Stability and bifurcations in holographic RG flows of 3d gauged supergravity

based on a joint work <u>arXiv:2207.XXXXX</u>

<u>Anastasia Golubtsova</u> (BLTP JINR), Marina Usova (MI RAS) International Conference on Quantum Field Theory, High-Energy Physics, and Cosmology July 21, DUBNA

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	

Outline

- 1. Introduction
- 2. The holographic model
- 3. Holographic RG flows and dynamical system
- 4. Asymptotic solutions near the fixed points
- 5. Outlook

Introduction

00000 0000000 0000000 000000 000000 0000	Introduction	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
000000000000000000000000000000000000000	0000	0000000	00000000	000000	000

The AdS/CFT conjecture

The strongest version of the conjecture $4d \ \mathcal{N} = 4$ SYM with SU(N) is dynamically equivalent to type IIB superstring theory (contains strings and D-branes) on $AdS_5 \times S^5$ with a string length $\ell_s = \sqrt{\alpha'}$ and coupling constant g_s with the radius L and N units of $F_{(5)}$ flux on S^5 . (Maldacena'97)

$$g_{YM}^2 = 2\pi g_s, \quad 2g_{YM}^2 N = \frac{L^4}{\alpha'^2}, \quad \lambda = g_{YM}^2 N.$$

	$\mathcal{N} = 4$ SYM	IIB theory on $AdS_5 \times S^5$
Strongest form	any N and λ	Quantum string theory, $g_s eq 0$, $lpha'/L^2 eq 0$
Strong form	$N ightarrow \infty$, λ fixed but arbitrary	Classical string theory, $g_s ightarrow 0, \alpha'/L^2 eq 0$
Weak form	$N o \infty$, λ large	Classical supergravity, $g_s ightarrow 0, lpha'/L^2 ightarrow 0$

The holographical principle

The information of a gravity theory in AdS_{d+1} is mapped to a d theory which lives on the conformal boundary of the (d+1)-dimensional spacetime.

Introduction	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
00000	0000000	00000000	000000	000

The AdS/CFT correspondence

• d = 2 CFT has a description in terms of 3d-gravity in AdS_3 :

$$S = \int dx^2 dw \sqrt{-g} (R - \Lambda)$$

- An operator $\mathcal{O}(w)$ corresponds to a dynamical bulk field $\phi(x,w)$
- $\phi(x,0)$ a source for the $\mathcal O$ in the CFT

$$S = \int dx^2 dw \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

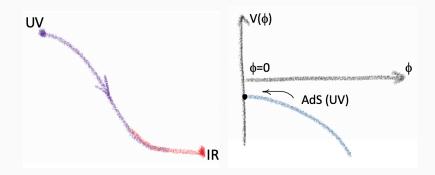
• $\phi(x,w) = \alpha w^{d-\Delta} + \ldots \Leftrightarrow$

$$S = S_{CFT} + \int d^2 x \alpha \mathcal{O}(x)$$

• $\alpha = 0$ – undeformed CFT, bulk scalar – const., spacetime is AdS • $\alpha \neq 0$ corresponds to relevant coupling for the CFT; deform. AdS Holographic RG flows and dynamical system

Asymptotic solutions near the fixed points Outlook

Holographic picture for deviations from conformality



Holographic Renormalization Group

Akhmedov'98; de Boer et. al.'98, Boonstra et. al.'98;Skenderis'99 The domain wall solution

$$ds^2 = e^{2\mathcal{A}(w)}\eta_{ij}dx^i dx^j + dw^2, \quad \phi = \phi(w)$$

- AdS isometry group \Leftrightarrow Poincaré isometry group of DW
- the conformal symmetry at UV and/or IR fixed points
- $e^{\mathcal{A}}$ measures the field theory energy scale
- + $\phi(w)$ identifies with the running coupling along the flow
- The β -function

$$\beta = \frac{d\lambda}{d\log E}|_{QFT} = \frac{d\phi}{dA}_{Holo}$$

The holographic model

The holographic model

Sezgin & Deger'99, Deger'02

The action $3d \mathcal{N} = 2$ supergravity is given by

$$S = \frac{1}{16\pi G_3} \int d^3x \sqrt{|g|} \left(R - \frac{1}{a^2} (\partial \phi)^2 - V(\phi) \right) + G.H.Y.,$$

where G.H.Y. – Gibbons-Hawking-York term.

