Particle shadows of black holes and new characteristic surfaces

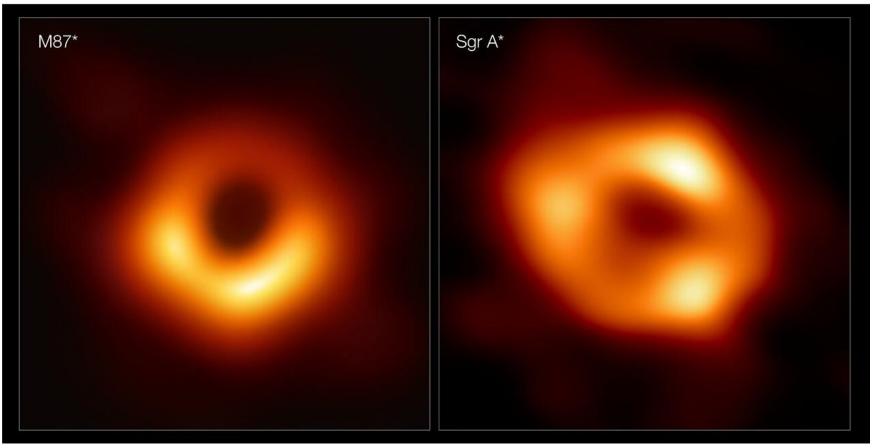
I.A. Bogush, D.V. Gal'tsov

Department of Theoretical Physics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia

in collaboration with K.V. Kobialko

18 – 21 July 2022 International Conference on Quantum Field Theory, High-energy Physics, and Cosmology Dubna, Russian Federation

Black hole astronomy breakthrough



[K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett. 875, L1 (2019) [arXiv:1906.11238]][P. Kocherlakota et al. [Event Horizon Telescope], Phys. Rev. D 103, no.10, 104047 (2021) [arXiv:2105.09343]]

Definition. A *photon surface* of (M, g) is an immersed, nowherespacelike hypersurface *S* of (M, g) such that, for every point $p \in S$ and every null vector $\mathbf{k} \in T_p S$, there exists a null geodesic $\gamma: (-\epsilon, \epsilon) \to M$ of (M, g) such that $\dot{\gamma}(0) = \mathbf{k}, \ \gamma \subset S$.

[C.-M. Claudel, K.S. Virbhadra, G.F.R. Ellis, J.Math.Phys. 42 (2001) 818-838, arXiv:gr-qc/0005050]

• That is, if a null geodesic is tangent to the photon surface, it completely belongs to the photon surface.

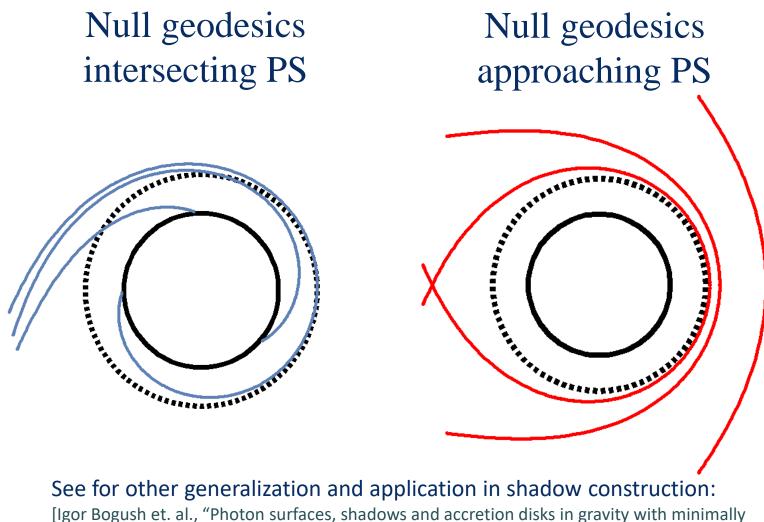
• Photon surface is umbilic:

 $\chi_{\mu\nu} = (\nabla_{\mu} n_{\nu})_{\parallel} \text{ is a second}$ fundamental form of *S*.

$$k^{\mu}\chi^{*}_{\mu\nu}k^{\nu} = 0,$$

for any null $k^{\mu} \in T_pS$ and $p \in S$

Photon surfaces



coupled scalar field," arXiv: **2205.01919**]

Charged massive particle surfaces

How to generalize photon surfaces to the surfaces for charged massive particles?

