Numerical results for multiparticle production in ϕ^4 theory

Conference: International conference on QFT, HEP and Cosmology

Speaker: Farkhtdinov B. R.^{1,2}

¹INR RAS ²MIPT

1. Overview

Multiparticle production

Multiparticle production — a process which has a few particles with high energy in the initial state and a large $\sim \lambda^{-1}$ number of particles in the final state.

- •We consider a weak coupling regime with $\lambda \ll 1$.
- •We consider a theory of real scalar field $\lambda \phi^4$.
- •We consider the case without spontaneous symmetry breaking.

Main issues

Results for amplitudes $A_{\text{few} \rightarrow n}$ are mostly given in following ways:

- 1. Amplitudes for special choice of kinematics.
- 2. $|A_{\text{few} \rightarrow n}|^2$ integrated by a phase space of final particles.
- 3. Estimations and restrictions.

Perturbative results on kinematic threshold and beyond

- •Tree-level amplitude behaves $\propto n! \lambda^{n/2}$ and given by a solution of spatially-independent field equation with zero energy¹.
- 1-loop correction² can be summed³ into the $A_{1 \rightarrow n}^{\text{tree}} \exp(B\lambda n^2)$ in the limit $\lambda \rightarrow 0, \lambda n = \text{fixed}$.
- •Near the threshold amplitude depends on the average kinetic energy in this way³: $A_{1 \rightarrow n}^{\text{tree}}(0) \exp\left(-\frac{5}{6}n\varepsilon_{\text{kin}}\right)$.

¹Brown, 1992

²Voloshin, 1993

³Libanov, Rubakov, Son, Troitsky, 1994

Motivation

Since tree-level cross-sections grow with growth of n, they do not fit unitarity restrictions for $\lambda n \sim 1$ and larger. They cannot be described using ordinary perturbative approach. There are two main reasons to explore them:

- 1. Results for multiparticle production probabilities can be applied to processes with Higgs field. There are arguments based on unitarity that the probabilities should be exponentially suppressed⁴, however, there are contradicting results for spontaneously broken $\lambda \phi^4$ theory⁵ and the topic is under discussion.
- 2. New non-perturbative approaches will be derived and tested.

⁴Libanov, Rubakov, Troitsky, 1997

⁵Khoze, 2018

Inspiration for semiclassical description

Exponential behavior of amplitudes and the fact that the resulting cross-section in the limit $\lambda \rightarrow 0$, $\lambda n, \varepsilon =$ fixed has the form

$$\sigma_{1 \to n} \sim \exp(\lambda^{-1}F[\lambda n, \varepsilon]), (1)$$

led to derivation of semiclassical approaches to describe multiparticle production.

We will focus on D.T. Son's method of singular solutions⁶.

⁶Son, 1996

2. Semiclassical method of singular solutions

General setup

Our aim is the value :

$$\mathcal{P}_{1\to n}(E) \equiv \sum_{f} \left| \left\langle f; E, n \right| \hat{\mathcal{S}} \widehat{\Phi}(0) \left| 0 \right\rangle \right|^{2}.$$
(2)

One is able to compute $\mathcal{P}_{1\to n}(E)$ for $\lambda n \sim 1$ in the limit $\lambda \to 0, \lambda n =$ fixed, $\varepsilon = \frac{E-n}{n} =$ fixed with two assumptions (m = 1):

- 1. Probability is exponentially suppressed $\mathcal{P}_{1\to n}(E) \propto e^{F_{1\to n}/\lambda}$ with $F_{1\to n} < 0$.
- 2. The answer do not depend on few-particle operator acting on vacuum with exponential accuracy.

Calculation of
$$\mathcal{P}_{1 \to n}(E)$$

To calculate the multiparticle production probability one can take the following limit⁶:

$$\mathcal{P}_{1 \to n}(E) \approx \lim_{J \to 0} \frac{\lambda^2}{J^2} \sum_{f} |\langle f; n, E| e^{-J\widehat{\phi}(0)/\lambda} |0\rangle|^2 = \lim_{J \to 0} \frac{\lambda^2 \mathcal{P}_{\mathcal{J}}(E, n)}{J^2}.$$
 (3)

Result is independent of particular choice of J term in exponent and in our research we choose it to be