The potential of the scalar field $V(\phi)$ is

$$V(\phi) = 2\Lambda_{uv} \cosh^2 \phi \left[(1 - 2a^2) \cosh^2 \phi + 2a^2 \right],$$

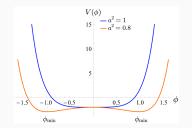
where $\Lambda_{uv} < 0$ is a cosmological constant, a is a constant (the curvature of the scalar manifold \mathcal{M}).

n = 1 (one scalar):

$$\mathcal{M} = SU(1,1)/U(1).$$

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
0000000			

The behaviour of the diltaton potential



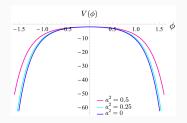


Figure 1: The dependence of the dilaton potential $V(\phi)$ for different a^2 ; blue curve - for $a^2=1$, orange curve - $a^2 = 0.8$;

Figure 2: The dependence of the dilaton potential $V(\phi)$ for different a^2 : rose curve - for $a^2 = 0.5$, light blue curve - for $a^2 = 0.25$, blue - for $a^2 = 0$

$$\phi_1 = 0, \quad \phi_{2,3} = \frac{1}{2} \ln \left(\frac{1 \pm |a| \sqrt{1 - a^2}}{2a^2 - 1} \right).$$

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
0000000			

The superpotential of the model

The superpotential reads

$$W = \sqrt{-\Lambda_{uv}} \cosh^2 \phi, \quad V(\phi) = \frac{a^2}{4} \left(\frac{\partial W}{\partial \phi}\right)^2 - \frac{1}{2}W^2$$

For the RG flows W always increases, thus its minimum corresponds to a UV fixed point, while the maximum - to an IR.

$$\mathcal{C}$$
-function $\mathcal{C} \sim \frac{1}{W}$

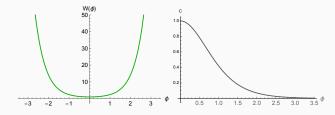


Figure 3: a) The behaviour of $W(\phi)$; b) The behaviour of C-function.

Introduction The holographic mode	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
000000 0000000			

EOM and exact solutions

The ansatz for the metric and for the scalar field is given by

$$ds^{2} = e^{2A(w)}(-dt^{2} + dx^{2}) + dw^{2}, \quad \phi = \phi(w).$$

The equations of motion are

$$2\dot{A}^{2} + V - \frac{\dot{\phi}^{2}}{a^{2}} = 0,$$

$$\ddot{A} + \frac{\dot{\phi}^{2}}{a^{2}} = 0,$$

$$\ddot{b} + 2\dot{A}\dot{\phi} - \frac{a^{2}}{2}V_{\phi} = 0.$$

The exact solution to the dilaton Deger'02

đ

$$\phi = \frac{1}{2} \log \left(\frac{1 + e^{-4ma^2 w}}{1 - e^{-4ma^2 w}} \right), \quad 0 \le w < \infty, \quad m^2 = -\frac{\Lambda_{uv}}{4}.$$

The metric can be represented as follows:

$$ds^{2} = (e^{8ma^{2}w} - 1)^{\frac{1}{2a^{2}}}(-dt^{2} + dx^{2}) + dw^{2}.$$

The conformal dimension of the operator

CFT side: The deformation of the fixed point $L_{CFT} + \int d^2x \phi_0 \mathcal{O}$,

- $\Delta = 2$ marginal operator
- $\Delta < 2$ relevant operator
- $\Delta > 2$ irrelevant operator

Gravity dual: The scalar field in AdS_3

$$S \sim \int d^3x \sqrt{-g} \left(g^{\mu\nu} (\partial\phi)^2 + m^2 \phi^2\right),$$

$$ds^2 = \frac{-dt^2 + dx^2 + dz^2}{z^2}, \quad z = e^{w - w_0}, \quad ds^2_{DW} = e^{w - w_0}(-dt^2 + dx^2) + dw^2.$$

Introduction 00000	The holographic model 000000●0	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook 000

The Breitenlohner-Freedman bound:

The equation for the scalar field

$$\partial_w^2 \phi - 2 \partial_w \phi - m^2 \phi = 0, \quad \phi \sim e^{\Delta(w - w_0)},$$

