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1. INTRODUCTION

The Standard Model (SM) is complete but it is not a complete
theory due to a number of fundamental problems that cannot be
solved in its framework: it does not include gravity; no explanation
of charge quantization; too many input parameters; a huge
hierarchy of particle masses and energy scales of interactions; a
generation problem; no solutions to dark matter and dark energy,
baryon asymmetry in the Universe; etc. These problems stimulate
the development of theories generalizing the SM. Some of these
theories include violation of Lorentz invariance, among which we
single out the effective field theory, which is called the Standard
Model Extension (SME) (D. Colladay, V. A. Kostelecký, PRD (1997,
1998); V. A. Kostelecký, N. Russell, RMP (2011), arXiv (2022)).
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The SME Lagrangian is the sum of the SM Lagrangian and
additional terms representing various combinations of SM fields
with free Lorentzian indices (this violates Lorentz invariance), which
are convoluted with constant tensors of the corresponding ranks
and mass dimensions. Such a structure of the Lagrangian expands
the concept of effective field theory [S. Weinberg, 1979], and the
indicated tensors, considered as constant background fields,
simulate the complex structure of the vacuum induced by the new
physics beyond the SM (in particular, the effects of quantum
gravity).
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Various effects have been investigated within the SME framework,
and we note only a few works, limited to the case of an electron
interacting with an axial-vector background field (AVBF): production
of an electron-positron pair by a photon and emission of a photon
by an electron and a positron [V. Ch. Zhukovsky, A. E. Lobanov, E.
M. Murchikova (2006, 2007)], synchrotron radiation of an electron
taking into account its anomalous magnetic moment and
interaction with the AVBF [I. E. Frolov, V. Ch. Zhukovsky (2007)],
effect of the AVBF on the radiation of a hydrogen-like atom [O. G.
Kharlanov, V. Ch. Zhukovsky (2007)], generation of a vacuum
current by the AVBF [A. F. Bubnov, N. V. Gubina, V. Ch. Zhukovsky
(2017)].

Anatoly Borisov (MSU) 21 July 2022 5 / 46



In the present talk, based on the following publications:
A. V. Borisov, T. G. Kiril’tseva, Mosc. Univ. Phys. Bull. 75, 10 (2020),
A. V. Borisov, Eur. Phys. J. C 82, 460 (2022),
I consider the electromagnetic radiation of an electron moving in a
tensor background field of a quasi-magnetic type with use of the
Lagrangian

L = LQED + LT, (1)

LQED = ψ̄ (γµ (i∂µ + eAµ)− m)ψ − 1
4

FµνFµν − 1
2
(∂µAµ)2 (2)

is the Lagrangian of the standard QED in the Lorentz gauge, ψ is
the electron-positron field (m and −e < 0 are the electron mass
and charge), Aµ and Fµν = ∂µAν − ∂νAµ — 4-potential and tensor of
the electromagnetic field strength;

LT = −1
2
ψ̄σµνHµνψ (3)

is the Lagrangian of interaction with a tensor constant background
field Hµν .
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2. ELECTRON WAVE FUNCTIONS IN A
BACKGROUND FIELD
The wave function of an electron in a tensor background field
satisfies the Dirac equation:(

iγµ∂µ − m − 1
2
σµνHµν

)
ψ = 0. (4)

We consider the case of a background field of the quasi-magnetic
type for which

HµνHµν > 0, HµνH̃µν = 0,

H̃µν = εµναβHαβ/2 (ε0123 = −ε0123 = −1). In a special reference
frame, the nonzero components of the tensors are as follows:

H21 = −H12 = h, H̃03 = −H̃30 = h, (5)

the tensor field is equivalent to the axial vector (we put h > 0)

h = hez , h = [HµνHµν/2]1/2 . (6)
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The Dirac equation in the Hamiltonian form:

i
∂ψ

∂t
= Ĥψ, Ĥ = α · p̂ + mβ − βΣ3h, (7)

p̂ = −i∇, α = γ0γ, β = γ0, Σ3 = iγ1γ2.
The corresponding wave function:

ψpζ(t , r) =
1√
V

u(p, ζ) exp (−iEt + ip · r),

u(p, ζ) = 2−3/2


A+ (B+ + ζB−)

−ζA− (B+ − ζB−)eiϕ

A+ (B+ − ζB−)

ζA− (B+ + ζB−)eiϕ

 . (8)

Here V is the normalization volume;

A± =

(
1 ± ζ

m
ε⊥

)1/2

, B± =
(

1 ± pz

E

)1/2
. (9)
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This wave function describes the stationary state of an electron in
the background field and is an eigenfunction of the Hamiltonian Ĥ ,
the momentum operator p̂, and the operator of the spin projection
onto the direction h (Oz axis),

Π̂ = γ5γµH̃µνpν/h = γ5
(
γ0pz − γ3E

)
, (10)

where pν = (E ,p); the spin quantum number ζ = ±1 is related to
the eigenvalue of the operator (10) by the relation

Π̂ψpζ = (ζε⊥ − h)ψpζ ;

the electron energy

E =
[
(ε⊥ − ζh)2 + p2

z

]1/2
(11)

depends on ζ , the longitudinal pz and transverse p⊥ =
√

p2
x + p2

y

(via ε⊥ =
√

m2 + p2
⊥) components of the momentum p; the angle ϕ

in (8) specifies the direction of the transverse momentum
p⊥ = (px ,py ) = p⊥(cosϕ, sinϕ).
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Note that the function (8) can be obtained from the wave function
of a neutron moving in an external constant magnetic field
[I. M. Ternov, V. G. Bagrov, A. M. Khapaev, Sov. Phys. JETP 21, 613
(1965)] by replacing

µnFµν → Hµν ,

where µn is the anomalous magnetic moment of the neutron, with
the corresponding change in notations.
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3. RADIATIVE TRANSITION AMPLITUDE
Let us consider electron transition |i⟩ = |p, ζ⟩ → |f ⟩ = |p′, ζ ′⟩ with
the emission of a photon with 4-momentum kµ = (ω,k) and
polarization vector eλ. The amplitude of this radiative transition:

Sfi =
ie√
2ωV

(2π)4

V
δ
(
E ′ + ω − E

)
δ(3)

(
p′ + k − p

)
e∗
λ · ⟨α⟩ , (12)

where
⟨α⟩ = u+

(
p′, ζ ′

)
αu (p, ζ) . (13)

The frequency of a photon emitted in the direction n = k/ω (|n| = 1)
is derived from the energy and momentum conservation law:

ω =
2h

√
1 − v2

z

1 − n · v
δζ′,1δζ,−1. (14)

This frequency is nonzero only in the case of an electron spin-flip
transition: ζ = −1 → ζ ′ = 1.
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Expression (14) was obtained in the leading (linear) approximation
in the background field strength h in view of the rigid constraint
[V. A. Kostelecký, N. Russell, RMP (2011), arXiv (2022)]:

h ≲ 10−17 eV. (15)

In this approximation, v = p/ε is the velocity of a free electron:

ε = E (h = 0) =
√

m2 + p2, (16)

vz is its projection onto h.
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4. RADIATION POWER
Using transition amplitude (10) we find radiation power

W (λ) =
α

2π

∫
d3kδ

(
E ′ + ω − E

)
|e∗

λ · ⟨α⟩|2 , (17)

where p′ = p − k.
The quasi-magnetic background field configuration is invariant with
respect to Lorentz transformations (boosts) along the field
direction (axis Oz). Therefore, we limit ourselves to the analysis of
two different orientations of the initial electron momentum with
respect to Oz: (i) p⊥Oz (pz = 0) and (ii) p ∥ Oz (p⊥ = 0).
As in the synchrotron radiation theory, we introduce unit vectors of
σ and π components of linear polarization to characterize the
radiation polarization:

eσ =
ez × n
|ez × n|

, eπ = n × eσ, (18)

where n = k/ω.
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Transverse Motion