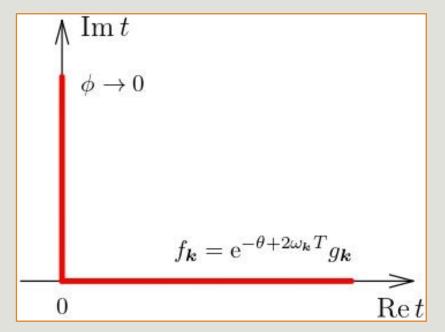
$$\int d^4x J(x)\widehat{\phi}(x), \qquad J(x) = j\delta(t)\exp\left(-\frac{x^2}{2\sigma^2}\right).$$
(4)

Calculation of
$$\mathcal{P}_{\mathcal{J}}(E, n)$$

 $\mathcal{P}_{\mathcal{J}}(E, n)$ can be calculated via solving saddle-point equation

$$\partial^2 \phi(x) + \phi(x) + \phi^3(x) = iJ(x)$$
(5)

on the contour



Why solutions are singular?

- •Due to jump in energy, solutions have jump in time derivative.
- •In the limit $j \rightarrow 0$ with fixed ε and λn solutions become singular at t = 0.
- •In the complex time plate solutions have a singularity surface $\tau_0(r)$.

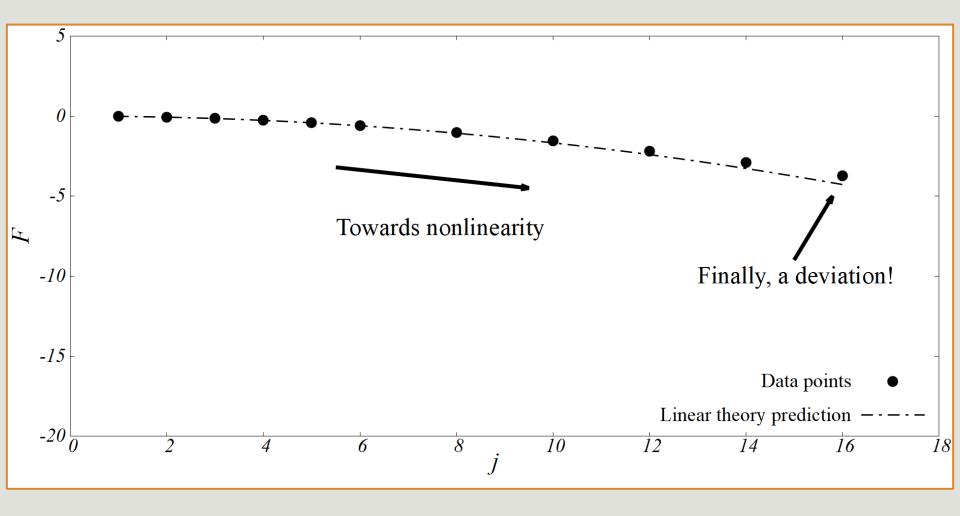
Numerical approach

To solve saddle-point equations along with boundary conditions we do the following steps:

- 1. Consider only spherically-symmetrical solutions.
- 2. Define theory on space-time lattice.
- 3. Start from solutions that can be described with equations without self-interaction that can be solved analytically.
- 4. Use Newton-Raphson numerical method to converge to strongly interacting solutions with fixed λn , ε .

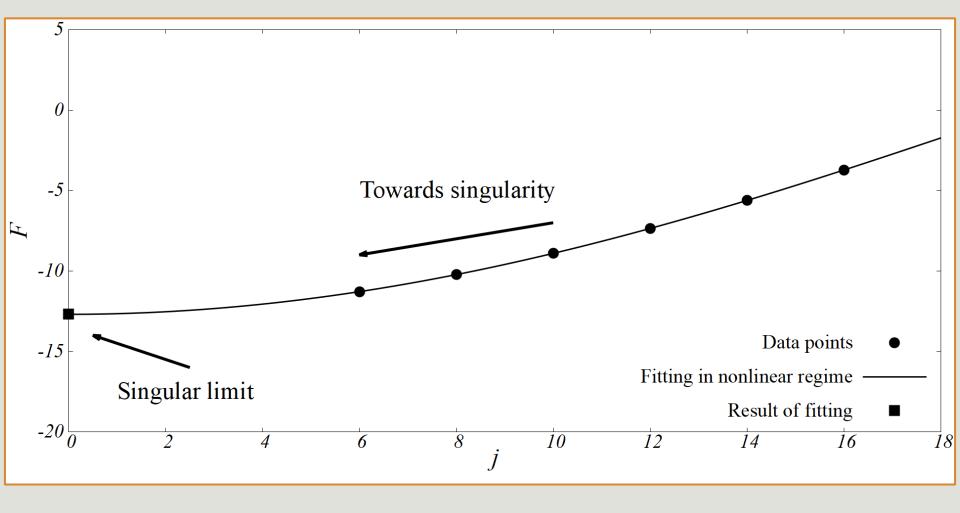
5. Take limit
$$j \to 0, \frac{\sigma}{i} = \text{fixed}.$$