The solution:

$$\Delta(\Delta - 2) - m^2 = 0, \quad \Delta_{\pm} = 1 \pm \sqrt{1 + m^2}.$$

At the same time the expansion of the dilaton potential of the quadratic order gives

$$m^2 = -4\Lambda_{uv}a^2(a^2 - 1).$$

The Breitenlohner-Freedman bound:

$$\Delta = \Delta_{+} = 1 + |1 - 2a^{2}|.$$

The conformal dimensions using holography

Possible conformal dimensions

- 1. for $a^2=0$, $\Delta=2,$ the operator is marginal
- 2. for $0 < a^2 < 1/2$, $1 < \Delta < 2$, the operator is relevant,
- 3. for $a^2 = 1/2$, $\Delta = 1$,i,e. the operator is relevant,
- 4. for $1/2 < a^2 < 1$, $1 < \Delta < 2$,i.e. the operator is relevant,
- 5. for $a^2 = 1$, $\Delta = 2$, the operator is marginal.

The general solution to the scalar field ϕ we can represent using $\Delta_+ = \Delta$ and $\Delta_- = 2 - \Delta$:

$$\phi = \phi_0^- e^{-(2-\Delta)w} + \phi_0^+ e^{-\Delta w}.$$

Holographic RG flows and dynamical system

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
	00000000		

The autonomous dynamical system

We introduce new variables (Aref'eva, Policastro, AG'19):

$$\begin{split} X &= \frac{\dot{\phi}}{\dot{A}}, \qquad Z = e^{-\phi}, \\ Z &\in (0, +\infty) \text{ for } \phi \in (-\infty; \infty). \\ \lambda &= e^{\phi} \to +\infty, \quad \phi \to +\infty \end{split}$$

The dynamical system is represented by

$$\label{eq:dz} \begin{split} \frac{dZ}{dA} &= f(Z,X),\\ \frac{dX}{dA} &= g(Z,X), \end{split}$$

where the functions \boldsymbol{f} and \boldsymbol{g} are defined as:

$$\begin{split} f(Z,X) &= -ZX, \\ g(Z,X) &= \left(\frac{X^2}{a^2} - 2\right) \left(X + \frac{a^2}{2} \times \frac{4\left(2a^2(Z^8 - 1) - (Z^2 - 1)(Z^2 + 1)^3\right)}{(Z^2 + 1)^4 - 2a^2(Z^4 - 1)^2}\right). \end{split}$$
13

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
	0000000		

The points of equilibrium

$$\begin{cases} f(Z,X) \\ g(Z,X) \\ \\ z_c, x_c \end{cases} = 0.$$

The stationary points are

1. $Z_c = 0, X_c = a\sqrt{2},$ 2. $Z_c = 0, X_c = -a\sqrt{2},$ 3. $Z_c = 0, X_c = -2a^2,$ 4. $Z_c = 1, X_c = 0,$ 5. $Z_c = \sqrt{\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1}}, X_c = 0,$ 6. $Z_c = \sqrt{\frac{1+2\sqrt{1-a^2}}{2a^2-1}}, X_c = 0.$

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
	0000000		

Stability analysis of equilibrium points

We perturbe near Z_c, X_c : $Z = Z_c + \delta Z$, $X = X_c + \delta X$.

$$\frac{d}{dA} \begin{pmatrix} \delta Z \\ \delta X \end{pmatrix} = \mathcal{M} \begin{pmatrix} \delta Z \\ \delta X \end{pmatrix},$$

where \mathcal{M} – the Jacobian matrix

$$\mathcal{M} = \begin{pmatrix} \frac{\partial f}{\partial Z} & \frac{\partial f}{\partial X} \\ \frac{\partial g}{\partial Z} & \frac{\partial g}{\partial X} \end{pmatrix} \Big|_{Z = Z_c, X = X_c}$$

$$\mathcal{M}_{11} = -X_c, \quad \mathcal{M}_{12} = -Z_c,$$
$$\mathcal{M}_{21} = -\frac{8Z_c(2a^2 - X_c^2) \left(8a^4 Z_c^2 (Z_c^2 - 1)^2 + 2a^2 (Z_c^2 + 1)^2 (Z_c^4 + 1) - (Z_c^2 + 1)^4\right)}{(Z_c^2 + 1)^2 ((Z_c^2 + 1)^2 - 2a^2 (Z_c^2 - 1)^2)^2},$$
$$\mathcal{M}_{22} = \frac{3X_c^2}{a^2} - 2 - \frac{4X_c \left((Z_c^2 - 1)(Z_c^2 + 1)^3 - 2a^2 (Z_c^8 - 1)\right)}{(Z_c^2 + 1)^4 - 2a^2 (Z_c^8 - 1)^2}.$$

