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Feynman Diagrams: Basic Definitions

Quantum field theory amplitudes are represented as a sum of Feynman
Diagrams, graphs for which each line and vertex is represented by a factor in a
term of the quantum amplitude.
Integrating over all unconstrained momenta gives rise to a Feynman Integral, FI.
For L loops and n internal lines, and allowing the propagators to be raised to
powers νj ,
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Our final goal is to find a solution of FI as a series in dimensional regularization
parameter ε where coefficients are expressed in terms of some special functions
with well-established properties.
Here we discuss properties of differential equation system for FI in most general
case, when all masses, external momenta and propagator powers have arbitrary
values
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IBP Relations, Master Integrals and Differential Equations

Integration by parts leads to a set of recurrence relations among diagrams of a
given topology but different powers of the propagators.
K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)

The full set of recurrence relations should be solved by finding how the
integral with powers of propagators (j1 + j2 + · · ·+ jk ) reduced to
integrals with powers (j1 + j2 + · · ·+ jk − 1)

The method involves taking derivatives of each integral with respect to
momenta and reducing it to the original integral.
The relations found permit a reduction to a basis set of master
integrals in terms of which the diagrams of this class may be expressed.
The differential equation system fo FI is obtained by taking some
derivatives of a given master integral with respect to kinematical
invariants and masses.
A.V. Kotikov, Phys. Lett. B 254, 158 (1991)
Then the result is written in terms of Feynman integrals of the given
family and, according to the known reduction, in terms of the master
integrals.
Finally, one obtains a system of differential equations for the master
integrals which can be solved with appropriate boundary conditions.
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Hypergeometric approach to FI

An FI could be written in terms of hypergeometric series of Horn type
The expansion over dimensional regularization parameter (derivatives of
Horn type hypergeometric function) could be written in terms of function
of the same class
To express the Feynman integral we need hypergeometric function
called generalized Lauricella series:
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The Mellin-Barnes Representation

Balanced Mellin-Barnes representation of FI:

Jbal ({s}, {m}, {α}) = C

+i∞∫
−i∞

l=n∏
j;l=1

dul
Γ(
∑

i aijui + bj )

Γ(
∑

i cijui + dj )
Γ(−ul )z

ul+cl
l (−1)gl ul

we could construct n ratio of two polynomials over variables ui (treat all
continuous variables as independent):

Pi (~u)

Qi (~u)
=

Φ(~u + ~ei )

Φ(~u)

At the process of ratio construction one are allowed to cancel only
factors with Γ functions, and leave similar polynomial factors in ~u
untouched in numerator and denominator.
With Euler differential operator θi = zi

d
dzi

we find the following n linear
system of homogeneous differential equations:

(−1)gj Qj (~u)|ui→θi

1
zi

Jbal ({s}, {m}, {α}) = Pj (~u)|ui→θi Jbal ({s}, {m}, {α})

Generally, it is a system of n differential equations, with n variables and χ
maximum power of Euler differential operator.
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Differential Contiguous Relations

step-up L+
bj

and step-down L−dj
operators shift indices bj , dj by a unit:

H(a, ~b + ~ej , c, ~d ; ~z) = L+
bj

H(a, ~b, c, ~d ; ~z) =
(∑

i

aijθi + bj

)
H(a, ~b, c, ~d ; ~z)

H(a, ~b, c, ~d − ~ej ; ~z) = L−dj
H(a, ~b, c, ~d ; ~z) =

(∑
i

cijθi + dj

)
H(a, ~b, c, ~d ; ~z)

The inverse operators L−bj
, L+

dj
can not be directly constructed form

Mellins-Barnes representation
Together operators L−bj

, L+
dj

, L+
bj

, L−dj
helps one to change parameters of FI

(Horn hypergeometric function) on integer number and find relation
between the number of non-trivial master integrals found from IBP
(which are not expressible in terms of Gamma functions) and the
maximal power of derivatives generated by the L−bj

, L+
dj

The inverse operators L−bj
, L+

dj
inherit information about simplification of

hypergeometric function (lowering its order) ∏
j∈m+

k ,nj∈{0,akj}

L+
bj+nj
− 1

zk
θk

∏
j∈m−

k ,nj∈{0,ckj−1}

L−dj−nj

H(a, ~b, c, ~d ;~z) = 0
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Differential Equation System Derivation

n differential equation system: ∏
j∈m+

k ,nj∈{0,akj}

L+
bj+nj
− 1

zk
θk

∏
j∈m−

k ,nj∈{0,ckj−1}

L−dj−nj

H(a, ~b, c, ~d ;~z) = 0

This system has several flaws that should be eliminated before resolving
it. First, it is incomplete in sense that there exist more linearly
independent differential equations. Second, we have to do multivariable
specialization to remove auxiliary variables that we introduce in balanced
MB representation

we imply that our system have only finite number of solutions in
fundamental system

we consider the multivariable specialization of initial differential equation:

zj = yj (~x), j = 1, . . . , n
~x = (x1, . . . , xk ), k < n .
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Differential Equation System Derivation II

Applying the chain rule χ times we construct system of differential
equation where various derivatives of order less or equal χ w.r.t. new
variables ~x are expressed in terms of derivatives w.r.t. old ~z and
derivatives of yi (~x) functions.
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Full differential equation system and its specialization

For the case of several variables we get the system:

M2


∂ l H(~x)

∂xj1
...∂xjl
...