- Let κ^{μ} is a Killing vector (timelike at infinity $r \to \infty$)
- Let γ is a worldline for a particle with mass m and charge q
- Let $\mathcal{E} = \dot{\gamma}^{\mu} \kappa_{\mu} + q A^{\mu} \kappa_{\mu}$ is an integral of motion
- **Definition**. A *charged particle surface* of (M, g) is an immersed, timelike, hypersurface *S* of *M* such that, for every point $p \in S$ and every vector $v^{\alpha}|_{p} \in T_{p}S$ such that

$$v^{\alpha}\kappa_{\alpha} + qA^{\mu}\kappa_{\mu}\Big|_{p} = \mathcal{E} \text{ and } v^{\alpha}v_{\alpha} = -m^{2},$$

there exists a worldline γ of M for a particle with mass m, electric charge q and total energy \mathcal{E} such that $\dot{\gamma}^{\alpha}(0) = v^{\alpha}|_{p}$ and $\gamma \subset S$.

projection of the Killing vector onto the surface ⇒

 κ^{α} may be just a

dynamical spacetimes

- A charged particle surface is characterized by
 - mass *m*
 - charge q
 - total energy \mathcal{E} defined with respect to Killing vector κ^{α}
- Worldline equation

$$\dot{\gamma}^{\mu}\nabla_{\mu}\dot{\gamma}^{\nu} = qF^{\nu}{}_{\mu}\dot{\gamma}^{\mu}$$

• No normal acceleration with respect to the surface $v^{\mu}\chi_{\mu\nu}v^{\nu} = -qn^{\nu}F_{\nu\mu}v^{\mu}$

 n^{μ} is a unit normal to the surface

Charged massive particle surfaces

• This implies a condition on the second fundamental form

$$\chi_{\alpha\beta} = \frac{\chi_0}{n-2} H_{\alpha\beta} - \frac{q}{\mathcal{E}_k} \mathcal{F}_{\alpha\beta},$$

n = dimM is a
dimension of the
spacetime

where

$$H_{\alpha\beta} = h_{\alpha\beta} + \frac{m^2}{\mathcal{E}_k^2} \kappa_{\alpha} \kappa_{\beta},$$

$$\mathcal{E}_k = \mathcal{E} - q A^{\mu} \kappa_{\mu},$$

$$\mathcal{F}_{\alpha\beta} = \frac{1}{2} \kappa_{(\alpha} n^{\mu} F_{\mu\nu} h_{\beta)}^{\nu},$$

$$\chi_0 = \frac{n-2}{H_{\alpha}^{\alpha}} \left(\chi_{\alpha}^{\alpha} + \frac{q \mathcal{F}_{\alpha}^{\alpha}}{\mathcal{E}_k} \right).$$

 $h_{\alpha\beta}$ is an induced metric on *S*

No weight in symmetrization

• Component along the Killing vector

$$\kappa^{\alpha}\chi_{\alpha\beta}\kappa^{\beta} = \kappa^{2}(\chi^{\alpha}_{\alpha} - \chi_{0})$$

• Components along the orthogonal directions

$$\tau_i^{\alpha} \chi_{\alpha\beta} \tau_j^{\beta} = \frac{\chi_0}{n-2} \tau_{(i)}^{\alpha} h_{\alpha\beta} \tau_j^{\beta}$$

Partially umbilic along orthogonal directions τ_i^{α}

• Mixed components

$$\tau^{\alpha}_{(i)}\chi_{\alpha\beta}\kappa^{\beta} = -\frac{q}{2\mathcal{E}_{k}}\kappa^{2}n^{\mu}F_{\mu\nu}\tau^{\nu}_{(i)}$$

If $n^{\mu}F_{\mu\nu}$ is parallel to the Killing vector κ_{ν} , the Maxwell field enters the equations through $\mathcal{E}_k = \mathcal{E} - q\kappa^{\alpha}A_{\alpha}$ only, which is the case for most of the interesting solutions with CMPSs.