The characteristic equation is:

$$\lambda^{2} - \lambda \left(\mathcal{M}_{11} + \mathcal{M}_{22} \right) + \mathcal{M}_{11} \mathcal{M}_{22} - \mathcal{M}_{12} \mathcal{M}_{21} = 0.$$

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
	00000000		

Point	$a^2 = 0$	$0 < a^2 < \frac{1}{2}$	$a^2 = \frac{1}{2}$	$\frac{1}{2} < a^2 < 1$	$a^2 = 1$
1	none	$a \in \left(-\frac{1}{\sqrt{2}}; 0\right)$ unst. node $a \in \left(0; \frac{1}{\sqrt{2}}\right)$ saddle	$a = \frac{1}{\sqrt{2}}$ saddle $a = -\frac{1}{\sqrt{2}}$ none	saddle	saddle
			* =		
2	none	$a \in (0; \frac{1}{\sqrt{2}})$ unst. node	$a = \frac{1}{\sqrt{2}}$ none	saddle	saddle
2	none	$a \in \left(-\frac{1}{\sqrt{2}}; 0\right)$ saddle	$a=-rac{1}{\sqrt{2}}$ saddle	Saddie	sadure
3	none	saddle	none	unst.node	unst. node
4	none	stable node	stable node	stable node	none
5,6	saddle	saddle	saddle	saddle	none

Introduction	The holographic model		Asymptotic solutions near the fixed points	
00000	0000000	000000000	0000000	000

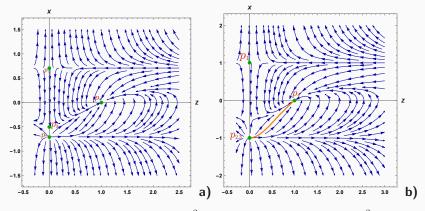


Figure 4: a) Phase portrait for $a^2 = 0.25$; b) Phase portrait for $a^2 = 0.5$.

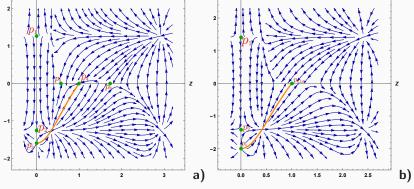


Figure 5: a) Phase portrait for $a^2 = 0.8$; b) Phase portrait for $a^2 = 1$.

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
	000000000		

Bifurcations

- The bifurcation occurs when a control parameter change causes a change of stability properties of critical points of the dynamical system.
- A local bifurcation is a bifurcation of a dynamic system that can be identified by analyzing the stability of fixed points.
- Global bifurcations cannot be detected only by a stability analysis of the fixed points and often occur when an invariant sets of the system 'collide' with each other, or with fixed points of the system.
- Typically the bifurcations are characterized by a vanishing eigenvalue of Jacobian matrix.

$$Z_{c} = 0: \dot{X} = (\frac{X^{2}}{a^{2}} - 2)(X - 2a^{2}), \quad X_{c} = -\sqrt{2}a, \quad X_{c} = \sqrt{2}a, \quad X_{c} = 2a^{2}.$$
1) $a = \frac{1}{\sqrt{2}} X_{c} = \sqrt{2}a \text{ none } \lambda_{1} = \sqrt{2}a, \quad \lambda_{2} = 4(1 - a\sqrt{2})$
det $\mathcal{M} = 4\sqrt{2}a(1 - \sqrt{2}a); X_{c} = -\sqrt{2}a \text{ saddle(unstable)}, X_{c} = 2a^{2} \text{ (none)}, \text{ 2)}$
while for $a = -\frac{1}{\sqrt{2}} X_{c} = \sqrt{2}a$ unstable, for $X_{c} = -\sqrt{2}a$ and $X_{c} = 2a^{2}$ none.