3. Numerical results



Reaching nonlinear regime for $\varepsilon = 3.0$ (here $\lambda n \propto j^2$, $\sigma = \text{fixed}$, $\varepsilon = \text{fixed}$) 20.07.2022 ICQFTHEPC, Dubna

15



Taking the singular limit for $\lambda n \approx 2.51$, $\epsilon = 3.0$

(here $\sigma \propto j$, $\lambda n = \text{fixed}$, $\varepsilon = \text{fixed}$)

Comparison with tree-level results at $\lambda n \ll 1$

For $\lambda n \ll 1$ suppression exponent has the form^{3,6}

$$F(\lambda n,\varepsilon) = \lambda n \ln\left(\frac{\lambda n}{16}\right) - \lambda n + \lambda n f(\varepsilon) + O(\lambda^2 n^2), (23)$$

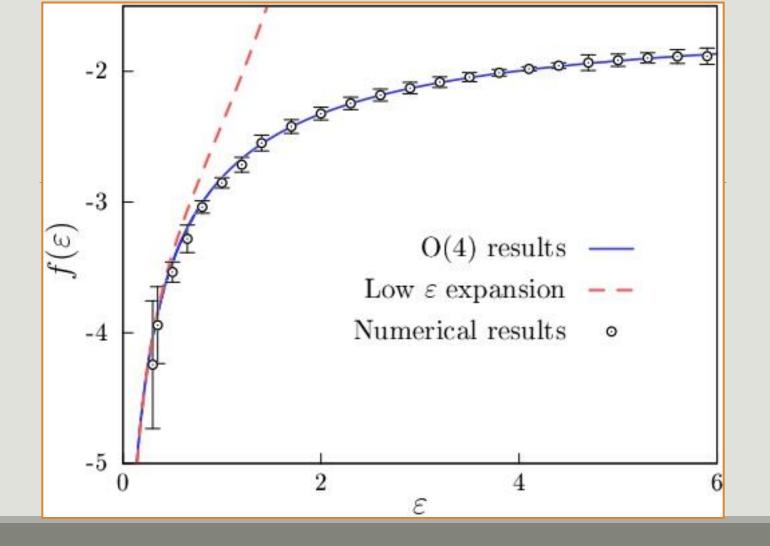
and for $\varepsilon \ll 1$, $f(\varepsilon)$ can be represented⁷ as

$$f(\varepsilon) = \frac{3}{2} \ln \frac{\varepsilon}{3\pi} + \frac{3}{2} - \frac{17}{12} \varepsilon + \frac{1327 - 96\pi^2}{432} \varepsilon^2 + O(\varepsilon^3) . (24)$$

We also compared our results with results for solutions with O(4)-symmetrical singularity surface⁸.

