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1 Maxwell equations hierarchy

It is well known that Maxwell equations

∂µFµν = Jν (1a)

∂µ ∗Fµν = 0 (1b)

(where ∗Fµν ≡ ϵµνρσF
ρσ, ϵµνρσ being totally antisymmetric with

ϵ0123 = 1), or, equivalently

∂kEk = J0 (= 4πρ), ∂0Ek − εkℓm∂ℓHm = Jk (= −4πjk),

∂kHk = 0 , ∂0Hk + εkℓm∂ℓEm = 0 , (2)

where Ek ≡ Fk0, Hk ≡ (1/2)εkℓmFℓm, may be rewritten in the
following manner:

∂kF
±
k = J0 , ∂0F

±
k ± iεkℓm∂ℓF

±
m = Jk , (3)

where
F±k ≡ Ek ± iHk . (4)

Not so well known is the fact that the eight equations in (3) may
be rewritten as two conjugate scalar equations in the following way:

I+ F+(z) = J(z, z̄) , (5a)

I− F−(z̄) = J(z, z̄) , (5b)

where

I+ = z̄∂+ + ∂v − 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z , (6a)

I− = z∂+ + ∂v̄ − 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ , (6b)

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2, (7a)

∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂v̄, (7b)

F+(z) ≡ z2(F+
1 + iF+

2 ) − 2zF+
3 − (F+

1 − iF+
2 ) , (8a)

F−(z̄) ≡ z̄2(F−1 − iF−2 ) − 2z̄F−3 − (F−1 + iF−2 ) , (8b)

J(z, z̄) ≡ z̄z(J0 + J3) + z(J1 + iJ2) + z̄(J1 − iJ2) + (J0 − J3) = (8c)

≡ z̄zJ+ + zJv + z̄Jv̄ + J−



It is easy to recover (3) from (5) - just note that both sides of each
equation are first order polynomials in each of the two variables z
and z̄, then comparing the independent terms in (5) one gets at
once (3).

Writing the Maxwell equations in the simple form (5) has also
important conceptual meaning. The point is that each of the two
scalar operators I+, I− is indeed a single object, namely it is
an intertwiner of the conformal group, or conformally invariant
differential operator, while the individual components in (1) - (3)
do not have this interpretation. This is also the simplest way to see
that the Maxwell equations are conformally invariant, since this is
equivalent to the intertwining property.

Let us be more explicit. The physically relevant representations
T χ of the 4-dimensional conformal algebra so(4, 2) = su(2, 2) may
be labelled by χ = [n1, n2; d], where n1, n2 are non-negative in-
tegers fixing finite-dimensional irreducible representations of the
Lorentz subalgebra, (the dimension being (n1 + 1)(n2 + 1)), and
d is the conformal dimension (or energy). (In the literature these
Lorentz representations are labelled also by (j1, j2) = (n1/2, n2/2).)
Then the intertwining properties of the operators in (6) are given
by:

I+ : C+ −→ C0 , I+ ◦ T+ = T 0 ◦ I+ , (9a)

I− : C− −→ C0 , I− ◦ T− = T 0 ◦ I− , (9b)

where T a = T χa
, a = 0,+,−, Ca = Cχa

are the representation
spaces, and the signatures are given explicitly by:

χ+ = [2, 0; 2] , χ− = [0, 2; 2] , χ0 = [1, 1; 3] , (10)

as anticipated. Indeed, (n1, n2) = (1, 1) is the four-dimensional
Lorentz representation, (carried by Jµ above), and (n1, n2) = (2, 0), (0, 2)
are the two conjugate three-dimensional Lorentz representations,
(carried by F±k above), while the conformal dimensions are the
canonical dimensions of a current (d = 3), and of the Maxwell field
(d = 2). We see that the variables z, z̄ are related to the spin
properties and we shall call them ’spin variables’.