Assuming that pz = 0 and p = pex (i.e., φ = 0), which does not lead
to loss of generality, since the background field is axially
symmetric. Taking only the first order of expansion in background
field h into account we find (for ζ ′ = −ζ = 1):

⟨α1⟩ =
1
2

kz

γε
, ⟨α2⟩ =

i
2

kz

ε
, ⟨α3⟩ = −1

2

(
kx

γε
+ i

ky

ε

)
, (19)

where the Lorentz factor γ = ε/m = 1/
√

1 − v2.
Note that matrix elements satisfy the relation

ω ⟨α0⟩ − k · ⟨α⟩ = 0, (20)

which follows (α0 = I and ⟨α0⟩ = 0 in the present case) from the
conservation of electromagnetic current in the momentum
representation.
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Assuming that d3k = ω2dωdΩ, we find the angular distribution of
power of polarized radiation:

dW (λ)

dΩ
=

α

2π
ω2

1 − n · v
|e∗

λ · ⟨α⟩|2 . (21)

Summing over polarizations,
∑
λ

e∗i
λ ek

λ = δik − nink , we find

dW
dΩ

=
α

2π
ω2

1 − v · n
|⟨α⟩|2 , (22)

where it is taken into account that ⟨α⟩ · n = 0. Substitution here
expressions for ⟨αk ⟩ gives

dW
dΩ

= W0

(
1 − v2

) 1 − n2
x +

(
1 − v2) (1 − n2

y
)

(1 − vnx)
5 , (23)

dΩ = sin θdθdφ; nx = sin θ cosφ,ny = sin θ sinφ,nz = cos θ. (24)

W0 =
2α
π

h4

m2 . (25)
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It follows from (23) that an electron at rest (v = 0) also emits
radiation, since this emission is induced by the electron spin flip:

dW
dΩ

(v = 0) = W0

(
1 + n2

z

)
. (26)

Figures 1 and 2 show the normalized angular distribution of
radiation R(v ,n) = W−1

0 dW/dΩ for an electron at rest (v = 0) and a
relativistic electron (v = 0.85, respectively. The well-known
“projector” effect is seen in the latter case.
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Fig. 1. Angular radiation distribution at v = 0

Figure: Fig. 1. Angular radiation distribution at v = 0

Anatoly Borisov (MSU) 21 July 2022 17 / 46



Fig. 2. Angular radiation distribution at v = 0.85

Figure: Fig. 2. Angular radiation distribution at v = 0.85
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Let us consider the polarization properties of radiation. The linear
polarization vectors:

eσ = − sinφex + cosφey ,
eπ = − cos θ cosφex − cos θ sinφey + sin θez .

(27)

The angular distributions of radiation powers of linear polarization
components:

dW (σ)

dΩ
= W0

(
1 − v2

) cos2θ
(
1 − v2sin2φ

)
(1 − v sin θ cosφ)5 ,

dW (π)

dΩ
= W0

(
1 − v2

) 1 − v2cos2φ

(1 − v sin θ cosφ)5 .

(28)

Their sum is given by (23), as must be the case.
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The total radiation powers of linear polarization components:

W (σ) =
π

3
W0γ

4(4 − 2v2 + 3v4 − v6),

W (π) =
π

3
W0γ

4(12 + 18v2 − 3v4 + v6).

(29)

The total power:

W = W (σ) + W (π) =
16π

3
W0γ

4(1 + v2), (30)

The radiation is linearly polarized (π component is predominant)
and the polarization degree:

P =
W (π) − W (σ)

W
=

4 + 10v2 − 3v4 + v6

8 (1 + v2)
. (31)
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The polarization degree increases monotonically with velocity (see
Fig. 3) from 1/2 at v = 0 to 3/4 at v → 1, i.e. for a high-energy
electron

W (π) =
7
8

W , W (σ) =
1
8

W ,

and the same is true for synchrotron radiation [A. A. Sokolov and
I. M. Ternov, Radiation from Relativistic Electrons (AIP, 1986)].
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Fig. 3. Degree of radiation polarization
P  410v2−3v4v6
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Longitudinal Motion
For p⊥ = 0 and p = pez , the matrix elements (in leading order in h)