	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
00000	0000000	00000000	0000000	000

Bifurcations

Gukov'17

$$\Delta = |1 - 2a^2| + 1; \quad \Delta - d = |1 - 2a^2| - 1.$$

1. for
$$a^2 = 0$$
 $\Delta - d = 0$,
2. for $0 < a < \frac{1}{\sqrt{2}}$, $\Delta - d = -2a^2$,
3. for $-\frac{1}{\sqrt{2}} < a < 0$, $\Delta - d = -2a^2$,
4. for $a^2 = \frac{1}{2}$, $\Delta - d = -1$,
5. for $a^2 = 1$, $\Delta - d = 0$,
6. $\frac{1}{\sqrt{2}} < a < 1$, $\Delta - d = 2(a^2 - 1)$,
7. $-1 < a < -\frac{1}{\sqrt{2}}$, $\Delta - d = 2(a^2 - 1)$.

Asymptotic solutions near the fixed points

Asymptotic gravitational solutions near the fixed points

Recall:

$$\frac{\ddot{A}}{\dot{A}^2} = -\frac{X_c^2}{a^2}, \quad X_c = \frac{\dot{\phi}}{\dot{A}}.$$

The generic form of the solution for the metric and the dilaton:

$$A = \frac{a^2}{X_c^2} \ln \left[\frac{X_c^2 \dot{A}_0(w - w_0) + a^2}{X_c^2 \dot{A}_0(w_1 - w_0) + a^2} \right] + A_0,$$

and

$$\phi = \frac{a^2}{X_c} \ln \left[\frac{\dot{A}_0 X_c^2 (w - w_0) + a^2}{\dot{A}_0 X_c^2 (w_1 - w_0) + a^2} \right] + \phi_0,$$

where $A_0 = A(w_0), \phi_0 = \phi(w_0), \dot{A}_0 = \dot{A}(w_0), w_0, w_1$ are constants of integration.

	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points 00●0000	Outlook 000

•
$$Z_c = 0$$
, $X_c = \sqrt{2}a$. The metric and the dilaton are given by

$$ds^{2} \cong \left| \frac{2\dot{A}_{0}(w-w_{0})+1}{2\dot{A}_{0}(w_{1}-w_{0})+1} \right| (-dt^{2}+dx^{2}) + dw^{2}, \phi = \frac{a}{\sqrt{2}} \ln \left| \frac{2\dot{A}_{0}(w-w_{0})+1}{2\dot{A}_{0}(w_{1}-w_{0})+1} \right| + \phi_{0}.$$

Since $Z_c = 0$, then $\phi \to +\infty$, so a > 0 and $w \to w_0 - \frac{1}{2\dot{A}_0}$, or $w \to +\infty$ and a < 0. The potential $\phi \to +\infty$: $V \to \pm\infty$, however from the EOM V = 0, $\frac{dV}{d\phi} = 0$. **NOT A SOLUTION TO EOM**.

• $Z_c = 0$, $X_c = -a\sqrt{2}$. The metric and the dilaton are given by

$$ds^{2} \cong \left| \frac{2\dot{A}_{0}(w-w_{0})+1}{2\dot{A}_{0}(w_{1}-w_{0})+1} \right| (-dt^{2}+dx^{2}) + dw^{2}, \phi = -\frac{a}{\sqrt{2}} \ln \left| \frac{2\dot{A}_{0}(w-w_{0})+1}{2\dot{A}_{0}(w_{1}-w_{0})+1} \right| + \phi_{0}.$$

NOT A SOLUTION TO EOM.

• $Z_c = 0$, $X_c = -2a^2$. The metric and the dilaton are

$$ds^{2} \cong \left| \frac{4a^{2}\dot{A}_{0}(w-w_{0})+1}{4a^{2}\dot{A}_{0}(w_{1}-w_{0})+1} \right|^{\frac{1}{2a^{2}}} (-dt^{2}+dx^{2})+dw^{2},$$

$$\phi = -\frac{1}{2} \ln \left| \frac{4a^2 \dot{A}_0(w - w_0) + 1}{4a^2 \dot{A}_0(w_1 - w_0) + 1} \right| + \phi_0.$$

Since $Z_c = 0$, $\phi \to +\infty$, for $\phi \to +\infty$ the potential behaves as $V \sim \begin{cases} -\infty, & \text{for } 0 \le a^2 \le \frac{1}{2}, \\ +\infty, & \text{for } a^2 > \frac{1}{2}. \end{cases}$ SOLVES EOM for any a and $w \to w_0 - \frac{1}{4a^2A_0}.$

• $Z_c = 1$, $X_c = 0$. The metric and the dilaton are given by

$$ds^2 \approx e^{2\sqrt{-\Lambda_{uv}}(w-w_0)} \left(-dt^2 + dx^2\right) + dw^2, \quad \phi = 0, \quad V = 2\Lambda_{uv}.$$

where w_0 –a constant of integration. SOLVES EOM for any a.