It is also important that the variables x±, v, v̄, z, z̄ have definite
group-theoretical meaning, namely, they are six local coordinates
on the coset Y = SL(4)/B, where B is the Borel subgroup of
SL(4) consisting of all upper diagonal matrices. (Equally well one



may take the coset SL(4)/B−, where B− is the Borel subgroup of
lower diagonal matrices.) Under the natural conjugation (cf. also
below) this is also a coset of the conformal group SU(2, 2).

Now we recollect that closely related to the above fields is the
potential Aµ with signature

χ̃0 = [1, 1; 1] (11)

so that the analog of (1a) is

∂µAν = Fµν (12)

(not forgetting that the RHS is only a subspace). We also recall
that there are two more conformal operators involving two scalar
fields with signatures:

ϕ = [0, 0; 0], Φ = [0, 0; 4] (13)

so that
∂µϕ = Aµ, ∂µJµ = Φ (14)

(again the RHSs are subspaces).

Altogether we have the following picture:
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Remark: Note that the ± pairs are related by integral opera-
tors IKS, so-called Knapp-Stein operators, with kernels which are
conformal two-point functions. Their action on the signatures is:

IKS : [n1, n2; d] −→ [n2, n1; 4 − d] (15)

The above picture is the simplest occurrence of conformally in-
variant differential operators. The general case is given by a 3-
parameter generalization given as follows:

χ−pνn = [p − 1, n − 1; 2 − ν − 1
2
(p + n)] (ϕ) (16)

χ+
pνn = [n − 1, p − 1; 2 + ν + 1

2
(p + n)] (Φ)

χ′−pνn = [p + ν − 1, n + ν − 1; 2 − 1
2
(p + n)] (Aµ)

χ′+pνn = [n + ν − 1, p + ν − 1; 2 + 1
2
(p + n)] (Jµ)

χ′′−pνn = [ν − 1, p + n + ν − 1; 2 + 1
2
(p − n)] (F−)

χ′′+pνn = [p + n + ν − 1, ν − 1; 2 + 1
2
(n − p)] (F+)

where p, ν, n are positive integers which are exactly the Dynkin
labels m1,m2,m3 of sl(4) for χ−pνn.

We call ”multiplets” such collection of representations related by
intertwining differential operators.

The simplest example we considered first is obtained for
p = ν = n = 1.

The multiplets (sextets here) are given now in the following fig-
ure:
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where the differential operators are given explicitly by:

(I2)
m = (z̄1z1∂+ + z1z̄2∂v + z̄1z2∂v̄ + z̄2z2∂−)

m =

=

(
(z̄1, z̄2) σµ∂µ

(
z1

z2

))m

, (17a)

(I12)
m =

(
(z̄1, z̄2) σµ∂µ ε

(
∂z1

∂z2

))m

, (17b)

(I23)
m =

(
(∂z̄1, ∂z̄2) εσµ∂µ

(
z1

z2

))m

, (17c)

(I13)
m =

(
(∂z̄1, ∂z̄2) σµ∂µ

(
∂z1

∂z2

))m

, (17d)

where σµ are the Pauli matrices, ε = iσ2 . Note that here for the
finite-dimensional irreps of the Lorentz subalgebra we have passed
from polynomials in z, z̄ of degrees n1, n2, to homogeneous
polynomials in z1, z2 of degree n1 and in z̄1, z̄2 of degree n2 .
The two realizations are easily related via z = z1/z2 , z̄ = z̄1/z̄2 .

The above picture is valid also for the 4-dimensional Euclidean
conformal algebra so(5, 1), and also for the Lie algebra so(3, 3).

Next we recall that the conformal algebra of 2n-dimensional Minkowski
space-time is the algebra so(2n, 2). Actually we shall consider a
more general picture, namely, the Lie algebras G = so(p, q).

The analogue of the Lorentz subalgebra is:

M = so(p − 1, q − 1) . (18)

The analogue of Minkowski space-time is N with:

dim N = p + q − 2 . (19)

We label the signature of the representations of G as follows:

χ = {n1 , . . . , nh ; c } , (20)

nj ∈ Z/2 , c = d − p+q−2
2

, h ≡ [p+q−2
2

],

|n1| < n2 < · · · < nh , p + q even ,

0 < n1 < n2 < · · · < nh , p + q odd ,

where the last entry of χ labels the characters of A , and the first
h entries are labels of the finite-dimensional nonunitary irreps of
M = so(p − 1, q − 1).