⟨α0⟩ =
vk⊥
2m

, ⟨α1⟩ = e−iφ ω

2m
(v − nz) , ⟨α2⟩ = i ⟨α1⟩ , ⟨α3⟩ =

k⊥
2m

, (32)

and due to the conservation of electromagnetic current

ω ⟨α0⟩ − k · ⟨α⟩ = 0. (33)

The angular distribution of radiation power is axially symmetric
(does not depend on the azimuth angle angle φ):

dW
dΩ

= W0

(
1 − v2)2

(1 − vnz)
5

[(
1 + v2

)(
1 + n2

z

)
− 4vnz

]
, (34)

where nz = cos θ. The total radiation power:

W =
16π

3
W0, (35)

which is equal to the radiation power of an electron at rest (v = 0).
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This is explained by the fact that the total radiation power is
Lorentz invariant, and the configuration of the quasi-magneticthe
background field is invariant under boosts along the axis Oz.

The polarization properties of radiation:

dW (σ)

dΩ
= W0

(
1 − v2

)2 (v − nz)
2

(1 − vnz)
5 ,

dW (π)

dΩ
= W0

(
1 − v2

)2 1
(1 − vnz)

3 ,

W (σ) =
4π
3

W0 =
1
4

W , W (π) = 4πW0 =
3
4

W ,

P =
W (π) − W (σ)

W
=

1
2
.

(36)

Anatoly Borisov (MSU) 21 July 2022 24 / 46



5. APPLICATION OF THE OPTICAL THEOREM
In the previous part of the present talk, the standard calculation
method is used based on the amplitude of the radiative transition
in the first order in the electromagnetic coupling, here we consider
the imaginary part of the one-loop radiative shift of the electron
energy ∆E in the initial state (see Fig. 4), which, according to the
optical theorem, determines the radiation probability w :

w = −2Im∆E , (37)

∆E = − ie2

T

∫
d4xd4x ′ψ̄pζ(x)γµG(x , x ′)γνψpζ(x ′)Dµν(x , x ′), (38)

where T (→ ∞) is the interaction time, the photon propagator in
the Lorentz gauge

Dµν(x , x ′) = gµν

∫
d4k
(2π)4 D(k)e−ik ·(x−x ′), (39)

D(k) = (k2 + i0)−1. (40)
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Fig. 4. The one-loop radiative shift of the electron
energy
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The electron propagator in the background field

G(x , x ′) =

∫
d4q
(2π)4 G(q)e−iq·(x−x ′), (41)

where G(q) satisfies the equation(
γµqµ − m − 1

2
σµνHµν

)
G(q) = 1. (42)

The explicit form of the propagator G(q) follows from the
expression obtained in [V. Egorov, I. Volobuev, arXiv:2107.11570v2
[hep-ph] (2022)] for the propagator of a neutrino moving in a
constant magnetic field by the obvious renaming:
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G(q) = Q̂(q)R(q),

Q̂(q) =
{(

q2 − m2
)
(γ · q + m)

− h2 (γ · q − m)− 2Hµν(Hq)νγµ + 2m(H̃q)µγµγ5

+ σµν
[1

2

(
q2 + m2 − h2

)
Hµν − 2(Hq)µqν

]}
,

R(q) =
[(

q2 − m2
)(

q2 − m2 + i0
)
− 2h2

(
q2 + m2

)
+4(Hq)2 +

1
2

h2
]−1

, (43)

where (Hq)µ = Hµνqν , (H̃q)µ = H̃µνqν .
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After integrating over x and x ′ in (38), we obtain:

∆E = − ie2

(2π)4

∫
d4qD(p − q)R(q)ū(p, ζ)γµQ̂(q)γµu(p, ζ). (44)

According to the Cutkosky rules, the imaginary part of ∆E is
determined by the following replacement in the integrand of the
right-hand side of Eq. (44):

2iIm∆E = ∆E
(

D(p−q) → −2πiδ(D−1(p−q)),R(q) → +2πiδ(R−1(q))
)
.