•
$$Z_c = \sqrt{\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1}}, \quad X_c = 0.$$

The metric and the scalar field are

$$s^{2} \approx e^{2a^{2}\sqrt{-\frac{\Lambda_{uv}}{2a^{2}-1}}(w-w_{0})}(-dt^{2}+dx^{2})+dw^{2}, \quad \phi = \ln\sqrt{\frac{1-2|a|\sqrt{1-a^{2}}}{2a^{2}-1}}$$
$$V = \frac{2a^{4}\Lambda_{uv}}{2a^{2}-1},$$

where w_0 – the constant of integration.**SOLVES EOM** for $a^2 > \frac{1}{2}$.

•
$$Z_c = \sqrt{\frac{1+2|a|\sqrt{1-a^2}}{2a^2-1}}, \quad X_c = 0.$$

The metric and the scalar field are

$$ds^{2} \approx e^{2a^{2}\sqrt{-\frac{\Lambda_{uv}}{2a^{2}-1}}(w-w_{0})}(-dt^{2}+dx^{2})+dw^{2}, \quad \phi = \ln(\sqrt{\frac{1+2|a|\sqrt{1-a^{2}}}{2a^{2}-1}})$$
$$V = \frac{2a^{4}\Lambda_{uv}}{2a^{2}-1},$$

where w_0 – the constant of integration.**SOLVES EOM for** $a^2 > \frac{1}{2}$.

		The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
00000 0000000 00000000 000000 000000 0000	00000	0000000	00000000	0000000	000

Holographic RG flows

Point	$V(\phi)$	Type with energy scale	UV/IR
$p_3, Z_c = 0, X_c = -2a^2$	$V \to \pm \infty$	stable for all a	IR
$p_4, Z_c = 1, X_c = 0$	const	Unstable for all a	UV
$p_5, Z_c = \sqrt{\frac{1-2 a \sqrt{1-a^2}}{2a^2-1}}, X_c = 0$	const	Unstable for all a	UV
$p_6, Z_c = \sqrt{\frac{1+2 a \sqrt{1-a^2}}{2a^2-1}}, X_c = 0$	const	Unstable for all a	UV

	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	
00000	0000000		000000	

Holographic RG flows

Possible RG flows:

•
$$a^2 < \frac{1}{2}$$
:

• p_4 (UV, AdS_3 , $\phi=0$) to p_3 (IR, $\phi \to +\infty$)

•
$$a^2 > \frac{1}{2}$$
:
• p_4 (UV, AdS_3 , $\phi = 0$) to p_3 (IR, $\phi \to +\infty$);
• p_5 (UV, AdS_3 , $\phi = \ln(\sqrt{\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1}}))$ to p_3 (IR, $\phi \to +\infty$)
• p_6 (UV, AdS_3 , $\phi = \ln(\sqrt{\frac{1+2|a|\sqrt{1-a^2}}{2a^2-1}}))$ to p_3 (IR, $\phi \to +\infty$)

Outlook

	The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
00000	0000000	00000000	000000	000

Outlook

Summary

- Relevant deformations related to holographic RG flows were studied
- Stability analysis of equilibrium points was done
- Classification of fixed points according to stability was done
- Holographic RG flows from UV fixed points with $\phi = const$ to IR fixed points with $\phi \rightarrow +\infty$ were found (AdS-hypescaling violating geometry flows, no AdS-AdS flows).

Questions

- Finite-temperature generalizations; Gubser's bound ($V \le 0$)?
- Phase transitions as bifurcations? (Gukov'17)
- Are there irrelevant deformations? (the so-called Zamolodchikov $T\bar{T}\text{-}deformations)$

The holographic model	Holographic RG flows and dynamical system	Asymptotic solutions near the fixed points	Outlook
			000

Thank you for attention!