The reason to use the parameter c instead of d will become
clear below.

The analogue of the multiplets in (16) here is:

χ±1 = {ϵ n1 , . . . , nh ; ±nh+1} , (21)

nh < nh+1 ,

χ±2 = {ϵ n1 , . . . , nh−1 , nh+1 ; ±nh}
χ±3 = {ϵ n1, . . . , nh−2, nh, nh+1 ; ±nh−1}
...

χ±h−1 = {ϵ n1 , n2 , n4 , . . . , nh , nh+1 ; ±n3}
χ±h = {ϵ n1 , n3 , . . . , nh , nh+1 ; ±n2}

χ±h+1 = {ϵ n2 , n3 , . . . , nh , nh+1 ; ±n1}

ϵ =

{
± , p + q even

1, p + q odd

where ϵ = ± is correlated with χ±, the last entry is the value of c.
Clearly, the multiplets correspond 1-to-1 to the finite-dimensional
irreps of so(p+ q,C) with signature {n1, . . . , nh, nh+1} and we are
able to use previous results due to so called ”parabolic relation”
between the so(p, q) algebras for p + q -fixed.

Note that the number of representations in the corresponding
multiplets is equal to 2[p+q

2
] = 2(h + 1).

Further, we denote by C±i the representation space with signa-
ture χ±i .

Below we give the multiplets pictorially first for p+ q even, then
for p + q odd.
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The degrees of the operators in the two pictures are:

deg di = deg d′i = nh+2−i − nh+1−i, i = 1, . . . , h,

deg d′h = n2 + n1, (p + q) − even ,

deg dh+1 = 2n1, (p + q) − odd (22)

where d′h is omitted from the first line for (p + q) even.

Again the ± pairs are related by KS operators with obvious action
on the signatures. There is a peculiarity, namely, that for p +
q odd, for the pair C±h+1 the KS operator acting from C−h+1 to

C+
h+1 has degenerated (due to regularization of the kernel) to the

differential operator dh+1 .



2 Intertwining differential operators related

to Hermitean symmetric spaces

Since the study and description of detailed classification should be
done group by group we had to decide which groups to study first.
A natural choice would be non-compact groups that have discrete
series representations. By the Harish-Chandra criterion these are
groups where holds:

rankG = rankK, (23)

where K is the maximal compact subgroup of the non-compact
group G. Another formulation is to say that the Lie algebra G of
G has a compact Cartan subalgebra.

Example: The groups SO(p, q) have discrete series, except when
both p, q are odd numbers. ♢
This class is still rather big, thus, we decided to start with a sub-

class, namely, the class of Hermitian symmetric spaces. The practi-
cal criterion is that in these cases, the maximal compact subalgebra
K is of the form:

K = so(2) ⊕ K′ . (24)

The Lie algebras from this class are:

so(n, 2), sp(n,R), su(m,n), so∗(2n), E6(−14) , E7(−25) (25)

These groups/algebras have highest/lowest weight representations,
and relatedly holomorphic discrete series representations.

The most widely used of these algebras are the conformal algebras
so(n, 2) in n-dimensional Minkowski space-time which we already
considered and use now to introduce some more notions. In that
case, there is a maximal Bruhat decomposition:

so(n, 2) = P ⊕ Ñ = M ⊕ A ⊕ N ⊕ Ñ , (26)

M = so(n − 1, 1) , dimA = 1, dimN = dim Ñ = n

that has direct physical meaning, namely, so(n − 1, 1) is the
Lorentz algebra of n-dimensional Minkowski space-time, the sub-
algebra A = so(1, 1) represents the dilatations, the conju-
gated subalgebras N , Ñ are the algebras of translations, and
special conformal transformations, both being isomorphic to n-
dimensional Minkowski space-time.



The subalgebra P = M ⊕ A ⊕ N (∼= M ⊕ A ⊕ Ñ ) is a
maximal parabolic subalgebra.