(45)
Note that the “ + ” sign in front of the second delta function is due
to the additional factor q2 − m2 in the denominator of the electron
propagator G(q) and the well-known relation δ(x)/a = sgn(a)δ(ax).
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We obtain the representation of the total radiation probability in
the form

w =
2α
π

∫
d4qδ(Xγ)δ(Xe)F (q), (46)

Xγ = D−1 = (p − q)2,

Xe = R−1 = (q2 − m2 − h2)2 − 4h2(q2
⊥ + m2),

F (q) = (q2 − m2)⟨2m − γ · q⟩+ h2⟨2m + γ · q⟩

+2h2⟨γ1qx + γ2qy ⟩+ 2hm⟨(γ0qz − γ3q0)γ
5⟩

with ⟨· · · ⟩ = ū(p, ζ)(· · · )u(p, ζ).
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Note that the energy spectrum (the eigenvalues of the
Hamiltonian) is determined by the poles of the electron propagator
G(q) with respect to the variable q0 , i.e., by the roots of the
equation Xe(q0) = 0:

q0 = ±
[
q2 + m2 + h2 ± 2h

√
q2
⊥ + m2

]1/2

, (47)

which agrees with (11): E =
[
(ε⊥ − ζh)2 + p2

z

]1/2
, and negative

values of q0 correspond to the positron.
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Let us derive the angular distribution of the radiation probability.
Having made in (46) the change of integration variables, k = p − q
(it is the photon 4-momentum),

d4q = dk0d3k , δ (Xγ) → 1
2ω δ (k0 − ω) ,

ω = |k| ,k = ωn, |n| = 1,
(48)

and after trivial integration over k0 we obtain

dw
dΩ

=
α

π

∫
dωωδ (Xe)F (q), q = (E − ω,p − ωn), (49)

where dΩ is the solid angle element in the n direction. Next, we
transform the argument of the delta function:

Xe = 4
(
E2

n − h2n2
⊥
)
ω(ω − ωn),n2

⊥ = 1 − n2
z ,

En = E − n · p, ωn =
2h(ε⊥En − hnxpx)

E2
n − h2n2

⊥
.

(50)
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Using (50), we integrate over ω in (49) and obtain the angular
distribution of the radiation probability:

dw
dΩ

=
αF (q)

4π(E2
n − h2n2

⊥)
, q = (E − ωn,p − ωnn). (51)

The radiation frequency ωn is determined by the radiation direction
n, and the radiative transition is due to the electron spin flip:
ζ = −1 → ζ ′ = +1.
Expression (51) is exact in terms of the background field strength h,
the value of which is strictly limited from above: h ≲ 10−17 eV.
Therefore, in what follows, we restrict ourselves to taking into
account only the leading terms in the expansion with respect to the
parameter h.

Anatoly Borisov (MSU) 21 July 2022 33 / 46



In this approximation, for the function F we obtain

F = 4h3
√

1 − v2
z

f (v,n)
(1 − v · n)2 ,

f (v,n) = (1 − nzvz)
2
(

1 +
1 − v2

1 − v2
z

)
− (1 − v2)(1 − n2

z)− v2
x n2

x , (52)

and the angular angular probability distribution

dw
dΩ

= w0

√
1 − v2

z
1 − v2

(1 − v · n)4 f (v,n), w0 =
αh3

πm2 , (53)

where v = p/ε = (vx ,0, vz) is the velocity of a free electron.
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Multiplying (53) by the photon energy

ωn =
2h

√
1 − v2

z

1 − v · n
, (54)

we obtain the angular distribution of the radiation power

dW
dΩ

= ωn
dw
dΩ

= W0(1 − v2
z )

1 − v2

(1 − v · n)5 f (v,n), W0 =
2αh4

πm2 . (55)

To calculate the total probability and power of radiation, it is
convenient to express the angles in (53) and (55) in terms of the
angles (marked with the index 0) in the reference frame moving
with the velocity vz along the axis Oz (as in the theory of
synchrotron radiation), using the corresponding boost, which does
not change the configuration of the quasi-magnetic background
field:
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nz =
n0z + vz