⁷Bezrukov, Libanov, Son, Troitsky, 1995

⁸Bezrukov, Libanov, Troitsky, 1995

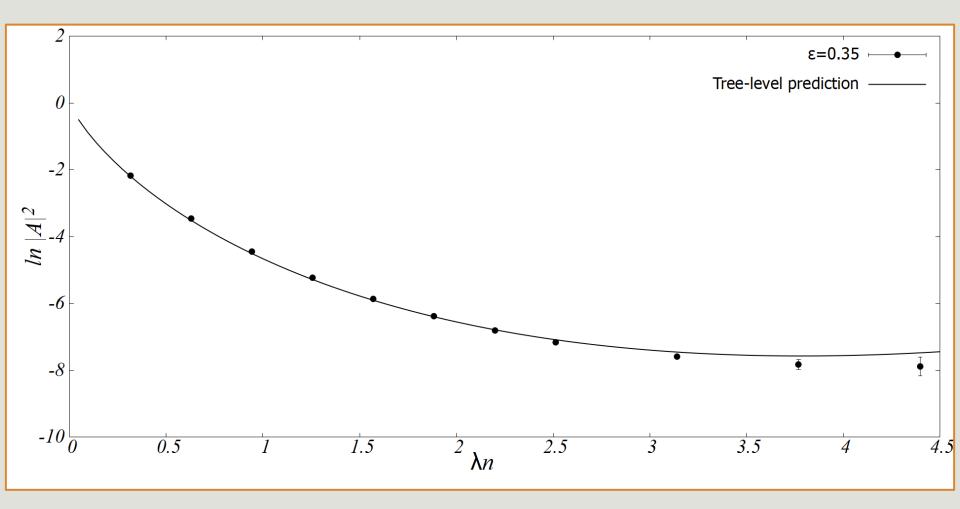


Comparison with tree-level results⁹

⁹Demidov, Farkhtdinov, Levkov, 2021

20.07.2022 ICQFTHEPC, Dubna

18

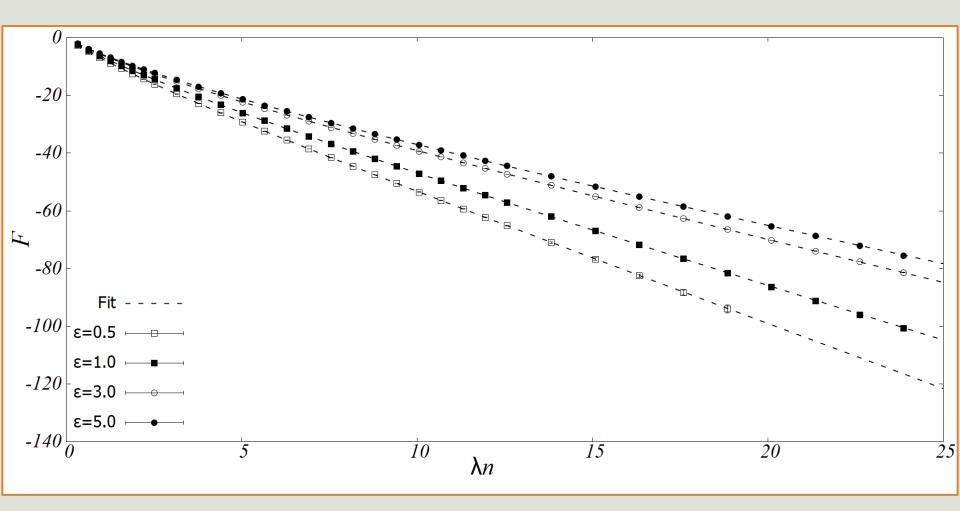


Comparison of $\ln |A_{1 \to n}|^2$ with tree-level predictions for low ε $\ln |A_{1 \to n}^{\text{tree}}|^2 \to n \left(2 \ln \frac{\lambda n}{2\sqrt{2}} - 2 - \frac{5}{3}\varepsilon\right)$ 20.07.2022 ICQFTHEPC, Dubna 19