It is also important that the complexification of the maximal
compact subalgebra is isomorphic to the complexification of the
first two factors of the Bruhat decomposition:

KC = so(n,C)⊕so(2,C) ∼= so(n−1, 1)C⊕so(1, 1)C = MC⊕AC .
(27)

In particular, the coincidence of the complexification of the sub-
algebras:

K′C = MC (28)

means that the sets of finite-dimensional (nonunitary) representa-
tions of M are in 1-to-1 correspondence with the finite-dimensional
(unitary) representations of K′.
It turns out that some of the hermitian-symmetric algebras share

the above-mentioned special properties of so(n, 2). This subclass
consists of:

so(n, 2), sp(n,R), su(n, n), so∗(4n), E7(−25) (29)

the corresponding analogs of Minkowski space-time V being:

Rn−1,1, Sym(n,R), Herm(n,C), Herm(n,Q), Herm(3,O)
(30)

where we use standard notation R,C,Q,O for the four division
algebras: real, complex, quaternion, octonion.

In view of applications to physics, we proposed to call these al-
gebras ’conformal Lie algebras’, (or groups).

We have started the study of the above class in the framework
of the present approach in some cases and we expose these below.

Before passing to the examples we mention also an useful notion:

Definition: Let G,G′ be two non-compact semisimple Lie alge-
bras with the same complexification GC ∼= G′C. We call them
parabolically related if they have parabolic subalgebras P =
M ⊕ A ⊕ N , P ′ = M′ ⊕ A′ ⊕ N ′, such that: MC ∼= M′C (⇒
PC ∼= P ′C). ♢
Certainly, there may be several such parabolic relationships for

any given algebra G.



3 The Lie algebras su(n,n)

Let G = su(n, n), n ≥ 2 (though the case su(2, 2) was already
treated). The maximal compact subgroup is K ∼= u(1) ⊕ su(n) ⊕
su(n).

We choose a maximal parabolic P = M ⊕ A ⊕ N such that
A ∼= so(1, 1), M = sl(n,C)R .

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , nn−1, nn+1 , . . . , n2n−1 ; c }, nj ∈ Z+ , c = d − 1
2
n2

(31)
where the last entry of χ labels the characters of A , and the first
2n−2 entries are labels of the finite-dimensional nonunitary irreps
of M.

The number of ERs in the main multiplets is equal to:

|W (GC,HC)| / |W (MC,HC
m)| =

(
2n

n

)
Below we give the multiplets for su(n, n) for n = 3, 4. They

are valid also for sl(2n,R) with M-factor sl(n,R) ⊕ sl(n,R),
and when n = 4 these are multiplets also for the Lie algebra
su∗(8) with M-factor su∗(4) ⊕ su∗(4). We present the results
only pictorially while the details may be found in [VKD1]1

1Vladimir K. Dobrev, Invariant Differential Operators, Volume 1: Noncompact
Semisimple Lie Algebras and Groups, De Gruyter Studies in Mathematical Physics
vol. 35 (De Gruyter, Berlin, Boston, 2016, ISBN 978-3-11-042764-6), 408 + xii pages.
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Main multiplets for su(4, 4), sl(8,R), su∗(8)

with parabolic M-factors sl(4, CI)R, sl(4,R) ⊕ sl(4,R), su∗(4) ⊕ su∗(4), resp.



4 Cases sp(n,R) and sp(r,r)

Let G = sp(n,R), the split real form of sp(n,C) = GC. The
maximal compact subgroup of G is K ∼= u(1) ⊕ su(n).

We choose a maximal parabolic P = MAN such that A ∼=
so(1, 1), while M = sl(n,R).
We label the signature of the ERs of G as follows:

χ = {n1 , . . . , nn−1 ; c }, nj ∈ N , c = d − (n + 1)/2 (32)

where the last entry of χ labels the characters of A , and the first
n− 1 entries are labels of the finite-dimensional nonunitary irreps
of M , (or of the finite-dimensional unitary irreps of su(n)).