H(~x)

 = 0

for one variable we get equation of high order:
χ∑

i=0

Qχ−i
∂ iH(x1)

∂ ix1
= 0

If the multivariable specialization falls into a singular locus of the initial
PDE system, the rank of the new PDE system will be lower than the
initial one, for any combination of the parameters.
The singular loci of the new PDEs are composed of ones from old PDEs
and locus of multivariable specialization. For some particular
combinations of parameters and variables, the loci of the new PDEs
could be diminished.
we may observe simplifications in the class of functions that satisfy the
new PDE system after the application of projective or more general
pull-back transformations of variables.
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Full differential equation system and Pfaff form:

By introducing the derivations of initial system we could set it in full
differentials of dependent and independent variables:

dωi (~z) = Ωij (~z)ωj (~z)dzk

Setting the values of independent variables we could make a
specialization to one variable:

ω′i (x) = Ω̃ij (x , parameters)ωj (x)

The system for MI is full differential equation system and could be also
written down on form of one differential equation of higher order
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Special value parameters and factorization

Although the system of differential equations is full, sometimes IBP
reduction could find additional independent relation(s) between MI
additional linear relations are of the form

χ∑
i=0

Qχ−i
∂ iH(x)

∂ ix
=
∑

k

ck xλk

There is one-to-one correspondence between factorization of differential
equation and block-diagonal form of differential equation system
Hyperexponential solutions are responsible for factorization
factorization manifest itself in system form as diagonal blocks
left and right term factorization are equal only in the case of full
factorization in the field of rational functions.

L(x) = L1(x)L2(x) . . . Ln(x)

for some special cases this relation for MI could be inferred from IBP
procedure
factorization works also for multiscale case, where all parameters except
one treated as constant.
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One-Loop Two-point Diagram, different masses

one-loop two-point diagram with different masses and arbitrary powers
of propagators:

J(α1, α2,m1,m2) =

∫
dnk

(k2 −m2
1)α1

(
(k − p)2 −m2

2

)α2
.

By constructing step-up and step down operators we obtain the system
of partial differential equations of second order with two variables for
J(α, β,m1,m2):

θ1

(
−α1 +

n
2

+ θ1

)
− (2α1 + 2α2 − n − 2θ1 − 2θ2)(α1 + α2 − n − θ1 − θ2 + 1)

2z1
= 0 ,

θ2

(
−α2 +

n
2

+ θ2

)
− (2α1 + 2α2 − n − 2θ1 − 2θ2)(α1 + α2 − n − θ1 − θ2 + 1)

2z2
= 0 .

it is equivalent to the equation of Appell hypergeometric function
F4(a, b, c1, c2, z1, z2) and has 4 different solutions. The singular locus on
P2 is z1 = 0, z2 = 0, the line at infinity, z2

1 + z2
2 + 1 = 2z1z2 + 2z1 + 2z2
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One-Loop Two-point Diagram, different masses

we choose χ = 4, the number of derivatives w.r.t. x . In this case we
need χ− η = 2 differentiations w.r.t. sets of variables z1, z2 and obtain
an Fuchsian differential equation over one variable

L4(x)J(α1, α2,m1,m2) = 0 ,

where L4(x) is the differential operator of the fourth order.
it has 4 singular points inherited from initial differential system, so the
final answer could not be expressed in terms of hypergeometric function
of one variable
monodromy is reduced, is defined by
{a, b, c1 − a, c1 − b, c2 − a, c2 − b, c1 + c2 − a, c1 + c2 − b} ∈ Z , and in
our case we have −b + c1 + c2 = 3, so one solution of system
degenerates to Puiseux-type and one-variable equation for F4 must
factorize by first-order differential operator

L1(x)L3(x)J(α1, α2,m1,m2) = 0

By defining arbitrary constants, we could see that final answer for FI with
two different masses and arbitrary powers of propagators has only two
F4 terms for the variables z1 = p2/m2

2, z2 = m2
1/m

2
2 and three terms in

variables z1 = m2
2/p

2, z2 = m2
2/p

2
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One-Loop Two-point Diagram, equal masses

J is equivalent to a two-point FI with equal masses m1 = m2:
z1 = y1(x) = x and z2 = y2(x) = x .

we could find an differential equation for the case of equal masses by
two different ways: consider the case z1 = z2 = x and
z1 = x ,z2 = const = x .

this univariate specialization does not belong to singular locus, the rank
of new differential system should be the same.

L̃4(x)F4(x , x) = 0

we have three distinct poles at points 0, 1/4,∞. Compare the singular
points and local exponents with differential equation for hypergeometric
function 4F3, we came to the well-known result for univariate
specialization of F4

F4

(
a, b

c1, c2
x , x

)
= 4F3

(
a, b, c1+c2

2 , c1+c2−1
2

c1, c2, c1 + c2 − 1
4x
)
.
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One-Loop Two-point Diagram, equal masses II

The monodromy group of initial differential equation is reduced due to
equation for the parameters −b + c1 + c2 = 3, so we find the
factorization of L̃4(x) if we substitute parameters:

L1(x)L3(x)J(α1, α2,m,m) = 0,

L1(x) =
d

dx
+

((x − 4)(−α1 − α2 + n) + 3x − 8)

x(x − 4)
,

L3(x) =
d3

dx3 +
−(x − 8)(α1 + α2 − n − 3) + 2n + 18

(x − 4)x
d2

dx2

−
4
(
(α1 + α2)(5(α1 + α2)− 8n + 1) + 3n2)+ x(2α1 − n − 2)(−2α2 + n + 2)

4(x − 4)x2

d

dx

+
(α1 + α2 − n + 1)(α1 + α2 − n + 2)(2(α1 + α2)− n)

2(x − 4)x3 ,

The final answer for two-point FI with equal masses could be expressed
through hypergeometric function 3F2 and polynomial expression.
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