Limit $\lambda n \to +\infty$, $\varepsilon = \text{fixed}$

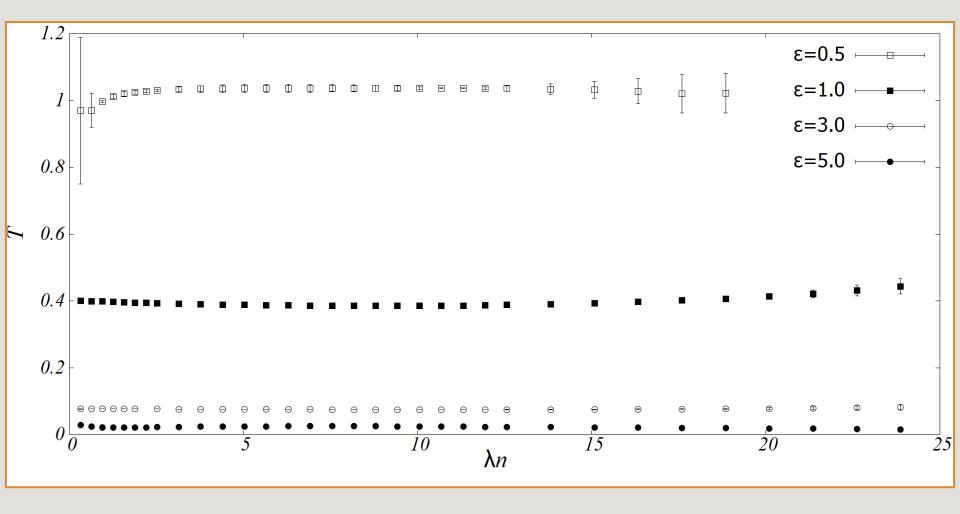
We have obtained limit $\lambda n \to +\infty$ for a set of considered ε in our numerical data. This limit has a set of features:

- 1. $\lambda n(\mathbf{k})$ distribution in the momentum space divided by the value of λn becomes constant.
- 2. Suppression exponent *F* starts to behave like a linear function $F = f_{\infty}(\varepsilon)\lambda n + g_{\infty}(\varepsilon)$ with negative $f_{\infty}(\varepsilon)$.
- 3. T and θ tend to constant.
- 4. With growth of ε , T tends to zero and f_{∞} tends to constant.

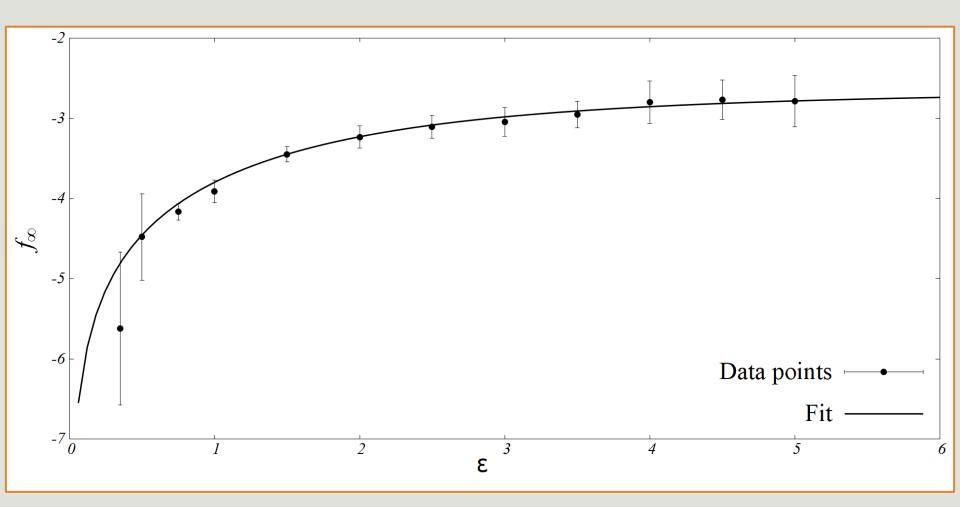


Limit $\lambda n \to +\infty$, $\varepsilon = \text{fixed}$

(fitting function: $F(\lambda n, \varepsilon) = -\frac{\lambda n}{2} \ln \left[\left(\frac{16}{\lambda n} \right)^2 + \frac{a_{\varepsilon}}{\lambda n} + b_{\varepsilon} \right] + (f(\varepsilon) - 1)\lambda n$) 20.07.2022 ICQFTHEPC, Dubna 21



 $T(\lambda n)$ for a set of fixed ε



Results for $f_{\infty}(\varepsilon)$ Fitting function $f_{\infty}(\varepsilon) = -\frac{1}{2} ln \left[\left(\frac{u}{\varepsilon} \right)^2 + v \right]$ 20.07.2022ICQFTHEPC, Dubna

23

Summary

- 1. Numerical implementation of D.T. Son's semiclassical method was constructed and successfully verified for low λn .
- 2. Multiparticle production probabilities are exponentially suppressed at $\lambda n \rightarrow +\infty$ for all considered ε and seem to be suppressed for all ε .
- 3. There are indications that in the limit $\varepsilon \to +\infty$ one can omit mass term in saddle-point equations.

Thank you for your attention!