For n = 2r the algebra sp(2r,R) with M-factor sl(2r,R) is
parabolically related to G = sp(r, r) with M-factor su∗(2r), not-
ing that (su∗(2r))C = sl(2r,C). The algebra sp(r, r) has maxi-
mal compact subalgebra K = sp(r)⊕sp(r) and has discrete series
representations but no highest/lowest weight representations.

There are several types of multiplets. The multiplets of the main
type are in 1-to-1 correspondence with the finite-dimensional irreps
of sp(n,R), i.e., they will be labelled by the n positive Dynkin
labels mi ∈ N. The number of ERs in the main multiplets is:

|W (GC,HC)|
|W (MC,HC

m)|
=

|W (sp(n,C))|
|W (sl(n,C))|

=
2n(n)!

((n)!)
= 2n (33)

It is difficult to give explicitly the multiplets for general n. Thus,
we present the cases 3 ≤ n ≤ 6 and only pictorially.

Note that the cases n = 1, 2 were already considered recalling
that sp(1,R) ∼= sl(2,R), sp(2,R) ∼= so(3, 2)). Also the case
sp(1, 1) was considered recalling that sp(1, 1) ∼= so(4, 1).

Also note that the diagram for sp(3,R) looks similar to the one
for so(6, 2), however the parametrizations are obviously different
as the ranks are different.
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Main multiplets for sp(4, IR) and sp(2, 2)
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5 SO∗(4n) case

Let G = so∗(4n). We choose a maximal parabolic P = MAN such
that A ∼= so(1, 1), M = su∗(2n). Since the algebras so∗(4n) be-
long to the class called ’conformal Lie algebras’ we have:

KC ∼= u(1)C ⊕ sl(2n,C) ∼= AC ⊕ MC (34)

Here we have the series of algebras: so∗(4), so∗(8), so∗(12), ...
However the first two cases are reduced to well known confor-
mal algebras due to the coincidences: so∗(4) ∼= so(3) ⊕ so(2, 1),
so∗(8) ∼= so(6, 2).

Thus, we shall study the algebra G6 ≡ so∗(12).

We label the signature of the ERs of G6 as follows:

χ = {n1 , n2 , n3 , n4 , n5 ; c } , nj ∈ Z+ , c = d − 15
2

(35)

where the last entry of χ labels the characters of A , and the first
five entries are labels of the finite-dimensional nonunitary irreps of
M6 = su∗(6).

Finally, we remind that the above considerations are applicable
also for the parabolically related algebra so(6, 6) with parabolic
M-factor sl(6,R). It has discrete series representations but no
highest/lowest weight representations.

The multiplets of the main type are in 1-to-1 correspondence with
the finite-dimensional irreps of so∗(12), i.e., they are labelled by
the six positive Dynkin labels mi ∈ N. The number of ERs/GVMs
in the main multiplets is:

|W (GC
6 ,H

C)| / |W (MC
6 ,H

C
m)| = |W (so(12,C))| / |W (sl(6,C))| = 32

(36)
where HC,HC

m are Cartan subalgebras of GC
6 ,MC

6 , resp.
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6 Exceptional Lie algebras E7(−25) and E7(7)

Let G = E7(−25). The maximal compact subgroup is K ∼= e6 ⊕
so(2), while the completion space has dimQ = 54. We work with
maximal parabolic P = M ⊕ A ⊕ N with M ∼= E6(−26).

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , n6 ; c } , nj ∈ N , c = d − 9 (37)

where the last entry of χ labels the characters of A , and the
first 6 entries are labels of the finite-dimensional nonunitary irreps
of M , (or of the finite-dimensional unitary irreps of the compact
e6). The signatures expressed through the Dynkin labels:

ni = mi , c = − 1
2
(mα̃ + m7) = (38)

= − 1
2
(2m1 + 2m2 + 3m3 + 4m4 + 3m5 + 2m6 + 2m7)

The same holds for the parabolically related exceptional Lie alge-
bra E7(7) (with M-factor E6(6)). Its maximal compact subgroup
is K ∼= su(8), while the completion space has dimQ = 70. This
algebra has discrete series representations (as rankG = rankK),
but no highest/lowest weight representations.