1 + vzn0z
, nx =

√
1 − v2

z n0x

1 + vzn0z
,

vx = v0x

√
1 − v2

z , dΩ =
1 − v2

z
(1 + vzn0z)2 dΩ0. (56)

Using (56), we obtain:

dw
dΩ0

=

√
1 − v2

z
dw (0)

dΩ0
= w0

√
1 − v2

z
1 − v2

0

(1 − v0n0x)
4 f0,

dW
dΩ0

= (1 + vzn0z)
dW (0)

dΩ0
= W0

(1 + vzn0z)(1 − v2
0 )

(1 − v0n0x)5 f0,

f0 = 1 − v2
0 n2

0x + (1 − v2
0 )n

2
0z . (57)

Here v0 ≡ v0x is invariant under boosts along the axis Oz:

v0 =
p⊥
ε⊥

=
v⊥√

1 − v2
z

(58)

with v⊥ =
√

v2 − v2
z .
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From (57) we get relations for total probability and power of
radiation

w =

√
1 − v2

z w (0), W = W (0) (59)

in agreement with the special relativity. We emphasize that the
total radiation power is a Lorentz invariant.
The integration of the angular distributions is greatly simplified if
we choose Ox as the polar axis (in the reference frame, where
vz = 0). Then n0x = cosα,n0z = sinα sinβ, which allows independent
integration over α and β. As a result, we obtain explicit expressions
for w and W :

w =
8αh3

3m2

√
1 − v2

z
2 + v2

0

1 − v2
0
, W =

32αh4

3m2
1 + v2

0

(1 − v2
0 )

2
. (60)

For an unpolarized electron, it is necessary to introduce an
additional factor 1/2 into the right-hand sides of (60).
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6. DISCUSSION

Expressions (59) and (60) are valid for an arbitrary angle between
the electron momentum p and the direction of the background
field h.
Since an electron has both an electric charge (−e) and magnetic
moment (we take only the standard Dirac moment into account):

µe =

√
α

2m
, (61)

it is of some interest to separate their contributions to the radiative
transition amplitude and the radiation power and compare the
above results with the results obtained in [I. M. Ternov, V. G.
Bagrov, and A. M. Khapaev, Sov. Phys. JETP 21, 613 (1965)] for the
neutron radiation in a constant magnetic field. For this purpose, we
use use the generalized Gordon identity:
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ū
(
p′, ζ ′

)
γµu (p, ζ) = ū

(
p′, ζ ′

) [p′µ + pµ

2m
+

i
2m

σµν
(
p′µ − pµ

)
+

1
m

H̃µνγνγ
5
]

u (p, ζ) . (62)

The first, the second, and the third terms at the righthand side
characterize the contributions of the electric charge (e), the
magnetic moment (µ), and the background field (h), respectively. In
the case of transverse electron motion, the contributions of
different mechanisms to the radiative transition amplitudes (in the
leading order in h) are separated as follows:

⟨α1⟩ = ⟨α1⟩e + ⟨α1⟩µ = ω
2m nz

[
(−v2)e + (1)µ

]
,

⟨α2⟩ = ⟨α2⟩µ = i ω
2m nz

√
1 − v2,

⟨α3⟩ = ⟨α3⟩µ + ⟨α3⟩h = ω
2m

[
(v − nx − iny

√
1 − v2)µ + (−v + v2nx)h

]
.

(63)
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The total radiation power in the form of a sum of contributions of
different emission mechanisms:

W = We + Wµ + Wh + Weµ + Weh + Wµh, (64)

where
We = πW0

[
L(v)− 2γ4

(
1 − 5

3
v2

)]
, (65)

Wµ =
16π

3
W0γ

4, (66)

Wh = πW0

[
L(v)− 2γ4

(
1 − 3v2

)]
, (67)

Weµ = −8π
3

W0γ
4v2, (68)

Weh = −2πW0

[
L(v)− 2γ4

(
1 − 5

3
v2

)]
, (69)

Wµh =
16π

3
W0γ

4v2 (70)

with L(v) = 1
v ln 1+v

1−v .
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All contributions apart from Wµ are monotonic functions of velocity
v that turn to zero at v = 0. At v > 0,

We + Wh + Weµ + Weh = 0.