• Mixed components

$$\tau^{\alpha}_{(i)}\chi_{\alpha\beta}\kappa^{\beta} = -\frac{q}{2\mathcal{E}_{k}}\kappa^{2}n^{\mu}F_{\mu\nu}\tau^{\nu}_{(i)}$$

If $n^{\mu}F_{\mu\nu}$ is parallel to the Killing vector κ_{ν} , the Maxwell field enters the equations through $\mathcal{E}_k = \mathcal{E} - q\kappa^{\alpha}A_{\alpha}$ only.

For $A_{\mu}dx^{\mu} = A_t(r)dt + A_{\phi}(\theta)d\phi$ and r = const surfaces it is always the case.

Traceless part

$$\sigma_{\alpha\beta} = \chi_{\alpha\beta} - h_{\alpha\beta} \frac{\chi_{\gamma}^{\gamma}}{n-1} \sim \frac{\chi_0 m}{(n-2)\mathcal{E}_k} \kappa_{\lambda} - \frac{q}{m} n^{\mu} F_{\mu\lambda}$$

For charged particles it can be zero for some $\mathcal{E} \Rightarrow$ the surface coincide with a photon surface.

- *E* is a function of the surface
- Claim: $\frac{d\varepsilon}{dr} = 0$ gives marginally stable orbits, such as innermost stable circular orbits (ISCO)
- Example: Schwarzschild

$$\left(\frac{dr}{ds}\right)^{2} = \mathcal{E}^{2} - U(r),$$

$$\int_{\Sigma}^{-0.9} -0.9 = \frac{(r - 2M)(L^{2} + m^{2}r^{2})}{r^{3}}$$

$$-1.2 = \frac{1.2}{2} + \frac{1.2}{4} + \frac{1.2}{6} + \frac{1.2}{12} + \frac{1.2}{14} + \frac{1.2}{16} + \frac{1.2}{14} + \frac{1.2}{14} + \frac{1.2}{16} + \frac{1.2}{16} + \frac{1.2}{14} + \frac{1.2}{16} + \frac{1$$

Example 1: Schwarzschild and Fisher

Fisher metric:

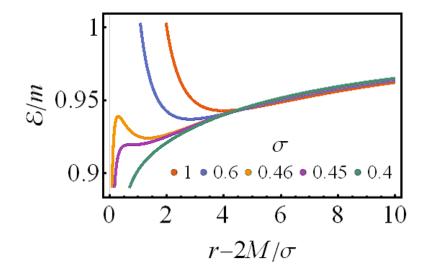
$$\begin{split} ds^2 &= -f^{\sigma}dt^2 + f^{-\sigma}dr^2 + fr^2d\Omega_2^2,\\ F &= 1 - \frac{2M}{\sigma r}, \ 0 < \sigma \leq 1 \end{split}$$

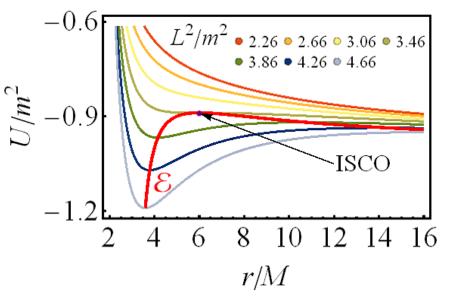
Energy of the particle surface:

$$\frac{\mathcal{E}^2}{m^2} = \left(1 - \frac{2M}{r\sigma}\right)^{\sigma} \frac{M + M\sigma - r\sigma}{M + 2M\sigma - r\sigma}$$