The multiplets of the main type are in 1-to-1 correspondence with
the finite-dimensional irreps of E7 , i.e., they will be labelled by
the seven positive Dynkin labels mi ∈ N. The number of ERs in
these main multiplets is:

|W (GC,HC)|
|W (MC,HC

m)|
=

|W (E7)|
|W (E6)|

=
210 34 5.7

27 34 5
= 56 (39)

The multiplets are depicted in the Figure below:
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7 Exceptional Lie algebras E6(−14), E6(6), E6(2)

Let G = E6(−14) . It has discrete series representations and
highest/lowest weight representations. The split rank is equal to
2, while M0

∼= so(6)⊕ so(2). The maximal compact subalgebra is
K = so(10) ⊕ so(2), while the completion space has dimQ = 32.

We work with the maximal cuspidal parabolic subalgebra suitable
for the class of conformal Lie algebras:

M = su(5, 1) , dim N± = 21 , dim A = 1 (40)

We label the signature of the ERs of G as follows:

χ = {n1 , n3 , n4 , n5 , n6 ; c} , c = d − 11
2

, (41)

where the last entry of χ labels the characters of A , and the first
five entries are labels of the discrete series of M, then nj ∈ N, or
of limits of discrete series, when some of nj are zero.

We consider along with E6(−14) two algebras parabolically related
to it, namely, E6(6) and E6(2) , with parabolic M-factors: sl(6,R),
su(3, 3), resp. They have K = sp(4), K = su(6) ⊕ su(2), resp.
dimQ = 42, 40, resp.

The multiplets of the main type are in 1-to-1 correspondence
with the finite-dimensional irreps of G , i.e., they will be labelled
by the six positive Dynkin labels mi ∈ N. It turns out that each
such multiplet contains 70 ERs/GVMs

The ERs in the multiplet are related by intertwining integral and
differential operators. The Knapp-Stein integral operators inter-
twining the pairs will be denoted by:

G± : Cχ∓ −→ Cχ± (42)

As in all previous cases matters are arranged so that in ev-
ery multiplet only the ER with signature χ−0 contains a finite-
dimensional nonunitary subrepresentation in a finite-dimensional
subspace E. And in every multiplet only the ER χ+

0 con-
tains the anti/holomorphic discrete series representation. The con-
formal weight of the holomorphic case has the restriction d =
1
2
(11 + mα̃) ≥ 11.

The multiplets are given explicitly in the Figure below.

The KS operators relate the ERs which are disposed summetri-
cally w.r.t. the dashed line.
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ẽ

✂
✂
✂
✂✂✌

62,46Λ
−

fo Λ
−

f ′′

❄

❙
❙
❙
❙
❙
❙
❙✇

❄

✓
✓

✓
✓

✓
✓
✓✴

425 11462,46 225,4 225,4
Λ−

g

Λ
−

j

Λ
−

g̃

❍❍❍❍❍❥

✟✟✟✟✟✙

62,46114 114 225,4225,4

❄

✟✟✟✟✟✙

❍❍❍❍❍❥

Λ
−

g′526315
✟✟✟✟✟✙

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

h̃
225,4315 52662,46

❄

❍❍❍❍❍❥
❄

✟✟✟✟✟✙

Λ
−

h
Λ

−

h′114Λ
−

go Λ
−

g′′526✟✟✟✟✟✙

❍❍❍❍❍❥

✟✟✟✟✟✙

❍❍❍❍❍❥

✟✟✟✟✟✙

❍❍❍❍❍❥

315225,4 225,4j′

❄

Λ
−

ĥΛ
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Main Type for E6(−14), E6(6), E6(2)



8 Exceptional Lie algebra G2

Let GC = G2, with Cartan matrix: (aij) =

(
2 −3
−1 2

)
, simple

roots α1, α2 with products: (α2, α2) = 3(α1, α1) = −2(α2, α1).
We choose (α1, α1) = 2, then (α2, α2) = 6, (α2, α1) = −3. As
we know G2 is 14–dimensional. The positive roots may be chosen
as:

∆+ = {α1, α2, α1 +α2, α2 +2α1, α2 +3α1, 2α2 +3α1} (43)

The Weyl group W (GC,HC) of G2 is the dihedral group of
order 12.