Thus, the total radiation power

W = Wµ + Wµh =
16π

3
W0γ

4(1 + v2). (71)

Tthe contribution of the magnetic moment is dominant at v ≪ 1. At
v → 1 (high-energy region: γ ≫ 1), both contributions become
almost equal. In the case of longitudinal motion of an electron, our
matrix elements after the corresponding rescaling coincide with
those obtained in [I. M. Ternov, V. G. Bagrov, and A. M. Khapaev,
Sov. Phys. JETP 21, 613 (1965)], so that the radiation power of a
neutral fermion with a magnetic moment is reproduced (the other
contributions in this case are equal to zero).
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After substitutions α→ (2mµn)
2 and h → µnH in Wµ, we obtain for

the radiation power of a neutron with the magnetic moment µn:

Wn =
128

3
µ6

nH4
(
γ4

1

)
for

(
v⊥H
v ∥ H

)
. (72)

Consider the average emitted energy of an electron, i.e., the
average photon energy

⟨ω⟩ =
∫
ωdw∫
dw

=
W
w
. (73)

During a time interval
τR = 1/w , (74)

an electron emits a photon, having made a spin-flip transition to a
state that is radiatively stable: a radiative transition from it is
forbidden. Consequently, if the electron beam is initially
unpolarized, then as a result of radiation it becomes completely
polarized along the direction of the background field h, and the
characteristic polarization time is equal to τR .
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A similar effect of polarization due to a radiative transition with
spin flip was noted for neutrons moving in a magnetic field [I. M.
Ternov, V. G. Bagrov, and A. M. Khapaev, Sov. Phys. JETP 21, 613
(1965)], as well as for neutrinos in a magnetic field and matter
(neutrino spin light): [A. Lobanov, A. Studenikin, Phys. Lett. B 564,
27 (2003); A. E. Lobanov, Phys. Lett. B 619, 136 (2005)].
For the average photon energy, we obtain

⟨ω⟩ =
4h(1 + v2

0 )√
1 − v2

z (1 − v2
0 )(2 + v2

0 )
, ⟨ω⟩⊥ = 4hγ2 1 + v2

2 + v2 , ⟨ω⟩∥ = 2hγ.

(75)
The effects of Lorentz violation increase with increasing electron
energy, and are much more noticeable for the transverse motion.
For this case, for γ ≫ 1 and hγ ≪ 1, we find the radiative
polarization length LR = vτR in ordinary units:

LR ≃ c
w⊥

≃ λ̄e

8α

(m
h

)3
γ−2, (76)

where λ̄e is the Compton wavelength of the electron.
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For a numerical estimation, we set h = 10−17 eV and ε = 1016 GeV
(the energy scale of the Grand Unification of the three fundamental
interactions). Then we obtain ⟨ω⟩⊥ ≃ 1013 GeV (this is two orders of
magnitude greater than the maximum registered energy of
particles in cosmic rays ≃ 1011 GeV) and LR ≃ 2.3 × 1020 cm (for
comparison, the distance from the Sun to the nearest star
≃ 4 × 1018 cm, and from the Sun to the center of the Galaxy
≃ 2.5 × 1022 cm).
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7. CONCLUSION

We calculated the probability and power of electromagnetic
radiation by an electron in a constant background field of the
quasi-magnetic type simulating a Lorentz-violating vacuum.

It is found that the radiation has an appreciable linear polarization,
the degree of which reaches 75 % for high-energy electrons.

The radiative transition due to spin flip leads to complete
polarization of the initially unpolarized electron beam along the
direction of the background field.

We have shown that the considered radiative effect can be
noticeable under astrophysical conditions for ultrahigh-energy
electrons.
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Thank you for attention!
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