

where

T−1 ≡
(
q20 ∆− 8

)
is the Casimir operator of SL(2, R) .

Now the action is written as the integral over the measure

dz dz̄

(1− zz̄)2

invariant under the action of the group SL(2, R) in the disk

A =
λ2

2

∫
d

(
T−1 [f ]

)2 dz dz̄
q20

.

Therefore, we obtain the SL(2, R) invariant Gaussian functional measure

µλ(df) =
exp{−A(f)} df∫
exp{−A(f)} df

.
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We reduce path integrals over the measure µλ(df)
to the products of Wiener integrals.
First, we consider the Fourier series (we use polar coordinates)

∆ψ(%, ϕ) = x0(%) +
∞∑
n=1

(xn cosnϕ+ yn sinnϕ) .

Now the action is written as

A =
λ2

2
2π

1∫
0

(x0(%))2 % d%+
λ2

2
π

∞∑
n=1

 1∫
0

(xn(%))2 % d%+

1∫
0

(yn(%))2 % d%

 .

Then, using the relation between ψ and f , we express xn , yn in terms
of the coefficients of the Fourier series

f(%, ϕ) = a0(%) +
∞∑
n=1

(an cosnϕ+ bn sinnϕ) .
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Therefore we have

1∫
0

(xn(%))2 % d% =

+∞∫
0

(
U ′n(τn)

)2
dτn

Un(τn) = %2n+1

(
1 + n+ (1− n)%2

)2
(1− %2)2

( (
1− %2

)
an(%)

%n (1 + n+ (1− n)%2)

)′
.

τn =

%∫
0

%2n+1
1(

1− %21
)2
(

2(
1− %21

) + n− 1

)2

d%1 .

The same equations are valid for the other terms

1∫
0

(yn(%))2 % d% =

+∞∫
0

(
Ũ ′n(τn)

)2
dτn .
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Now the measure µλ(df) is represented as the product of the Wiener
measures

µλ(df) = w 1
λ
√
2π

(dU0)
∞∏
n=1

w 1
λ
√
π

(dUn) w 1
λ
√
π

(
dŨn

)
where

wσ (dU) = exp

− 1

2σ2

+∞∫
0

(
U ′(τ)

)2
dτ

 dU .

For path integrals with integrands that depend on the modes with defi-
nite numbers, the product of the measures is reduced because of the cance-
lation of the same terms in the nominator and in the denominator.

SL(2, R) invariance of the measure simplifies the calculations.

In particular, due to the SL(2, R) invariance,

< g(%, ϕ) >µ=

∫
C(d)

g(%, ϕ) µλ(df) =
1

q20(%)
< g(0, 0) >µ=

1

q20(%)
.
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As an example, we have calculated the correlation function of the metric
given by the integral

< g(%1, ϕ1) g(%2, ϕ2) >µ=

∫
C(d)

g(%1, ϕ1) g(%2, ϕ2) µλ(df)

in the first nontrivial perturbative order.
Due to the SL(2, R) invariance, the correlation function of the metric

can be rewritten as

< g(%1, ϕ1) g(%2, ϕ2) >µ=
q20(%∗)

q20(%1) q20(%2)

∫
C(d)

g(0, 0) g(%∗, ϕ∗) µλ(df)

=
q20(%∗)

q20(%1) q20(%2)
< g(0, 0) g(%∗, ϕ∗) >µ ,

where (0, 0) and (%∗, ϕ∗) are the results of the shift at the Lobachevsky
plane of the coordinates (%1, ϕ1) and (%2, ϕ2)

%∗ =

√
%21 + %22 − 2%1%2 cos (ϕ2 − ϕ1)√
1 + %21%

2
2 − 4%1%2 cos (ϕ2 − ϕ1)

.
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Thus,
< g(%1, ϕ1) g(%2, ϕ2) >µ

=
2

q20(%1) q20(%2)

1 +
1

6πλ2

−1

2

1∫
%∗

log t

1− t
dt+ 2 log 2 +

1

2
− 1

1 + %2∗

+
1

1 + %2∗
log

(
1− %2∗
%∗

)
+ log %∗ − 2 log(1 + %2∗)− log

√
1− %2∗ + log %∗ log

√
1− %2∗

]}
.

where

%∗ =

√
%21 + %22 − 2%1%2 cos (ϕ2 − ϕ1)√
1 + %21%

2
2 − 4%1%2 cos (ϕ2 − ϕ1)

.

VV B and ET Sh, An approach to quantum 2D gravity, arXiv:2206.05172.
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