The complex Lie algebra G2 has one non-compact real form:
G = G2(2) which is naturally split. Its maximal compact subal-
gebra is K = su(2)⊕ su(2), also written as K = su(2)S ⊕ su(2)L to
emphasize the relation to the root system (after complexification
the first factor contains a short root, the second - a long root). We
remind that G = G2(2) has discrete series representations. Actu-
ally, it is quaternionic discrete series since K contains as direct
summand (at least one) su(2) subalgebra. The number of discrete
series is equal to the ratio |W (GC,HC)|/|W (KC,HC)|, where H is
a compact Cartan subalgebra of both G and K, W are the relevant
Weyl groups. Thus, the number of discrete series in our setting is
three. One case will be explicitly identified below.

The compact Cartan subalgebra H of G will be chosen to coin-
cide with the Cartan subalgebra ofK and we may write: H = u(1)S⊕
u(1)L .

The minimal parabolic of G is:

P0 = M0 ⊕ A0 ⊕ N0 = A0 ⊕ N0 (44)

There are two isomorphic maximal cuspidal parabolic subalgebras
of G which are of Heisenberg type:

Pk = Mk ⊕ Ak ⊕ Nk, k = 1, 2; (45)

Mk = sl(2,R)k, dim Ak = 1, dim Nk = 5

Let us denote by Tk the compact Cartan subalgebra of Mk.
Then Hk = Tk ⊕ Ak is a non-compact Cartan subalgebra of G.
We choose T1 to be generated by the short K-compact root α1+α2



and A1 to be generated by the long root α2, while T2 to be
generated by the long K-compact root α2 + 3α1 and A2 to be
generated by the short root α1.

Equivalently, the M1-compact root of GC is α1 + α2, while
the M2-compact root is α2 + 3α1. In each case the remaining five
positive roots of GC are Mk-noncompact.

To characterize the Verma modules we shall use first the Dynkin
labels:

mi ≡ (Λ + ρ, α∨i ), i = 1, 2, (46)

where ρ is half the sum of the positive roots of GC. Thus, we
shall use :

χΛ = {m1,m2} (47)

Note that when both mi ∈ N then χΛ characterizes the finite-
dimensional irreps of GC and its real forms, in particular, G.
Furthermore, mk ∈ N characterizes the finite-dimensional irreps
of the Mk subalgebra.

We shall use also the Harish-Chandra parameters:

mβ = (Λ + ρ, β∨) , (48)

for any positive root β, and explicitly in terms of the Dynkin labels:

χHC = { m1, m3 = 3m2 + m1, m4 = 3m2 + 2m1 (49a)

m2, m5 = m2 + m1, m6 = 2m2 + m1, } (49b)

8.1 Induction from minimal parabolic

The main multiplets are in 1-to-1 correspondence with the finite-
dimensional irreps of G2, i.e., they are labelled by the two positive
Dynkin labels mi ∈ N.
Using this labelling the signatures may be given in the following



pair-wise manner:

χ±0 = {∓m1,∓m2; ± 1
2
(2m2 + m1)} (50)

χ±2 = {∓(3m2 + m1),±m2; ± 1
2
(m2 + m1)},

χ±1 = {±m1,∓(m2 + m1); ± 1
2
(2m2 + m1)},

χ±12 = {∓(3m2 + 2m1),±(m2 + m1); ± 1
2
m2}

χ±21 = {±(3m2 + m1),∓(2m2 + m1); ± 1
2
(m2 + m1)}

χ±121 = {∓(3m2 + 2m1),±(2m2 + m1); ∓ 1
2
m2},

We have included as third entry also the parameter c = −1
2
(2m2+

m1), related to the Harish-Chandra parameter of the highest root
(recalling that mα6 = 2m2+m1). It is also related to the conformal
weight d = 3

2
+ c.