ISCO: $\frac{r_{ISCO}}{M} = \sigma^{-1} + 3 + \sqrt{5 - \sigma^{-2}}$

Example 1: Schwarzschild and Fisher



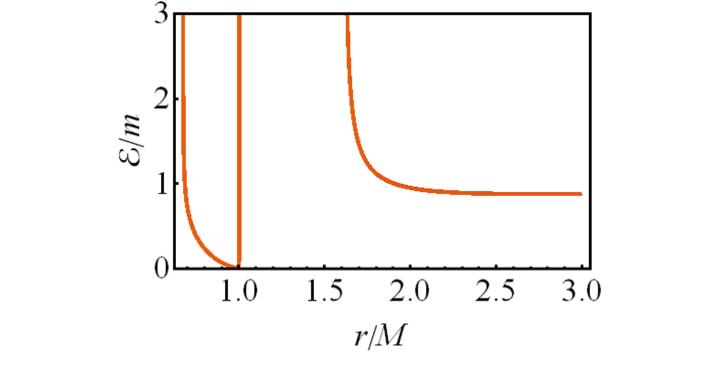


Energy of the particle surface for different values of σ in Fisher metric.

Radial potential in Schwarzschild metric for different angular momentum L. Red curve is the energy of the particle surface.

EMD naked singularities can have stable photon orbits.

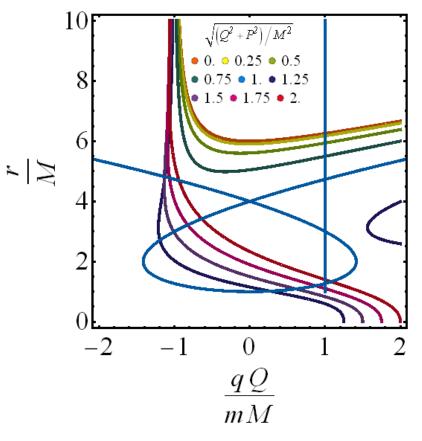
[I. Bogush, G. Clément, D. Gal'tsov, D. Torbunov, Phys. Rev. D 103, 064045 (2021), arXiv:2009.07922]



M = 1, N = 0, Q = -1.49, P = 0.15, D = -0.65

Example 3: Reissner-Nordström

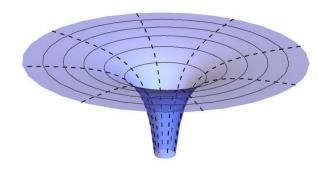
- Structure of ISCO dramatically differs for the RN black hole, extreme RN black hole and RN naked singularity.
- For the supersymmetric state $M^2 = Q^2 + P^2$, and the no-force condition $\frac{qQ}{mM} = 1$, energy of the CMPSs is constant. The test particle does not interact with the black hole.
- Repulsive particles can lay on the photon sphere.
- Marginally stable orbits may be degenerate $\frac{d^2 \mathcal{E}}{dr^2} = 0.$



Marginally stable orbits as a function of qQ/mM for different $\sqrt{\frac{P^2+Q^2}{M^2}}$

- We have suggested a generalization of the photon surfaces to the charged massive particle surfaces. Geometrical conditions for the existence of such surfaces are given. Nonstationary spacetimes can be described by them as well.
- Such surfaces are partially umbilic.
- Each surface is characterized by the energy, mass and charge of the corresponding particles.
- Surfaces with the locally extremal energy contain marginally stable orbits.
- In Fisher metric, marginally stable orbits exist for $\sigma > 1/\sqrt{5}$.
- Photon surfaces correspond to the singularity of the \mathcal{E}/m function.
- There are degenerate marginally stable orbits in Reissner-Nordström metric.
- No-force condition can be formulated as $\mathcal{E} = \text{const.}$

Thank you for your attention!



18 – 21 July 2022 International Conference on Quantum Field Theory, High-energy Physics, and Cosmology Dubna, Russian Federation 16