The ERs in the multiplet are related also by intertwining integral
Knapp-Stein operators. These operators are defined for any ER,
the general action in our situation being:

GKS : Cχ −→ Cχ′ ,

χ = [n1, n2 ; c ] , χ′ = [−n1,−n2 ; −c ]. (51)

The main multiplets are given explicitly in the next figure:
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Main multiplets for G2(2)

using induction from the minimal parabolic



The pairs χ± are symmetric w.r.t. the bullet in the middle of
the picture - this symbolizes the Weyl symmetry realized by the
Knapp-Stein operators (51): G± : Cχ∓ −→ Cχ± .

Some comments are in order.

Matters are arranged so that in every multiplet only the ER
with signature χ−0 contains a finite-dimensional nonunitary sub-
representation in a finite-dimensional subspace E. The latter cor-
responds to the finite-dimensional irrep of G2(2) with signature
[m1,m2]. The subspace E is annihilated by the operators G+ ,
Dm1

α1
, Dm2

α2
and is the image of the operator G− .

When both mi = 1 then dim E = 1, and in that case E is
also the trivial one-dimensional UIR of the whole algebra G. Fur-
thermore in that case the conformal weight is zero: d = 3

2
+ c =

3
2
− 1

2
(2m2 + m1)|mi=1 = 0.

In the conjugate ER χ+
0 there is a unitary discrete series repre-

sentation (according to the Harish-Chandra criterion) in an infinite-
dimensional subspace D̃0 with conformal weight d = 3

2
+ c =

3
2
+ 1

2
(2m2 + m1) = 3, 7

2
, 4, .... It is annihilated by the operator

G−, and is in the intersection of the images of the operators G+

(acting from χ−0 ), Dm1
α1

(acting from χ+
1 ), Dm2

α2
(acting from χ+

2 ).

8.2 Induction from maximal parabolics

When inducing from the maximal parabolic P1 = M1 ⊕ A1 ⊕ N1

there is one M1-compact root, namely, α1. We take again the
Verma module with ΛHC = Λ1−

0 . We take χ1−
0 = χHC. Alto-

gether, the main multiplet in this case includes the same number
of ERs/GVMs as in (50), so we may use the same notation only
adding super index 1, but in order to avoid coincidence with (50)
we must impose the conditions: m1 /∈ N, m1 /∈ N/2.
What is peculiar is that the ERs/GVMs of the main multiplet

here actually consists of three submultiplets with intertwining di-



agrams as follows:

Λ1−
0

Dm2
α2
−→ Λ1−

2

↕ ↕

Λ1+
0

Dm2
α2
←− Λ1+
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subtype (A1) (52a)
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12
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121

subtype (C1) (52c)

Next we relax one of the conditions, namely, we allow m1 ∈ N/2,
still keeping m2 ∈ N, m1 /∈ N. This changes the diagram of
subtype (C1), (52c), as given in the next figure:
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Inducing from the other maximal parabolic P2 is partly dual to
the previous one. The main multiplet is given as (50) only adding
superscript 2 but in order to avoid coincidence with (50) we must
impose the conditions: m2 /∈ N, m2 /∈ N/2, m2 /∈ N/3.
Similarly to the P1 case the ERs/GVMs of the main miltiplet here

actually consists of three submultiplets with intertwining diagrams
as follows:

Λ2−
0

Dm1
α1
−→ Λ2−

1

↕ ↕

Λ2+
0

Dm1
α1
←− Λ2+

1

subtype (A2) (53a)
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21
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←− Λ2+

121

subtype (C2) (53c)

Next we relax one of the conditions, namely, we allow m2 ∈ N/2,
still keeping m2 /∈ N, m2 /∈ N/3. This changes the diagram of
subtype (C2), (53c), as given in the figure above.

Next we relax another condition, namely, we allow m2 ∈ N/3,
still keeping m2 /∈ N, m2 /∈ N/2. This changes the diagrams of
subtypes (B1) and (C1) combining them as given in the next figure:
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Thanks for the attention!


